
PlasticityNet: Learning to Simulate Metal, Sand, and
Snow for Optimization Time Integration:

Supplemental Document

Xuan Li
Department of Mathematics

University of California, Los Angeles
xuanli1@math.ucla.edu

Yadi Cao
Department of Computer Science

University of California, Los Angeles
yadicao95@cs.ucla.edu

Minchen Li
Department of Mathematics

University of California, Los Angeles
minchen@math.ucla.edu

Yin Yang
School of Computing

University of Utah
yin.yang@utah.edu

Craig Schroeder
Department of Computer Science and Engineering

University of California, Riverside
craigs@cs.ucr.edu

Chenfanfu Jiang
Department of Mathematics

University of California, Los Angeles
cffjiang@math.ucla.edu

A Appendix

A.1 Network Architecture

All our models are using the Multilayer Perceptron (MLP) architecture with Swiss activation functions
(x sigmoid(x)) except the output layer. They are trained using ADAM optimizer with the same
parameters: initial learning rate α = 0.01, decay rate γ = 0.95, decay step 1000. The dataset is
generated during the training process with random sampling, and the batch size is 216 for all cases.
The models are all trained with 20000 epochs. The detailed architectures for each model is listed in
Table 1.

Table 1: Network Architectures and Training Details
Model MLP layers
Sand (StVK+Drucker-Prager) [8,32,32,32,1]
Snow (Neohooken+NACC) [9,32,32,32,1]
Metal (StVK+von-Mises) [9,32,32,32,1]
Sand 3D [18,64,64,64,1]
Metal 3D (StVK+von-Mises) [19,64,64,64,1]
Snow 3D [19,64,64,64,1]

A.2 Technical Details on Plasticity Models

We focus on isotropic materials, where the elasticity and plasticity can both be described in the
diagonal space without loss of generality. Given the polar singular value decomposition of the
deformation gradient F = UDiag(Σ)V⊤, the Kirchhoff stress τ and the return mapping Z can both
be computed solely by Σ as τΣ and ZΣ, and then restored to the full space via τ = UDiag(τΣ)V⊤
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and Z = UDiag(ZΣ)V⊤. In the following sections, we will omit the superscript Σ and only discuss
the models in the diagonal space.

Here is a list of the material parameters that will be mentioned in the following sections:

Notation Meaning Relation to (E, ν)
E Young’s modulus /
ν Poisson’s ratio /
µ Shear modulus µ = E

2(1+ν)

λ Lamé modulus λ = Eν
(1+ν)(1−2ν)

K Bulk modulus K = E
3(1−2ν)

A.2.1 Sand Plasticity

We use StVK elasticity and Drucker-Prager plasticity for sand simulations [1].

The Kirchhoff stress τ of StVK elasticity is defined as

ϵ = log(Σ),

τ = 2µϵ+ λ sum(ϵ)1.
(1)

Figure 1: Drucker-Prager plas-
ticity’s elastic region in the
stress space.

The elastic region is characterised in the stress space as:

α sum(τ) + ∥ sum(τ)− sum(τ)

d
1∥ ≤ 0, (2)

where α =
√

2
3

2 sinϕf

3−sinϕf
and ϕf is the friction angle. In our sand

examples, ϕf is set to π
6 . The elastic region in the stress space is

shown in Figure 1.

The return mapping for the Drucker-Prager plasticity is

Z(Σ) =


1 sum(ϵ) > 0

Σ δγ ≤ 0, and sum(ϵ) ≤ 0

exp (ϵ− δγ ϵ̂
∥ϵ̂∥ ) otherwise

, (3)

where δγ = ∥ϵ̂∥+ α (dλ+2µ) sum(ϵ)
2µ .

A.2.2 Snow Plasticity

We use neo-Hookean elasticity and non-associative Cam-Clay (NACC) plasticity for snow simulations
[2].

The Kirchhoff stress of neo-Hookean elasticity is

J = detDiag(Σ),

b = Σ2,

b̂ = dev(b) = b − sum(b)
d

1,

τ = µJ− 2
d b̂ +

K

2
(J2 − 1)1.

(4)

The elastic region of NACC is characterized by

y(p, q) = q2(1 + 2β) +M2(p+ βp0)(p− p0) ≤ 0, (5)

where
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Figure 2: NACC plasticity’s
elastic region in the stress
space.

M = d

√
6− d

2

√
2

3

2 sinϕf

3− sinϕf

p =
K

2
(J2 − 1),

q = µJ− 2
d

√
6− d

2
∥b̂∥,

p0 = K sinh(ξmax{−α, 0}).

(6)

ξ, β, ϕf are the parameters of plasticity and α is the hardening state.
The elastic region in the stress space is shown in Figure 2. In our
snow examples, ξ = 0.5, β = 0.3 and ϕf = π

4 .

The return mapping is defined as

Z(Σ) =


(1− 2pmax

K )−
1
2d 1, p > pmax = p0,

(1 + 2pmin
K )−

1
2d 1, p < pmin = −βp0,

Σ, y(p, q) ≤ 0,

J− 2
d

µ

√
−2M2(p+βp0)(p−p0)

(6−d)(1+2β)
b̂

∥b̂∥
+ 1

d sum(b)1 Otherwise
(7)

Please refer to [2] for the hardening state update procedure, which is
controlled by the simulator. For PlasticityNet, we set h = min{α, 0} as the hardening state input.
During the training, we sample h ∈ [−0.5, 0] for 2D snow and h ∈ [−1, 0] for 3D snow.

A.2.3 Metal Plasticity under StVK Elasticity

We use StVK elasticity and von-Mises plasticity for metal simulations [1]. This combination provides
a closed-form return mapping projection.

Figure 3: Von-Mises plastic-
ity’s elastic region in the stress
space.

The elastic region is characterized by

∥τ − 1

d
sum(τ )∥ − τy ≤ 0, (8)

where τy controls the radius of the yield surface in the stress space
(Figure 3).

The return mapping for the von-Mises plasticity is defined as

Z(Σ) =

{
Σ, ∥τ − 1

d sum(τ )∥ − τy ≤ 0

exp (ϵ− δγ ϵ̂
∥ϵ̂∥ ), Otherwise

, (9)

where δγ = ∥ϵ̂∥F − τy
2µ .

Under hardening, τY is updated with

τn+1
Y = τnY + 2µξδγ, (10)

where ξ is the hardening coefficient.

We use h = τY
2µ as the hardening state input to our PlasticityNet. During the training, h is sampled

from [0, 1].

A.2.4 Metal Plasticity under Neo-Hookean Elasticity

The combination of neo-Hookean elasticity and von-Mises plasticity does not have a closed-form
return mapping, we thereby use this combination for the task of learning metal plasticity return
mapping. The Kirchhoff stress of neo-Hookean elasticity is given by

τ = µ(Σ2 − 1) + λ log J1. (11)
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The implicit representation of the elastic region we used in the training of the return mapping is given
by

y(Σ, h) = ∥τ − 1

d
sum(τ )∥2 − (2µh)2. (12)

During training, h is sampled from [0, 1].
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