Exploring Example Influence in Continual Learning
(Appendix)

Qing Sun*, Fan Lyu*, Fanhua Shang, Wei Feng, Liang Wan'
College of Intelligence and Computing, Tianjin University
{sssunqing, fanlyu, fhshang, wfeng, lwan}@tju.edu.cn
https://github.com/SSSunling/Example Influence CL

A Notation

We list the mentioned notation in Table [for quickly looking up.

Table 1: Notation related to the paper.

Symbol | Description

Symbol | Description

0, The model trained after the ¢-th task P, p(Ds4|0;—1, DE™) — p(Di*)6;—1), Plasticity

@ Optimization step size H V2¢4(z'™, §); Hessian assumed positive define

D, {(T»E"), yﬁ’”)}f;l; The t-th dataset € Example-level perturbation

Dy The training set of the ¢-th dataset E Batch-level perturbation

Dyt The testing set of the ¢-th dataset ég,g Pseudo updated model with example-level perturbation e
M The memory buffer sampled from training set éE_, B Pseudo updated model with batch-level perturbation E
Bow A mini-batch sampled from M I(Vow, B) | Influence on S from mini-batch B

Bhew A mini-batch sampled from D}™ I(Vaew, B) | Influence on P from mini-batch B

Vold Validation set of old tasks o4 Weight fusion factor

Vaew Validation set of new task I Fusion Influence on SP from mini-batch B

SP p(D10,-1, Dy™) — p(Dyt|0y), k <t Stability | I Loss for an example or average loss for a mini-batch
L Loss vector for a mini-batch

B Influence Function

In this section, we illustrate how to get the Influence Function. Given a parameter € up to update,

6 is the updated parameter using the training data, i.e., 6= arg ming ¢ (B,). First, we set a small
weight to a specific example x

0., = arg mein€ (B,0) + el(z,0), xz€bB,

where € is a small weight. Then, the variation of parameter can be shown as the IF on parameters

N aéer
I(x7 0) = 86’

= —H,'Vol(z,0).

Last, the influence from one training example to a testing example can be obtained by the chain rule

ol(z™,0) 86, ,

_ st AVET—1 tn g
= o — Vel(z™,) H 1 Vel(z™, §),

I(xﬂ‘n7 ItS[> —

e=0

where H = V2/((B, é) is a Hessian and is assumed as positive definite.

*Co-first authors.
"Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/SSSunQing/Example_Influence_CL

Table 2: Comparisons on Split CIFAR-10, averaged across 5 runs. Red and blue values mean the
best in our methods and the compared methods. e indicates that our method is significantly better
than the compared method (paired t-tests at 95% significance level).

Method Split CIFAR-10 (Class-Increment)
Fine-tune 19.66+0.04
Joint 91.79+0.68
Buffer size [M] =300 [M] =500

A A An BWT Ay A An BWT
GDUMB - 36.92+1.86 - - - 44.27+0.41 - -
GEM 93.90+0.55 37.51+£2.06 55.434+0.31 -70.48 | 92.76+1.13 36.95£2.34 57.36+1.02 -69.76
AGEM 96.57+0.40 20.02+0.23 45.574+0.40 -95.69 | 96.56+0.11 20.01+£0.16 46.52+1.04 -95.70
HAL 91.30+1.95 24.45+2.09 46.34+1.77 -83.57 | 91.96+0.64 27.94+2.15 49.05+1.00 -80.02
MIR 96.70+0.12 38.53+£1.72 56.96+1.16 -72.72 | 96.65+0.10 42.65£1.46 59.994+0.69 -67.50
GSS 96.53+0.20 35.89+2.46 54.33+1.35 -75.80 | 96.55+0.27 41.96+£1.08 58.16+0.46 -68.25
GMED 96.65+0.24 38.12+0.99 58.924+0.67 -73.17 | 96.65+0.26 43.68+1.74 62.56+0.56 -66.22
ER 96.73+0.35 34.19+£1.35 53.724+0.39 -78.18 | 96.74+0.08 40.45+2.14 57.69+1.41 -70.36
Ours 96.87+0.09 4242+1.94 63.52+0.70 -68.07 | 96.82+0.21 49.16+1.48 67.88+0.82 -59.58
Ours+RehSel | 96.854+0.09 43.76+0.52 63.69+£0.62 -66.37 | 96.81+0.19 50.10+1.32 68.28+0.88 -58.39
Method Split CIFAR-10 (Task-Increment)
Fine-tune 65.274+2.28
Joint 98.16+0.09
Buffer size [M] =300 [M] =500

Ay A A BWT Ay A A BWT
GDUMB - 73.22+0.67 - - - 78.06+£1.41 - -
GEM 96.62+0.05 89.34+0.99 92.494+0.36 -9.10 | 96.73+0.25 90.42+1.23 92.93+0.27 -7.89
AGEM 96.78+0.29 85.52+£1.01 90.16+0.17 -14.07 | 96.71+£0.10 86.45£1.06 90.90+0.70 -12.83
HAL 91.41+1.86 79.90+2.25 83.78+1.62 -14.39 | 92.03+0.64 81.84+2.13 84.19+1.46 -12.73
MIR 96.76+0.09 88.50+£1.30 90.87+0.50 -10.33 | 96.73+0.08 90.63+0.63 91.994+0.46 -7.62
GSS 96.56+0.18 88.05£1.52 90.60+0.82 -10.63 | 96.57+0.27 90.38+0.87 92.194+0.59 -7.74
GMED 96.73+0.24 88.91+£1.16 91.20+0.60 -9.77 | 96.72+0.22 89.72+£1.25 92.10+0.65 -8.75
ER 96.93+0.07 88.97+0.67 91.12+0.79 -9.95 | 96.79+0.08 90.60+0.74 92.284+0.32 -7.75
Ours 97.10+0.12 89.40+0.93 92.544+0.38 -9.63 | 97.31+0.18 90.91+£0.60 93.38+0.31 -7.99
Ours+RehSel | 97.114+0.11 89.91+0.55 92.66+0.23 -9.00 | 97.304+0.04 91.41+0.60 93.28+0.32 -7.36

Based on the rehearsal method, we consider the derivative of the loss of a validation set
V of a mini-batch B = [x1,29, -+ ,2,] to weight vector E = [e1,e0, - ,6,]" as L =

[0(z1, 0) ((x5,0) - Lz, é)] " With the Taylor expansion, we have

1 & . OL
7§ 0 T—— —0.
"2 Vel(x;, 0.) +w 20 0

The batch-level influence vector can be computed by

AV, 0 5) al(V,0) 06g S e X
I(V,B) = — =2/ = = —Vel(V,0)H 'V L(B,6),
OB |g_o 00 OE |g_o 0
where
90g. 5

OE

1 . oL’
H=— Val(zi,6.,), =-H! [} :
5] 2, Votlen6e) oo 98

T, €EB

C Comparison Results with std.

In Table @, B, and B, we show more comparison results about the proposed MetaSP with other SOTA
methods. For each dataset, we evaluate all methods with task-incremental and class-incremental
learning, where the task-incremental setting will offer the task id at the interference while the class-
incremental will not. Every method will be evaluated with two different buffer sizes. All the exper-
iments are implemented with 5 fixed seeds from 1231 to 1235 to keep the fair comparison as other
CL methods.

Table 3: Comparisons on Split CIFAR-100, averaged across 5 runs. Red and blue values mean the
best in our methods and the compared methods. e indicates that our method is significantly better
than the compared method (paired t-tests at 95% significance level).

Method Split CIFAR-100 (Class-Increment)
Fine-tune 9.14+0.18
Joint 71.254+0.12
Buffer size [M] =500 |M] = 1000

A A An BWT Ay A An BWT
GDUMB - 11.1140.60 - - - 15.754+0.21 - -
GEM 85.284+42.26 15914042 29.38+1.67 -77.07 | 84.2842.34 22.79+0.31 34.09+1.75 -68.32
AGEM 85.974+1.27 9.31£0.13 24.60+0.90 -85.18 | 85.66+1.84 9.27+0.12 24.67+£1.07 -84.88
HAL 67.33+1.89 8.204+0.84 22.724+0.71 -65.70 | 68.06+2.95 10.59+0.78 24.74+1.26 -63.86
MIR 87.38+1.30 13.49+0.18 28.88+£1.57 -82.10 | 87.394+1.24 17.56+0.56 32.48+1.50 -77.60
GSS 86.03+1.91 14.01£0.50 28.00+2.00 -80.03 | 86.31+1.84 17.87+0.29 31.82+1.86 -76.04
GMED 87.18+1.45 14.56+0.24 3341+1.37 -80.69 | 87.294+1.63 18.67+0.30 38.69+1.63 -76.24
ER 87.234+1.65 13.75+0.39 28.88+1.71 -81.65 | 87.33+1.51 17.56+0.35 3245+1.78 -77.52
Ours 88.13+0.80 18.96+0.40 38.62+0.88 -76.85 | 87.58+0.75 24.78+0.68 45.20+0.97 -69.77
Ours+RehSel | 87.814+0.87 19.28+0.54 39.23+0.62 -76.14 | 87.55+0.68 25.72+0.48 45.48+0.76 -68.70
Method Split CIFAR-100 (Task-Increment)
Fine-tune 33.894+3.14
Joint 91.63+0.06
Buffer size [M] =500 |M] = 1000

Ay A A BWT Ay A A BWT
GDUMB - 36.401+0.97 - - - 43.25+0.35 - -
GEM 85.53+2.30 68.68+0.99 68.49+1.58 -18.72 | 85244228 73.71+0.42 72.59+2.12 -12.81
AGEM 85.97+1.27 55.28+1.04 58.23+1.19 -34.10 | 85.66+1.84 55.95+1.99 59.96+1.58 -33.02
HAL 67.64+1.94 4498+1.86 50.79+1.40 -25.17 | 68.62+2.93 50.07+£2.34 54.014+2.47 -20.62
MIR 87.424+1.30 66.18+1.25 67.43+£1.90 -23.60 | 87.504+1.23 71.20+0.60 71.42+1.46 -18.11
GSS 86.10+1.89 66.80+0.54 66.55+1.89 -21.45 | 86.44+1.85 71.98+0.72 71.00+1.81 -16.07
GMED 87.30+1.41 68.82+0.80 72.66+1.86 -20.53 | 87.49+1.64 73.91+0.35 76.36+1.82 -15.10
ER 87.294+1.65 66.82+1.04 67.56+£1.68 -22.74 | 87.40+1.50 71.74+0.55 71.60£1.90 -17.40
Ours 88.94+0.80 70.03+£0.57 74.07+£0.94 -21.01 | 883.94+0.73 75.32+0.43 78.09+0.97 -15.14
Ours+RehSel | 88.584+0.82 70.81+0.76 74.24+0.90 -19.75 | 89.03+0.65 76.14+0.88 78.27+0.89 -14.33

D Validation Sets Size

In Fig. I, we show the validation size effect in MetaSP. For three metrics, when the validation size
grows, the value gets larger, which means that a large validation set will improve SP.

CIFAR10 A, CIFAR100

—— AGEM 80 4

— Gss

— ER

— HAL 704

— GEM
MR 60

— GMED

—— Ours+RehSel

—— AGEM
—— GSS
— ER
—— HAL
— GEM
MIR
—— GMED
—— ours+Rehsel

49.16
96 82

96.70 48.98

96 59
48.80 60
40
50

96.47 304

48.62 40

204
30

104
20

First Final Mean Task 1 2 3 4 5 Taskl 2 3 4 5 6 7 8 9 10

Figure 1: Performance with different valida- Figure 2: Learning processes on Split-CIFAR-10
tion sets size. and Split-CIFAR-100.

E Training Process

We also visualize the CL training process on Split CIFAR-10 and Split CIFAR-100 in Fig. D. The
first observation is that the proposed MetaSP outperforms other methods a lot, which means better
SP throughout the CL training. Second, the forgetting cannot be eliminated even in the rehearsal-
based CL. Even so, MetaSP offers an elegant add-in for the rehearsal-based CL methods and can
further improve performance.

Table 4: Comparisons on Split Mini-Imagenet, averaged across 5 runs. Red and blue values mean
the best in our methods and the previous methods. e indicates that our method is significantly better
than the compared method (paired t-tests at 95% significance level).

Method Split Mini-Imagenet (Class-Increment)
Fine-tune 11.12+0.23
Joint 44.39+0.74
Buffer size [M] =500 [M] = 1000

Ay Ax An BWT Ay oo Ay BWT
GDUMB - 6.22+0.27 - - - 7.15£1.96 - -
AGEM 50.06+0.42 10.69+0.07 22.29+0.23 -49.22 | 50.03+£0.31 10.69+0.22 22.28+0.09 -49.17
MIR 51444040 11.074+0.22 23.65+0.16 -50.46 | 51.25+£0.37 11.324+0.18 24.09+0.18 -49.92
GSS 51.63+0.51 11.094+0.12 23.62+£0.24 -50.67 | 51.35+.36 11.42+0.22 24.05+£0.19 -49.91
GMED 51.214+0.69 11.03+0.18 24.47+0.29 -50.42 | 50.87+0.28 11.73+£0.23 25.50+0.15 -49.93
ER 51.684+0.53 11.00+0.24 23.71+0.21 -50.84 | 51.41+£0.60 11.35+0.35 24.08+0.31 -50.08
Ours 51.76+£0.12 12.48+0.12 26.50+0.15 -49.10 | 50.91£0.41 14.43+£0.31 28.47+0.18 -45.59
Ours+RehSel | 51.81+0.39 12.74+0.17 26.43+0.11 -48.85 | 50.96+0.14 14.54+0.22 28.44+0.20 -45.52
Method Split Mini-Imagenet (Task-Increment)
Fine-tune 23.46+1.17
Joint 62.3+0.48
Buffer size [M] = 500 [M] = 1000

A A A BWT A, A - BWT
GDUMB - 16.37+£0.37 - - - 17.69+3.24 - -
AGEM 50.06+0.42 18.34+0.56 28.05+0.37 -39.66 | 50.03+0.31 18.78+0.54 28.12+0.30 -39.06
MIR 51474040 29.10+0.52 35.20+0.46 -27.96 | 51.31+£0.37 31.39+0.44 37.24+0.52 -24.90
GSS 51.64+0.51 28.67+0.66 35.22+0.60 -28.72 | 51.40+£0.35 31.75+0.71 37.23+£0.48 -24.56
GMED 51.2940.68 30.47+0.39 37.64+0.59 -26.03 | 51.00+£0332 32.85+0.27 39.66+0.36 -22.69
ER 51.70+0.52 28.974+0.36 35.30+0.43 -28.41 | 51.554+0.57 31.59+0.78 37.36+0.57 -24.95
Ours 52.44+0.20 32.59+1.09 39.38+£0.37 -24.82 | 52.27+0.40 36.25+0.27 41.59+£0.33 -20.03
Ours+RehSel | 51.73+0.41 34.36+0.28 40.48+0.42 -21.71 | 51.474+0.59 37.20+0.73 42.19+0.51 -17.83

F Time Analysis

Implemented epochs.

In our implementation, we set 50 epochs in total for training each task, in

which the first 45 epochs are naive fine-tuning and the last 5 epochs are with the proposed meth-
ods. As shown in Fig. B(a), our method is implemented from the last 1 to 8 epochs. As the extra
experiments use naive fine-tuning, where the new task is trained without interference. We prefer to
evaluate if new tasks will be affected by memory. Easy to see, from last 1 to last 7, the performances
of new task Al get improved without a break, and from last 5, the performance barely grows any-
more. This indicates that interference from old task to new task becomes hard from the last 1 to
the last 5, and gets balance from the last 5 to 8. However, more epochs mean more computation
costs. Thus, in our experiment, we leverage our methods in the last 5 epochs as a trade-off between
efficiency and accuracy.

A Our reported results -

|

_./L\\.

Time

r 17500

15000

r 12500

r 10000

r 7500

F 5000

r 2500

3 4 5
Implemented

(a)

6 7
epochs

Time An
8000 68.75
7000
68.50
Our reported results
6000
68.25 l
5000
68.00 /
4000
67.75
I 3000
67.50
2000
1000 67.25 1
- 0 67.00 T T
8 1 2

3

4 5

Iteration numbers of pseudo update

(b)

Figure 3: (a) Comparisons on different numbers of implemented epochs using only one-step pseudo
update, from the last 1 to 8 epochs. (b) Comparisons on different numbers of pseudo update using
5 implemented epochs, from 1 to 5 iterations. The two subfigures are with the same legend, where
the green lines represent the accuracy while blue bars mean the training time.

Table 5: Rehearsal comparisons.

Split CIFAR-10 Split CIFAR-100
Method Class-Increment Task-Increment Class-Increment Task-Increment
Al Aoc Am Al A,,O Am Al Aoo Am Al Aoo Am
Random 96.82 49.16 67.88 | 97.30 9091 9338 | 88.13 18.96 38.62 | 88.94 70.03 74.07

RehSel (w/o cluster) 96.60 38.50 6238 | 97.27 85.55 91.22 | 87.54 1640 3583 | 88.35 65.83 70.67
RehSel (w/o influence) | 96.82 47.55 67.49 | 97.15 9033 93.07 | 87.96 19.04 38.90 | 88.78 70.32 74.18
RehSel 96.81 50.10 6828 | 97.30 9141 9329 | 87.81 19.28 39.23 | 88.58 70.81 74.24

Table 6: Influence approximation comparisons.

Method | Total examples | True Positive True Negative False Positive ~False Negative
Larsen [3] 1000 552 304 26 118
Luketina [8] 1000 533 313 17 137
Neumann Series [4] 1000 642 282 48 28
Ours 1000 650 315 15 20

Iteration number for pseudo update. To compute example influence, we need to compute an
argmin problem

O, = arg min (B, 6) + E'L(z,0), z€B.

In Fig. B(b), we show the results with different iterations to solve the problem. Experiments are
implemented under the last 5 epochs. Easy to observe, a large number of iterations is equal to better
performance but increases computational time linearly. Thus, we set only one iteration to keep the
efficient training in compared with other CL methods’ time.

G Comparisons with Other Influence-based Rehearsal Methods

In this paper, we proposed an influence-based rehearsal selection method under fixed budget memory

M. After task ¢ finishes its training, for storing, we first cluster all training data into % groups
using K-means to diversify the store data. Each group is ranked by their SP influence expection, i.e.,

E(I*(x)), and the most positive influence on both SP will be selected to store. For dropping, we
M|

rank again on memory buffer via their influence values, and drop the most negative 5~ example.

We also show if we do not cluster but select the top % examples only via their influence on SP
(w/o clustering). The results are shown in Table B. Using examples with only larger influence makes
the selection concentrate on some saliency examples and lack the example diversity. Moreover, we
evaluate if we only cluster and select the nearest examples instead of the example influence (w/o
influence). Finally, with both influence ranking and cluster, the selected examples make the training
forget less.

H Details of Influence Statistics in Fig. 3 of This Paper

As shown in Fig. 3 in the paper, we count the example with positive and negative influence on old
task (S), new task (P) and total SP and show the distribution in Split-CIFAR-10. Here, we give the
details of these experiments. The experiments are with 50 implemented epochs and 5 pseudo-update
iterations. We do not use the update and rehearsal selection strategy. For each task from task 2, we
have 500 fixed-size memory and 10,000 new task data. We divide all example influences equally
into 5 groups from the minimum to the maximum.

I MGDA, KKT Conditions and The Solution

In Eq. (10) of this paper, we introduce the dual objective problem and the Multiple-Gradient Descent
Algorithm (MGDA) [0]. To obtain the objective, we first introduce the Steepest Gradient Method
(SGM) [2] in dual-objective optimization. Given two tasks 1 and 2, the objective of SGM is

1
d*,a*:argrélin a+§|\d||2, st. g/d<aandg,d < a,
,Q

where g; and g5 are the gradients for tasks 1 and 2 specifically. The two constraints can be seen as
the difference between task gradients and the optimal gradients.

Considering the Lagrange multipliers A; and Ao for the two constraints, we have the dual problem
of the above problem as

I,)\S = —illla)\)i ||/\1g1 + /\2g2||2, st. A+ X =1land \; > 0,A5 > 0.

This is the objective of Eq. (10) of this paper, i.e., MGDA [[]. In SGM, the KKT conditions can be
written as -
Ai(grd" —a’) =0,
Xs(ggd" —a”) =0,
A > 0,3 >0,
AT+ A5 =1,
Alg1+Axg =d"
The solution to the dual problem is

CoT
~* = min (max ((g2g1)§2,0> ,1) .
g2 — &1ll3

This is the solution in Eq. (11) of this paper.

J Comparisons on Influence Function Approximation

To evaluate the example influence approximation from our meta method to Hessian influence func-
tion, we build a toy experiment compared with three extra baselines. The three baselines [3, 5, 2]
use different ways to approximate inverse Hessian. We use 1000 FMNIST training data and 500
test data. We design a simple fc network with a single hidden layer. The results are the influence
from the 1000 training data to 500 test data. We have the following observations: (1) Most ex-
amples (965/1000) have the true influence property compared with Hessian influence function; (2)
The results show the proposed method has a better approximation rate compared with other inverse
Hessian approximation methods.

References

[1] Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 2012.

[2] Jorg Fliege and Benar Fux Svaiter. Steepest descent methods for multicriteria optimization. Mathematical
Methods of Operations Research, 2000.

[3] Jan Larsen, Lars Kai Hansen, Claus Svarer, and M Ohlsson. Design and regularization of neural networks:
the optimal use of a validation set. In Neural Networks for Signal Processing VI. Proceedings of the 1996
IEEE Signal Processing Society Workshop. IEEE, 1996.

[4] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by implicit
differentiation. In AISTATS, 2020.

[5] Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based tuning of
continuous regularization hyperparameters. In ICML, 2016.

	Notation
	Influence Function
	Comparison Results with std.
	Validation Sets Size
	Training Process
	Time Analysis
	Comparisons with Other Influence-based Rehearsal Methods
	Details of Influence Statistics in Fig. 3 of This Paper
	MGDA, KKT Conditions and The Solution
	Comparisons on Influence Function Approximation

