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A Discussion on Wild6D.1

Statistics Analysis. We create a new large-scale benchmark for category-level object pose estimation2

called Wild6D, which consists of 5,166 videos (>1.1 million images) over 1722 different object3

instances and 5 categories, i.e., bottle, bowl, camera, laptop, and mug. The distribution of the over4

objects per category in Wild6D is illustrated in Table 1.5

Mask Segmentation Quality. Although the mask segmentation quality may influence the training6

process of RePoNet, i.e., silhouette matching loss, we found in most cases the mask segmentations7

are satisfactory and good enough to conduct the silhouette matching loss. The mask segmentation8

results of several samples are shown in Fig.1. We provide the mask segmentation along with the raw9

RGB image and depth image for each video frame.10

Baselines on Wild6D. In original paper, we evaluate several existing work on Wild6D testing11

set. More specifically, we utilize the official released model trained on NOCS CAMERA25 and12

REAL275 [12] training set in a fully-supervised manner to estimate the 6D pose for each unique13

object in Wild6D. Comparing with most existing work, RePoNet not only has a better generalization14

ability, but also leverages the in-the-wild data effectively.15

B Architecture Details16

As describe in our paper, the RePoNet has two parallel branches: Pose Network and Shape Network.17

The detailed architecture of each network are illustrated in Fig. 2.18

For the Pose Network, given the RGB feature and geometry feature from feature extraction step, we19

first concatenate them together and feed into a Graph Convolutional Network (GCN) proposed in [6].20

We make some modifications on the original GCN: we first construct the deformable kernel based21

input point clouds as proposed in [6] and then use the concatenated feature as the input to the GCN22

instead of only point clouds. Here, we use 5 GCN layers in total and concatenate the output from every23

layer as the final output with dimension of 1792, denoted as 𝑓rgbd ∈ R𝑛×1792, where 𝑛 is the number of24

sampling points. Meanwhile, recall the feature of categorical shape prior is obtained via a three-layer25

PointNet [8] of which dimension is 1024, denoted as 𝑓cate ∈ R𝑚×1024, where 𝑚 is the number of26

vertices. Both the number of sampling points and number of vertices are set to 1024. Then we apply27

a max-pooling operation to 𝑓cate along with the point dimension and repeat it back with the number28

of sampling points for concatenation with 𝑓rgbd, denoted as 𝑓nocs ∈ R𝑛×2186. Then, we implement29

a stack of Multi-Layer Perceptrons(MLPs) with the output channels of (512, 256, 3) as an implicit30

function with an input point position and the corresponding feature to predict the NOCS coordinates31

of input point clouds. To further estimate the 6D pose, i.e., rotation (R), translation (T) and scale32
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Data split Bottle Bowl Mug Laptop Camera Total
Train set 470 450 450 95 95 1560
Test set 50 50 50 6 6 162
Total 520 500 500 101 101 1722

Table 1: Number of unique objects for the 5 categories in our Wild6D.

Figure 1: Segmentation Results on Wild6D.

(S), we directly take concatenate RGBD feature 𝑓rgbd with the predicted NOCS coordinates and feed33

into three parallel convolutional layers whose output channels are (512, 256, 4), (512, 256, 3) and34

(512, 256, 1). Note that we predict quaternion representation of rotation R.35

For the Shape Network, we follow the same step of concatenation obtaining the deformation feature36

𝑓shape ∈ R𝑚×2186. Specifically, we first perform the max-pooling over the 𝑓rgbd along the point37

dimension, then concatenate it with per-vertex feature 𝑓 𝑖cate along the channel dimension. The feature38

vector after concatenation is used as the input for deformation prediction, denoted as 𝑓shape ∈ R𝑚×2186.39

And, similarly, three MLPs with the output channels of (512, 256, 3) are used as an implicit function40

with an mesh vertices position and the corresponding feature to estimate the pre-vertex deformation.41

C Implementation Details42

Semi-supervised setting. We use the training data of CAMERA25 [12] along with the corresponding43

annotations and jointly train the model with images of REAL275 [12] or Wild6D without any 6D44

pose annotations. After cropping the object from the RGBD image, we first resize it to 192× 192 and45

then randomly sample 1,024 points from both color image and depth map. To obtain the categorical46

shape prior, we choose a CAD model per category from the CAMERA25 training set manually and47

reduce its number of vertices to 1,024 as well. More configurations of RePoNet have been specified48

in supplementary materials. We adopt Adam [5] to optimize our model with the initial learning rate49

of 0.0001. The learning rate is halved every 10 epochs until convergence. We empirically set the50

balance parameters 𝜆1, 𝜆2, 𝜆3 and 𝜆4 to 0.2, 2.0, 5.0 and 0.2, respectively.51

Training Details. To extract the RGB feature, we utilize the PSPNetwork [13] with ResNet50 [4]52

pre-trained on ImageNet [3] as the backbone network. We adopt Adam [5] to optimize our model53

with the initial learning rate of 0.0001 and halve it every 10 epochs until convergence. The batch54
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Figure 2: The architecture details of proposed RePoNet.

size is set to 32 where the ratio of synthetic data and real-world data is 3 : 1. Besides the disentangle55

pose loss, NOCS regression loss, shape reconstruction loss and mask loss described in our paper, we56

have a regularization term on deformed mesh to discourage large deformation:Lreg = 1
𝑁v

∑𝑁v
𝑖

m𝑖
delta.57

By minimizing the predicted deformation, we can preserve more semantic consistency between58

the categorical shape prior and reconstruction one. Similarly, we have a balance parameter on the59

regularization term as well and set it to 0.01. Additionally, RePoNet is a category-specific model60

since RePoNet highly depends on the categorical shape prior and a differentiable rendering module is61

involved. In other words, we have six models totally for inference on REAL275 [12] and each model62

only works for a single category.63

D More experiments64

D.1 Amount of unlabeled real data.65

We analyze the effect of using different fractions of unlabeled real data used during semi-supervised66

learning. We uniformly sample every 10% fraction of collected Wild6D training data for semi-67

supervised learning and evaluate the performance on REAL275 and Wild6D testing sets. As shown68

in Fig. 4, with more real data used during training, the object pose estimation performance is getting69

better.70

D.2 Shape reconstruction71

To evaluate the shape reconstruction performance, we computed the Chamfer Distance of the re-72

constructed object mesh with the ground truth one and compared it with other methods. Since the73

Wild6D does not provide the CAD models, we just conduct this experiment on REAL275 [12]. From74

Table 2, we observe that the average distance over six categories of our proposed method is much75

lower than Shape-Prior [11] and SGPA [2] under both fully-supervised setting and semi-supervised76

setting. However, it is worse than CASS [1], especially on camera category. We believe this is77

because our method deforms the object shape from the predefined mesh and the shape variance across78

different cameras is large which may degenerate the performance. Some visualization results on79

Wild6D samples are shown in Fig. 3.80

D.3 Semi-supervised on CO3D81

As discussed in Related Work, the recent proposed CO3D [9], although with diverse instances in82

different categories, is difficult to be used for 6D pose estimation due to the error of depth maps83

predicted via COLMAP [10]. To validate this point, we compare the RePoNet model trained with84

CAMERA25 [12] and CO3D with the model trained with CAMERA25 [12] data and Wild6D in85

Table 3. There is no large performance improvement observed by involving the CO3D data, although86
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Figure 3: Qualitative results on Wild6D samples

Figure 4: Ablation study on semi-supervised training with different number of unlabeled real
data. Here, we only show the performance on bottle and evaluate it on both REAL275 and Wild6D
dataset.

it also provides hundreds of object-centric real videos. On the other hand, by using the Wild6D data,87

the pose estimation performance improves a lot. For instance, the improvement on 5 degree, 5cm is88

18% versus 3.8%. Hence, our collected Wild6D data with real RGBD images is much more suitable89

and feasible for 6D pose estimation than existing datasets.90

D.4 More visualizations91

We show more qualitative results of our proposed RePoNet model on REAL275 [12] and Wild6D in92

Fig 5, Fig. 6 and Fig. 7. It can be observed that our proposed RePoNet can estimate object pose and93

size accurately across diverse instances and under d different background scenes.94

E Use of existing assets.95

We describe the existing assets we used in our paper and the corresponding license of these assets.96

CAMERA75&REAL275. Most of experiments are conducted on NOCS dataset collected by [12]97

which is released on their official website and public to everyone for non-commercial use.98

Code. Our code is built upon the Pytorch [7]. And we leverages the code from the released codes99

from Shape-Prior [11] under the MIT License.100

F Personal data and human subjects101

We collect a new large-scale RGBD video dataset Wild6D for object pose estimation. The dataset102

does not include the facial or other identifiable information of humans. We plan to release the103

collected video dataset if the paper is accepted.104
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Table 2: Comparison of shape reconstruction performance. Numbers show the Chamfer
Distance(×10−3) between the estimated shapes and the ground-truth CAD models.

Methods Bottle Bowl Camera Can Laptop Mug Avg
Shape-Prior [11] 3.44 1.21 8.89 1.56 2.91 1.02 3.17
SGPA [2]] 2.93 0.89 5.51 1.75 1.62 1.12 2.44
CASS [1] 0.75 0.38 0.77 0.42 3.73 0.32 1.06
RePoNet-semi 1.80 0.79 9.50 1.02 2.32 1.24 2.78
RePoNet-sup 1.51 0.76 8.79 1.24 1.01 0.94 2.37

Table 3: Ablation study on CO3D data. We show the pose estimation performance on bottle when
evaluating on REAL275

Training Data IOU0.75
5 degree 5 degree

CO3D Wild6D 2cm 5cm
46.9 15.1 43.1

✓ 47.3 17.3 45.8
✓ 49.1 27.3 61.1
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Figure 6: Visualization Results on Wild6D test set. Red 3D bounding boxes denote the ground
truth, and the green boxes are estimation results via our proposed method.
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