
A Appendix

A.1 Potential negative impacts

A potential negative impact of any animal research is use of the animals. In the present work,
eyes were obtained from animals that were euthanized in the course of experiments already being
performed by other laboratories. If the eyes had not been used for these recordings, they would have
been discarded. We are unaware of any other significant potential negative impacts.

A.2 Summary of experimental datasets

Table 4: Size (number of stimuli) of dataset partitions

Train Test Heldout

Retina 1 17,500 1000 500
Retina 2 9000 500 500

Table 5: Cell counts for each dataset

Total RGC count ON parasol OFF parasol ON midget OFF midget

Retina 1 695 79 115 228 273
Retina 2 778 97 130 207 344

A.3 Computational resources

All computations were performed using Pytorch [52] on a single NVIDIA V100 GPU with 32 GB of
VRAM. Fitting encoding models for all cells in a single retina required approximately 24 hours of
computational time.

A.4 Linear-nonlinear-Poisson (LNP) model and fitting

The LNP response model for a single RGC is

p(s|x) ⇠ Poiss
�
exp(mTx+ b)

�
. (9)

To fit this model to spike count data, we optimize the parameters m (the spatial stimulus filter) and b
(the scalar bias) according to:

argmin
m,b

⇢
exp{mTx+ b}� s(mTx+ b) + �1|m|1 +

�2
2
|m�m0|22

�
. (10)

The first two terms correspond to the negative log-likelihood of the model of equation (9). The third
term is an L1 sparsity-inducing penalty on the spatial filter m. The fourth term is an L2 penalty that
induces similarity to m0, which is an initial fit of the spatial filter obtained using reverse correlation
with white noise. Together, the two regularization terms help to ensure that the spatial filters are
spatially compact, contiguous, and resemble the white noise receptive fields. The hyperparameters for
this objective function were optimized by performing a grid search and evaluating the log-likelihood
of the responses of a small number of RGCs of each type in test partition. Optimization problems
were solved separately for each RGC using FISTA [26].

A.5 Generalized linear model (GLM) and fitting

The GLM model of RGCs augments the LNP model to include feedback and coupling filters to
account for refractoriness, bursting, and cell-to-cell correlations [10]. We make the following
definitions and assumptions:
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• The spikes for each RGC are binned into T + 1 total time bins indexed as t 2 [0, 1, . . . T �
1, T ] The stimulus onset (transition from gray screen to presented image) occurs at time
t = N .

• The time bin durations are sufficiently brief (1 ms) that at most one spike per RGC can occur
in any bin.

• The spike train for the ith single RGC is denoted si. The spike trains for a set of RGCs A is
denoted sA, and the spike trains for the set of all RGCs except cell i is referred to as s{i}C

• The visual stimulus within each trial is space-time separable, because each trial consists of a
single statically-flashed image. In particular, the visual stimulus v[x, y, t] = w[t]x where
x is the stimulus image, and w[t] is a boxcar corresponding to the time component of the
stimulus.

A.5.1 GLM with Bernoulli spiking

We assume that the spatio-temporal stimulus filter for the RGC is space-time separable. The GLM
for the ith cell thus the following parameters:

• The spatial component of the stimulus filter mi

• The temporal component of the stimulus filter hi[t], assumed causal

• The additive (bias) constant bi

• A feedback (spike history) filter fi[t], assumed causal

• Coupling filters for the neighboring RGCs, c(j)i [t], assumed causal. The set of cells coupled
to cell i is denoted {i}C

Approximate nearest-neighbor distances for each of the cell types (ON parasol, OFF parasol, ON
midget, OFF midget) were computed based on the reverse-correlation receptive field centers. Coupled
neighbors consisted of cells within a multiple of the median nearest neighbor distances for each
respective cell type (2 times the median nearest neighbor distance for parasols, 2.5 times the median
nearest neighbor distance for midgets).

The generator signal of the ith RGC, which determines its instantaneous spiking probability, is
defined as

gi[t] = (mT
i x)(hi ⇤ w)[t� 1] + (si ⇤ fi)[t� 1] +

X

j2{i}C

(sj ⇤ c(j)i )[t� 1] + bi. (11)

Since filters hi, fi, and c(j)i are causal, gi[t] depends only on the stimulus and spikes that occur before
time t.

The generator signal is passed through a sigmoidal nonlinearity p[t] = exp{gi[t]}/(1 + exp{gi[t]}),
and a spike is generated with this probability. The log-likelihood of observing s0[t] spikes from cell i
at time t given the stimulus and previously observed spikes is

log p(si[t] | x, si[0, . . . , t� 1], s{i}C [0, . . . , t� 1]) = si[t]gi[t]� log(1 + exp{gi[t]}) (12)

A.5.2 Derivation of GLM log-likelihood objective function (equation (5))

When fitting optimal GLM parameters for the ith RGC, the spikes from the coupled RGCs
s{i}C [0, . . . , T ] are observed and known, and the spikes for RGC i that occur before time N

si[0, . . . , N � 1] are also known. The optimal GLM parameters for the ith RGC mi, hi, fi, c
(j)
i ,

and bi can be found by minimizing the negative log-likelihood (negative of equation (12)) over the
parameters. The negative log-likelihood can be simplified using the chain rule:
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� log p(si[N, . . . , T ] | x, si[0, . . . N � 1], s{i}C [0, . . . , T ])

= �
TX

t=N

log p(si[t] | x, si[0, . . . , t� 1], s{i}C [0, . . . , t� 1])

=
TX

t=N

�
log(1 + exp{gi[t]})� si[t]gi[t]

 
,

which results in the expression presented in (5).

A.5.3 Regularized GLM objective function

To reduce the number of GLM model parameters, the stimulus time filter hi[t], feedback (spike
history) filter fi[t], and the neighboring cell coupling filters c(j)i [t] were represented in terms of a
small number of cosine bump basis vectors [10] (basis functions discussed in more detail in A.5.4).
Letting Bh, Bf , and Bc represent the basis matrices for stimulus time, feedback, and coupling filters,
respectively, the full time-domain filters can be recovered from the low dimensional representations
hi = Bhh̃i, fi = Bhf̃i, and c(j)i = Bcc̃

(j)
i .

Substituting these low-dimensional temporal filters into the encoding negative log-likelihood from
equation (5) yields an expression for that is jointly convex in {mi, f̃i, c̃

(j)
i , bi} and in {h̃i, f̃i, c̃

(j)
i , bi}

but not with the stimulus spatial filter m and stimulus temporal filter h̃i together because of the
space-time stimulus filter separability assumption. As with the LNP models, L1 sparsity and L2 prior
regularization terms were added. In addition, to eliminate spurious cell-cell correlations, an L2,1

group-sparsity term was added to constrain the neighboring cell coupling filters c̃(j)i , bi. Because of
the joint convexity issue described above, we fitted GLMs by alternating between solving two convex
minimization problems:

arg min
mi ,̃fi,c̃

(j)
i ,bi

⇢
� log p(si[N, . . . , T | x, si[0, . . . , N � 1], s{i}C [0, . . . , T ])

+ �1|mi|1 +
�2
2
|mi �m0

i|22 + �3
X

j

|c̃(j)i |2
�
,

and

arg min
h̃i ,̃fi,c̃

(j)
i ,bi

⇢
� log p(si[N, . . . , T | x, si[0, . . . , N � 1], s{i}C [0, . . . , T ]) + �3

X

j

|c̃(j)i |2
�
.

Each of the problems were solved using FISTA [26] with the proximal operator for the L2,1 penalty
from [29].

A.5.4 GLM time basis functions

Proper selection of temporal basis functions for the stimulus time filter, spiking feedback filter, and
coupling filters is necessary for well-fitted GLM models. As in [10], basis functions corresponding to
the first lobe of

b(l)[t] =
1

2
cos(a log[t+ c]� �l) +

1

2
(13)

were used. The quantities, a, c, and �l, as well as the number of basis functions used are hyperparam-
eters. Because the GLM was fit with a 1 ms bin width and the filters were 250 samples long, t takes
values 0, 1, ..., 249. The paper used the following basis hyperparameters:
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• For the stimulus time filter, a = 5.5, c = 1.0, and 10 total basis functions were used,
corresponding to �l 2 { 8⇡

2 , 9⇡
2 , ..., 16⇡

2 , 17⇡
2 }.

• For the feedback filter, a = 5.5, c = 1.0, and 18 total basis functions were used, correspond-
ing to �l 2 {0, ⇡

2 , ...,
16⇡
2 , 17⇡

2 }.

• For the coupling filter, a = 3.2, c = 1.0, and 10 total basis functions were used, correspond-
ing to �l 2 {0, ⇡

2 , ...,
9⇡
2 }.

The basis set for the stimulus time filter was uniformly shifted backward in time to approximately
match each retina’s response latency to the stimulus.

A.5.5 Derivation of the total encoding log-likelihood term (equation (6))

The log-likelihood of the spike trains of all of the RGCs given the stimulus image and the spikes
occurring prior to presentation of the stimulus can be computed using the chain rule. In particular,
the total log-likelihood over all of the cells corresponding to time bin t

log p(s[t] | x, s[0, . . . , t� 1]) =
X

i2cells

log p(si[t] | x, si[0, . . . , t� 1], s{i}C [0, . . . , t� 1])

can be computed simply by summing over the cells, since the spiking responses in time bin t for
each cell are independent of the other cells given the image and the spike histories for every cell up
until time t� 1. The overall log-likelihood corresponding to time bins N,N + 1, ..., T can then be
computed using the chain rule

log p(s[N, ..., T ] | x, s[0, ..., N � 1]) =
TX

t=N

log p(s[t] | x, s[0, ..., t� 1])

=
TX

t=N

X

i2cells

log p(si[t] | x, si[0, ..., t� 1], s{i}C [0, ..., t� 1])

A.6 Initialization of HQS for MAP-GLM-dCNN method

We tested different methods of initializing z(1) in Algorithm 1 for the MAP-GLM-dCNN. We
compared initialization with the linear solution (as used for all results shown in the main text), with
Gaussian noise initialization with standard deviations � 2 {10�4, 10�3, 10�2, 10�1, 1.0}, where
images are defined on the interval [�1, 1]. Example test reconstructions for each initialization are
shown in Figure 4, and mean test MS-SSIM and PSNR values for each initialization method are
summarized in Tables 6 and 7. Qualitatively, the content and structure of the reconstructions did
not show significant dependence on the initialization (with exception of the horizontal antenna of
the insect in row C). However, the mean luminance of the image reconstructions did depend on the
initialization method. Specifically, initialization with the linear solution tended to better recover
the mean luminance (rows C, J, N) in cases where the stimulus image was particularly bright or
particularly dark. Quantitatively, mean test and heldout MS-SSIM was largely independent of the
initialization method (Table 6), while PSNR was worse for the randomly-initialized reconstructions
(Table 7).
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Figure 4: Example MAP-GLM-dCNN reconstructed images for the different initialization methods
for z(1) in Algorithm 1. Column contents: (1) Ground truth stimulus image; (2) Initialization with the
linear solution, the method used in the main text; (3) random Gaussian initialization with � = 10�4;
(4) random Gaussian initialization with � = 10�3; (5) random Gaussian initialization with standard
deviation � = 10�2; (6) random Gaussian initialization with � = 10�1;, (7) random Gaussian
initialization with � = 1. All of the �-values are defined for images that lie within the interval
[�1, 1].
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Table 6: Average test and heldout MS-SSIM for each initialization method, for MAP-GLM-dCNN
reconstruction. Initialization with the linear solution, the method presented in the main text, is bolded.

Linear sol. � = 10�4 � = 10�3 � = 10�2 � = 10�1 � = 1

test held test held test held test held test held test held
Retina 1 0.689 0.688 0.685 0.680 0.685 0.680 0.685 0.680 0.685 0.680 0.685 0.680
Retina 2 0.668 0.673 0.666 0.670 0.666 0.670 0.666 0.670 0.666 0.670 0.666 0.670

Table 7: Average test and heldout PSNR for each initialization method, for MAP-GLM-dCNN
reconstruction. Initialization with the linear solution, the method presented in the main text, is bolded.

Linear sol. � = 10�4 � = 10�3 � = 10�2 � = 10�1 � = 1

test held test held test held test held test held test held
Retina 1 19.5 19.6 18.8 18.9 18.8 18.9 18.8 18.9 18.8 18.9 18.8 18.9
Retina 2 18.5 18.5 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3

A.7 Implementation details for L-CAE and performance on experimental data

We used the published L-CAE model architecture [8]. This consisted of a linear regression decoder
with parameters fitted by solving the normal equations, followed by a 4-layer convolutional encoder
and 4-layer convolutional decoder to improve the linear reconstructions. The convolutional encoder
and decoder were trained with backpropagation using a masked MSE loss (including only the regions
of the image covered by recorded RGCs), the Adam optimizer [53] with learning rate 4 · 10�3, and
batch size 32. The number of training epochs was determined by evaluating the masked MSE loss on
the test partition of the dataset.

The results in [8] were based on simulated RGC responses, and to our knowledge there are no
published examples applying the L-CAE technique to experimentally recorded data. To verify that
the L-CAE performs well with experimental data, we compared the performance of L-CAE and
linear regression on the test partition (Figure 5). As expected, the L-CAE systematically produces
improved PSNR, relative to linear regression. It also produces more perceptually accurate image
reconstructions.

A.8 Implementation details for Kim et al. linear/nonlinear regression benchmark

The Kim et al. paper [4] reconstructs images from RGC spikes by breaking up the problem into three
sequential ad hoc steps. The target image is decomposed into low spatial frequency and high spatial

Figure 5: Performance of the L-CAE vs. linear reconstruction on the test partition of the experimental
dataset for retina 1, demonstrating that the L-CAE technique can be applied effectively to experimental
data. The L-CAE produced systematically greater MS-SSIM than linear reconstruction, suggesting
that the L-CAE improves the perceptual similarity to ground truth of the reconstructions. The L-CAE
also produced systematically better PSNR than linear reconstruction, which is expected since the
L-CAE was trained with an MSE loss.
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Figure 6: Performance of the Kim et al. method vs. linear reconstruction on the test partition of the
experimental dataset for retina 1, validating our re-implementation.

frequency components. The low-frequency component is reconstructed using learned reconstruction
filters, while the high-frequency component is reconstructed using a trained fully-connected neural
network mapping the responses of the most relevant RGCs to the desired high-frequency pixel values.
Finally, the low-frequency and high-frequency components are summed together and passed through
a deblurring network with an architecture based on that of DeblurGANv2 [54].

The linear reconstruction filter was fitted by solving an L1-regularized linear-least-squares problem
aiming to reconstruct the low-frequency image component, where the L1 hyperparameter was cho-
sen by performing a grid search and evaluating MSE on the test partition. Cell/variable selection
for the pixel-wise high-frequency component neural network was done by performing a separate
L1-regularized linear-least-squares problem aiming to reconstruct the full image, with the L1 hy-
perparameter again chosen using grid search on the test partition. As in the published paper, the
top 25 RGCs for each pixel were selected as inputs to the pixel-wise high-pass neural networks by
taking the cells with the largest absolute reconstruction filter value for each respective pixel. The
high-frequency neural networks were trained with using backpropagation with an MSE loss with
respect to the high-frequency component of the target image. The DeblurGANv2 final deblur network
was trained using backpropagation with an L1 loss with respect to the target image as well as an L1
perceptual similarity loss computed using the VGG [55] network.

To verify our implementation of the Kim et al. method, we compared reconstruction quality for
images produced using this method against linear regression (Figure 6). As expected, Kim et al.
systematically produces better MS-SSIM and PSNR than linear regression.
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