
A Experiment Details

A.1 Datasets

We perform experiments and compare against the KL loss of Dulac-Arnold et al. [9] and LLPVAT
of Tsai and Lin [46] on three benchmark datasets of image classification: the “letter" split of
EMNIST [6], SVHN [29], and CIFAR10 [17]. We also compare our methods against LLPGAN of
Liu et al. [22] on SVHN and CIFAR10. To generate each bag, we first sample a label proportion
� from the uniform distribution on �C and then sample data points without replacement using
a multinomial distribution with parameter �. The generated bags have fixed and equal sizes in
{32, 64, 128, 256, 512, 1024, 2048}. For SVHN and CIFAR10, 32⇥ 1280 = 40960 data points are
sampled for every bag size. For EMNIST, the number of sampled data points is 32⇥ 3328 = 106496.

A.2 Architecture and Hyperparameters

To compare our methods against the KL loss and LLPVAT, we train Wide ResNet-16-4 [52], ResNet18
[11], and VGG16 [42] with the hyperparameters suggested in the original papers. For the comparison
against LLPGAN, we use the discriminator architecture proposed in Liu et al. [22] and the hyperpa-
rameters suggested in their code3.It should be noted that KL, LLPVAT, and LLPGAN are all required
to backpropagate on minibatches of bags and our method does not have such constraint. For all
methods, to avoid overfitting, we apply a standard data augmentation procedure: 4 pixels with value 0
are padded on each side, and a crop of the original size is randomly sampled from the padded image
or its horizontal flip.

A.2.1 Wide ResNet-16-4

For all datasets, we use SGD with Nesterov momentum with weight decay set to 0.0005, dampening
to 0, and momentum to 0.9. The minibatch size is set to 128 for our method. On CIFAR, the initial
learning rate is set to 0.01, which is divided by 5 at 60, 120 and 160 epochs, and the network is trained
for total 200 epochs. On SVHN and EMNIST, the initial learning rate is set to 0.01, which is divided
by 10 at 80 and 120 epochs, and the network is trained for 160 epochs. The dropout probability is 0.3
for CIFAR and 0.4 for both SVHN and EMNIST.

A.2.2 ResNet18

We use SGD and weight decay is set to 0.0001 and momentum to 0.9. The minibatch size is set
to 128 for our method. The model is trained for 500 epochs for all datasets. The learning rate is
initialized to be 0.1 and divided by 10 at 250 and 375 epochs.

A.2.3 VGG16

We use SGD and weight decay is set to 0.0005 and momentum to 0.9. The minibatch size is set to 256
for our method. Dropout ratio is set to 0.5 for the first two fully-connected layers. The learning rate
was initially set to 0.01. We train the model for 74 epochs in total. In the original paper of VGG16
[42], the learning rate is decreased when validation accuracy stops improving and it is decreased 3
times in total. In our experiment, while we do not assume access to fully labeled validation dataset,
we divide the learning rate by 10 at 19, 37, and 56 epochs.

A.2.4 LLPGAN’s discriminator

The neural network is trained for 3000 epochs and optimized by Adam [15] with a learning rate
0.0003. The minibatch size is set to 128 for our method. The �1 and �2 parameters for Adam are set
to be 0.5 and 0.999, respectively.

A.3 KL Loss

Recall C 2 N denotes the number of classes and X denotes the feature space. Let f be a
function that maps X to �C , and M 2 N be the total number of bags. Let {(bi, �̂i)}

M

i=1 be

3https://github.com/liujiabin008/LLP-GAN
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the bags and empirical label proportions where bi = (Xi
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over the function f in some space F0.
The �̂i(c) is the label proportion of c-th entry in bag i and fc is the c-th entry of the output of
f . In practice, when F0 is softmax composed with neural networks of certain architecture, the
objective is optimized by stochastic gradient descent (SGD) with “minibatches of bags". For a
minibatch of size B, B bags bi1 , . . . , biB are sampled and SGD backpropagates the gradients of
Lprop(bi1 , . . . , biB ) = �
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. In our experiments, we

follow the code of Tsai and Lin [46] 4 and set B = 2 (Dulac-Arnold et al. [9] also use minibatches
of bags but do not specify B). While optimizing neural networks with the KL loss on GPU nodes,
the gradients of all data points in the minibatch of bags need to be stored in the GPU memory
simultaneously. So KL loss can potentially exceed GPU memory when bag size increases. In this
situation, we report Out of RAM in the tables.

A.4 LLPVAT

Let f and Lprop be defined as in A.3. Let DKL denote the KL divergence. The LLPVAT algorithm
of Tsai and Lin [46] computes the perturbed examples x̂ = x+ radv where

radv = argmax
r:krk2✏

DKL(f(x) || f(x+ radv)).

Given a minibatch of B bags bi1 , . . . , biB , their consistency loss is defined to be

Lcons(bi1 , . . . , biB ) =
BX

k=1

1

|bik |

X

x2bik

DKL(f(x) || f(x+ radv)).

For each minibatch in the t-th epoch, the LLPVAT algorithm updates the parameters of neural net-
works with the gradients of the loss L(bi1 , . . . , biB ) = Lprop(bi1 , . . . , biB )+w(t)Lcons(bi1 , . . . , biB )
where w(t) is a ramp-up function for increasing the weight of consistency regularization. Following
the LLPVAT paper, we set ✏ to 1 for both SVHN and EMNIST and set ✏ to 6 for CIFAR10. We follow
the code of Tsai and Lin [46] 5 to implement w(t) and set minibatch size B to be 2. Like the KL loss,
LLPVAT can potentially exceed GPU memory. In this situation, we report Out of RAM in the tables.

A.5 LLPGAN

Let bags bi and L̄prop be defined as in subsection A.3. The LLPGAN model of Liu et al. [22] consists
of a generator g and a discriminator f . The discriminator f is a convolutional neural network and we
denote its convolutional layers as fconv. The generator g maps a random noise to the image space
and the discriminator maps an image to �C+1 where the fake images output by the generator are
supposed to be classified as the (C + 1)-th class. Let n be the total number of feature vectors in
all bags, i.e., n =

P
M
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n
Z
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o
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fixed distribution. The discriminator loss is defined as
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L̄prop. The generator loss is defined as

L̄G =
1

n

MX

i=1

miX

j=1

��fconv(Xi

j
)� fconv(g(Z

i

j
))
��2
2
.

4https://github.com/kevinorjohn/LLP-VAT
5See footnote 4

17



Given a minibatch of B bags bi1 , . . . , biB , the minibatch version of the discriminator loss is
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The minibatch version of generator loss is

LG(bi1 , . . . , biB ) =
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So the training process of LLPGAN can be described as follows: in each epoch, for a minibatch
(bi1 , . . . , biB ),

1. Sample random noise Z
ik
j

for k 2 NB and j 2 Nmik
.

2. Fix g and perform gradient descent on parameters of f in LD.

3. Fix f and perform gradient descent on parameters of g in LG.

The code 6 of the original paper implements f as a neural network which outputs a vector in RC

followed by a (C + 1)-way softmax with the (C + 1)-th input fixed to be 0. We follow this practice
in our implementation of LLPGAN. We also follow the code of original paper and set B to be 1.
While LLPGAN could potentially exceed GPU memory while bag size increases as well, this did not
happen in our experiments.

A.6 Implementation Details of LLPFC

The performance of LLPFC algorithms benefit from re-partitioning of bags periodically. We randomly
repartition the bags into groups every 20 epochs for WideResNet-16-4, ResNet-18, and LLPGAN
discriminator and every 5 epochs for VGG16.

A.7 Experiments in Binary Setting

We carry out an extra set of experiments with kernel methods on binary classification tasks, comparing
against InvCal [36], alter-/SVM [50], and LMMCM [39]. We run our experiments on the exact same
datasets used by Scott and Zhang [39] and directly compare against the results presented in their
paper. We implement LLPFC-uniform and LLPFC-approx with rbf kernel models and logistic loss
by modifying the code provided by Scott and Zhang [39] at https://github.com/Z-Jianxin/
Learning-from-Label-Proportions-A-Mutual-Contamination-Framework. We run exper-
iments in the same settings of Scott and Zhang [39]. The model is solved by L-BFGS. We compute
the kernel parameter by 1

d⇤V ar(X) where d is the number of features and V ar(X) is the variance of
the data matrix. The regularization parameter � 2 {1, 10�1

, 10�2
, . . . , 10�5

} is chosen by 5-fold
cross validation, using the empirical risk provided in Algorithm 2 and Algorithm 3, respectively. We
evaluate the area under the ROC curve (AUC) and report the results in table 5. We bold the largest
mean AUC for that experimental setting. Each of LLPFC-uniform, LLPFC-approx, and LMMCM
achieves the highest AUC among all the methods in 5 settings. LLPFC-uniform also beats the three
competitors from Scott and Zhang [39] in 10 out 16 settings.

6See footnote 3
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Table 5: AUC. Column header indicates bag size.
Data set, LP dist Method 8 32 128 512

Adult,
⇥
0, 1

2

⇤
InvCal 0.8720 ± 0.0035 0.8672 ± 0.0067 0.8537 ± 0.0101 0.7256 ± 0.0159

alter-/SVM 0.8586 ± 0.0185 0.7394 ± 0.0686 0.7260 ± 0.0953 0.6876 ± 0.1219
LMMCM 0.8728 ± 0.0019 0.8693 ± 0.0047 0.8669 ± 0.0041 0.8674 ± 0.0040

LLPFC-uniform 0.8751 ± 0.0022 0.8627 ± 0.0034 0.8616 ± 0.0057 0.8594 ± 0.0047
LLPFC-approx 0.8676 ± 0.0042 0.8540 ± 0.0052 0.8509 ± 0.0094 0.8478 ± 0.0096

Adult,
⇥
1
2 , 1
⇤

InvCal 0.8680 ± 0.0021 0.8598 ± 0.0073 0.8284 ± 0.0093 0.7480 ± 0.0500
alter-/SVM 0.8587 ± 0.0097 0.7429 ± 0.1473 0.8204 ± 0.0318 0.7602 ± 0.1215

LMMCM 0.8584 ± 0.0164 0.8644 ± 0.0052 0.8601 ± 0.0045 0.8500 ± 0.0186
LLPFC-uniform 0.8693 ± 0.0036 0.8666 ± 0.0047 0.8636 ± 0.0040 0.8587 ± 0.0136
LLPFC-approx 0.8723 ± 0.0014 0.8630 ± 0.0069 0.8560 ± 0.0103 0.8538 ± 0.0193

MAGIC,
⇥
0, 1

2

⇤
InvCal 0.8918 ± 0.0076 0.8574 ± 0.0079 0.8295 ± 0.0139 0.8133 ± 0.0109

alter-/SVM 0.8701 ± 0.0026 0.7704 ± 0.0818 0.7753 ± 0.0207 0.6851 ± 0.1580
LMMCM 0.8909 ± 0.0077 0.8799 ± 0.0113 0.8753 ± 0.0157 0.8734 ± 0.0092

LLPFC-uniform 0.8575 ± 0.0644 0.8751 ± 0.0158 0.8715 ± 0.0066 0.8761 ± 0.0157
LLPFC-approx 0.8829 ± 0.0135 0.8590 ± 0.0256 0.8721 ± 0.0054 0.8711 ± 0.0155

MAGIC,
⇥
1
2 , 1
⇤

InvCal 0.8936 ± 0.0066 0.8612 ± 0.0056 0.8180 ± 0.0092 0.8215 ± 0.0136
alter-/SVM 0.8689 ± 0.0135 0.8219 ± 0.0218 0.8179 ± 0.0487 0.7949 ± 0.0478

LMMCM 0.8911 ± 0.0083 0.8790 ± 0.0091 0.8684 ± 0.0046 0.8567 ± 0.0292
LLPFC-uniform 0.8985 ± 0.0054 0.8851 ± 0.0113 0.8844 ± 0.0101 0.8765 ± 0.0113
LLPFC-approx 0.9011 ± 0.0034 0.8990 ± 0.0122 0.8882 ± 0.0088 0.8800 ± 0.0114

B Proofs of Results from Section 3

B.1 Proof of Theorem 5

To prove Theorem 5, we employ the calibration framework of Steinwart [43]. The first lemma of this
section establishes an instance of what Steinwart [43] refers to as uniform calibration, but in the LLN
setting.
Lemma 15. Let ` be a continuous strictly proper loss and T be an invertible column-stochastic
matrix. Let L be the 0-1 loss. Then 8✏ 2 R+, 9� 2 R+, s.t.8x 2 X , 8q 2 �C

,

C`T ,PT ,x(q) < C
⇤

`T ,PT ,x
+ � =) CL,P,x(q) < C

⇤

L,P,x
+ ✏.

Proof of Lemma 15. Write
C1,x(q) := CL,P,x(q)� C

⇤

L,P,x

C2,x(q) := C`T ,PT ,x(q)� C
⇤

`T ,PT ,x
.

Let k·k be an arbitrary norm on RC , k and j 2 {1, . . . , C} be such that qk = maxi qi, and
⌘j(x) = maxi ⌘i(x). Then we have

C1,x(q) = (1� ⌘k(x))� (1� ⌘j(x))

= ⌘j(x)� ⌘k(x)

= (⌘j(x)� qk) + (qk � ⌘k(x))

= k⌘(x)k
1

� kqk
1

+ (qk � ⌘k(x))

 k⌘(x)� qk
1

+ k⌘(x)� qk1

 Ck·kk⌘(x)� qk,

where Ck·k > 0 is a constant depending on the norm k·k and the last inequality is implied by the
equivalence of norms in finite dimensional space.
Hence,

k⌘(x)� qk <
✏

Ck·k

=) C1,x(q) < ✏.

So it suffices to prove

8�0 2 R+, 9� 2 R+s.t.8x 2 X, 8q 2 �C
, C2,x(q) < � =) kq � ⌘(x)k < �0.

To this end, assume its negation,

9�0 2 R+, 8� 2 R+s.t.9x 2 X, 9q 2 �C
, C2,x(q) < � and kq � ⌘(x)k � �0.
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Let �n = 1
n

for each n 2 N. We can obtain a sequence {(qi, ⌘(xi))}
1

i=1 ⇢ K :=�
(q, ⌘) 2 �C

⇥�C : kq � ⌘k � �0

 
such that C2,xi(qi) < �i for all i 2 N. As K is compact,

we can extract a convergent subsequence {(qik , ⌘(xik))}
1

k=1. Let
lim
k

(qik , ⌘(xik)) = (q⇤, ⌘⇤) 2 K.

Write

C2(q, ⌘) :=
CX

c=1

(T⌘)
c
(`(Tq, c)� `(T⌘, c)),

so C2 is continuous and C2,x(q) = C2(q, ⌘(x)). Therefore,
0 = lim

k

C2,xik
(qik) = lim

k

C2(qik , ⌘(xik)) = C2(q
⇤
, ⌘

⇤),

which contradicts the strict properness of ` since q
⇤
6= ⌘

⇤.

This lemma establishes what may be viewed as a pointwise notion of consistency: For each fixed
x 2 X , the target excess 0/1-inner risk (defined w.r.t. P ) can be made arbitrarily small by making
the surrogate excess `T -inner risk (defined w.r.t. PT ) sufficiently small.

Now let ✏ 2 [0,1], and denote A(✏) :=
�
� 2 [0,1] : 8x 2 X , 8q 2 �C

, C`T ,PT ,x(q) < C
⇤

`T ,PT ,x
+ � =) CL,P,x(q) < C

⇤

L,P,x
+ ✏
 
.

Define the function
� : [0,1] ! [0,1], �(✏) = sup

�2A(✏)
�.

The following properties immediately follow from the definition and Lemma 15:

• �(0) = 0 and �(✏) > 0 if ✏ > 0.
• �(·) is monotone non-decreasing.
• A(✏) = [0, �(✏)]

The function � is a reasonable candidate for the sought after function ✓, but it is not necessarily
invertible since it might not be strictly increasing. To address this we introduce the following.
Definition 16. Let I ⇢ R be an interval and let g : I ! [0,1] be a function. Then the Fenchel-
Legendre biconjugate g

⇤⇤ : I ! [0,1] of g is the largest convex function h : I ! [0,1] satisfying
h  g.

We are now prepared to prove theorem 17 of which theorem 5 is a direct corollary.
Theorem 17. Let ` be a continuous strictly proper loss and T be an invertible column-stochastic
matrix. Let L be the 0-1 loss and let �(·) be the function defined above. Assume R

⇤

`T ,PT
< 1. Then

for all P ,
8f 2 F , �

⇤⇤

|[0,1]

�
RL,P (f)�R

⇤

L,P

�
 R`T ,PT (f)�R

⇤

`T ,PT

where �⇤⇤
|[0,1]

denotes the Fenchel-Legendre biconjugate of the restriction �|[0,1].

Proof of Theorem 17. Write
C1,x(q) := CL,P,x(q)� C

⇤

L,P,x

C2,x(q) := C`T ,PT ,x(q)� C
⇤

`T ,PT ,x
.

Then,
8x 2 X , 8p, q 2 �C

, C2,x(p) < �(C1,x(q)) =) C1,x(p) < C1,x(q).

By letting p = q, we have 8x 2 X , 8q 2 �C
, C2,x(q) � �(C1,x(q)). Fix f 2 F ,

�
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✓Z
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◆
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Z

X
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(C1,x(f(x)))dPX(x) (3)



Z

X

C2,x(f(x))dPX(x) (4)

= R`T ,PT (f)�R
⇤

`T ,PT
(5)
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(2) follows the fact RL,P (f) =
R
X
CL,P,x(f(x))dPX(x) and R

⇤

L,P
=
R
X
CL,P,x(⌘(x))dPX(x) =R

X
C
⇤

L,P,x
dPX(x). (3) is implied by Jensen’s inequality and the convexity of �⇤⇤

|[0,1]
and (4) by

the fact �⇤⇤
|[0,1]

(·)  �(·). (5) follows R`T ,PT (f) =
R
X
C`T ,PT ,x(f(x))dPX(x) and R

⇤

`T ,PT
=R

X
C`T ,PT ,x(⌘(x))dPX(x) =

R
X
C
⇤

`T ,PT ,x
dPX(x) < 1.

B.2 Proof of Proposition 6

For the reader’s convenience, we restate Proposition 6 below:
Proposition 18. Let T 2 RC⇥C be an invertible, column-stochastic matrix. Define ✓

T
: [0,1] !

[0,1] by

✓
T
(✏) =

1

2

✏
2

kT�1k21

.

Then for all x 2 X and q 2 �C , we have

✓
T
(CL,P,x(q)� C

⇤

L,P,x
)  C`T ,PT ,x(q)� C

⇤

`T ,PT ,x
.

Below, let ` denote the log loss `log(q, c) = � log qc and L denote the 0� 1 loss:

L : �C
⇥ Y ! {0, 1}, L(q, c) = {c 6=min{argmax q}}.

To proceed with the proof, we first introduce some notations and useful results. For p, q 2 �C , define

`(q, p) := Ey⇠p`(q, y) =
CX

i=1

�pi log qi. (6)

The above quantity is often referred to as the cross entropy of q relative to p. Next, since the log loss
is proper [49], we have

inf
q2�C

`(q, p) = `(p, p). (7)

The Kullback-Leibler (KL) divergence between p, q 2 �c is defined as

KL(pkq) = `(p, q)� `(p, p). (8)

In the literature, the KL divergence is often presented as KL(pkq) =
P

C

i=1 pi log
⇣

pi

qi

⌘
which is easily

shown to be equivalent to (8). We now rewrite the right-hand side of the inequality in Proposition 18
in terms of the KL divergence:
Lemma 19. Let p := P (·|x) 2 �C . Then

C`T ,PT ,x(q)� C
⇤

`T ,PT ,x
= KL(TpkTq). (9)

Proof of Lemma 19. By definition, we have Tp = PT (·|x). Unwinding the definitions, we have

C`T ,PT ,x(q) = Ey⇠PT (·|x)`T (q, y) = Ey⇠Tp`(Tq, y) = `(Tq, Tp).

Furthermore,

C
⇤

`T ,PT ,x
= inf

q2�C
Ey⇠PT (·|x)`T (q, y) = inf

q2�C
`(Tq, Tp) = `(Tp, Tp)

where the last equality follows from (7). Now, (9) follows immediately from (8).

Next, we focus on the term CL,P,x(q)� C
⇤

L,P,x
on the left-hand side in Proposition 18. Analogous to

(6), we define

L(q, p) := Ey⇠pL(q, y) =
CX

c=1

pc {c 6=min{argmax q}} = 1� pmin{argmax q}. (10)

The 0� 1 loss is also proper and

inf
q2�C

L(q, p) = L(p, p) = 1� pmin{argmax p} = 1�max
c

pc. (11)
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Unwinding the definition, we have

CL,P,x(q) = Ey⇠P (·|x)L(q, y) = L(q, p)

and
C
⇤

L,P,x
= inf

q2�C
Ey⇠P (·|x)L(q, y) = inf

q2�C
L(q, p) = L(p, p).

Thus,
CL,P,x(q)� C

⇤

L,P,x
= L(q, p)� L(p, p). (12)

Thus, by (9) and (12), we only need to focus on comparing L(q, p)� L(p, p) with KL(TpkTq). This
is facilitated by the 1-norm k · k1 and the next two results. The first is by Pinsker [31]:
Theorem 20 (Pinsker inequality). Let k · k1 be the 1-norm on RC . Then for all p, q 2 �C , we have

KL(pkq) �
1

2
kp� qk

2
1.

The second one is widely-known in the literature. For the sake of completeness, we provide a proof
using our notations:
Lemma 21. Let p, q 2 �C be arbitrary. Then kp� qk1 � L(q, p)� L(p, p).

Proof of Lemma 21. Let i := min{argmax p} and j := min{argmax q}. Then by (10) and (11),
we have

L(q, p)� L(p, p) = 1� pj � (1� pi) = pi � pj .

On the other hand, note that

kp� qk1 =
CX

i=1

|pi � qi|

� |pi � qi|+ |qj � pj |

� |pi � pj + qj � qi| * triangle inequality
= pi � pj + qj � qi * pi � pj � 0 and qj � qi � 0

� pi � pj

as desired.

Finally, we need one more result to take into account the presence of the stochastic matrix T when
applying Pinsker inequality to lower bound KL(TpkTq):
Lemma 22. Let M 2 RC⇥C be a matrix and let k · k be a norm on RC . Suppose that M is
non-singular. Then

inf
x2RC :x 6=0

kMxk

kxk
=

1

kM�1k
.

Proof of Lemma 22. We begin by rewriting the infimum as the reciprocal of a supremum:

inf
x2RC :x 6=0

kMxk

kxk
=

 
sup

x2RC :x 6=0

kxk

kMxk

!�1

.

Next, applying the change of variables x = M
�1

y, we have

sup
x2RC :x 6=0

kxk

kMxk
= sup

y2RC :y 6=0

kM
�1

yk

kyk
= kM

�1
k

where the last equality holds by definition.
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Proof of Proposition 6. We are now ready to conclude the proof. Putting it all together, we have
C`T ,PT ,x(q)� C

⇤

`T ,PT ,x

= KL(TpkTq) * Equation (9)

�
1

2
kTp� Tqk

2
1 * Theorem 20, Pinsker inequality

=
1

2
kT (p� q)k21

�
1

2

kp� qk
2
1

kT�1k21

* Lemma 22

�
1

2

(L(q, p)� L(p, p))2

kT�1k21

. * Lemma 21

=
1

2

(CL,P,x(q)� C
⇤

L,P,x
)2

kT�1k21

* Equation (12)

as desired. This concludes the proof of Proposition 18.

C Remakrs for Section 4

C.1 Remarks on the Setting of LMNTM

Instead of letting
⇣
X, Ỹ

⌘
i.i.d.
⇠ PTi , which is a more common assumption, we choose the setting

described in Section 4.1 because it fits LLP more naturally. When reducing LLP to LLN, a bag in
group i is modeled as a collection of data points sampled from PTi(· | c). If we assume all data points
in group i are sampled i.i.d. from PTi , then we need (ni,1, ni,2, . . . , ni,C), the size of bags in group
i, to follow a multinomial distribution, which is too restrictive. Our current setting is more flexible
and allows ni,c to be either deterministic or random.

D Proofs for Section 4

D.1 Proof of Theorem 7

Proof of Theorem 7. By Theorem 17, 8i 2 N, 9 a strictly increasing continuous function ✓i with
✓i(0) = 0 and

✓i

�
RL,P (f)�R

⇤

L,Pg

�
 R`Ti ,PTi

(f)�R
⇤

`Ti ,PTi
.

Then,
NX

i=1

wi✓i

�
RL,P (f)�R

⇤

L,P

�


NX

i=1

wi

⇣
R`Ti ,PTi

(f)�R
⇤

`Ti ,PTi

⌘
= eR`,P,T (f)� eR⇤

`,P,T

The last equality is implied by the fact R⇤

`Ti ,PTi
= R`Ti ,PTi

(⌘(x)) < 1. Let ✓ =
P

N

i=1 wi✓i which
is clearly continuous and satisfies ✓(0) = 0.

D.2 Proof of Theorem 11

Now we introduce a sequence of lemmas to prove the generalization error bound.
Lemma 23. Let G ⇢  � F s.t. sup

x2X,g2G
kg(x)k2  A for some constant A. Let N 2 N and

T = {Ti}
N

i=1 be a sequence of invertible column-stochastic matrices. Fix (w1, w2, . . . , wN )tr 2 �N

and ni,c 2 N for each i 2 NN and c 2 Y . Let S =
�
Xi,c,j : i = NN , c 2 Y, j = Nni,c

 
where each

Xi,c,j is drawn from the class conditional distribution PTi(· | c) and all Xi,c,j’s are independent.
8i 2 NN and c 2 Y , let ↵i 2 �̊C

s.t. ↵i(c) = PTi(Ỹ = c). Let ` be a proper loss s.t. 8i, c the
function �`Ti

(·, c) is Lipschitz w.r.t. the 2-norm. Write

R̂w,S(g) :=
NX

i=1

wi

CX

c=1

↵i(c)

ni,c

niX

j=1

�`Ti
(g(Xi,c,j), c))
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and

eR(g) := eR`,P,T

�
 
�1

� g
�
= E

h
R̂w,S(g)

i
.

Then 8� 2 (0, 1], with probability at least 1� � w.r.t. to the draw of S,

sup
g2G

���R̂w,S(g)� eR(g)
��� 

vuut2 log
2

�

NX

i=1

CX

c=1

w
2
i
↵
2
i
(c)

ni,c

⇣���`Ti

��A+
���`Ti

��
0

⌘2

+ 2ES,✏i,c,j

2

4sup
g2G

NX

i=1

wi

CX

c=1

↵i(c)

ni,c

ni,cX

j=1

✏i,c,j�`Ti
(g(Xi,c,j), c)

3

5,

where ✏i,c,j , i = NN , c 2 Y, j 2 Nni,c are i.i.d. Rademacher random variables,
���`Ti

��
0

=

maxc
���`Ti

(0, c)
��, and

���`Ti

�� is the smallest real number such that it is a Lipschitz constant of
�`Ti

(·, c), 8i, c.

Proof. Write

⇠(S) := sup
g2G

���R̂w,S(g)� eR(g)
���,

⇠
+(S) := sup

g2G

R̂w,S(g)� eR(g), and ⇠
�(S) := sup

g2G

�

⇣
R̂w,S(g)� eR(g)

⌘
.

We will show that the same bound on ⇠
+(S) and ⇠

�(S) holds with probability at least 1 �
�

2 .
Combining these bounds gives the desired bound on ⇠(S). We first consider ⇠+(S). The analysis for
⇠
�(S) is identical. By definition,

⇠
+(S) = sup

g2G

NX

i=1

wi

2

4
CX

c=1

↵i(c)

ni,c

niX

j=1

�`Ti
(g(Xi,c,j), c)�R`Ti ,PTi

�
 
�1

� g
�
3

5.

We first use the Bounded Difference Inequality [26] to bound ⇠
+(S) �

E⇠+(S). Substitute Xi,c,j with arbitrary X
0

i,c,j
and ⇠

+(S) changes by at most
sup

g2G

wi↵i(c)
ni,c

���`Ti
(g(Xi,c,j), c)� �`Ti

�
g(X 0

i,c,j
), c
���. Furthermore,

���`Ti
(g(Xi,c,j), c)

�� 
���`Ti

(g(Xi,c,j), c)� �`Ti
(0, c)

��+
���`Ti

(0, c)
��


���`Ti

��kg(Xi,c,j)k+
���`Ti

��
0


���`Ti

��A+
���`Ti

��
0
.

Hence,

sup
g2G

wi↵i(c)

ni,c

���`Ti
(g(Xi,c,j), c)� �`Ti

�
g(X 0

i,c,j
), c
���  2

wi↵i(c)

ni,c

⇣���`Ti

��A+
���`Ti

��
0

⌘
.

By the Bounded Difference Inequality, with probability at least 1� �

2 ,

⇠
+(S)� E⇠+(S) 

vuut2 log
2

�

NX

i=1

CX

c=1

w
2
i
↵i(c)2

ni,c

⇣���`Ti

��A+
���`Ti

��
0

⌘2
.
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It remains to bound E⇠+(S). Let S0 =
�
X

0

i,c,j
, : i = NN , c 2 Y, j = Nni

 
where every pair of

X
0

i,c,j
and Xi,c,j are i.i.d. and all X 0

i,c,j
’s are independent. Hence,

ES [⇠(S)] = ES

2

4sup
g2G

NX

i=1

wi

CX

c=1

↵i(c)

ni,c

ni,cX

j=1

�`Ti
(g(Xi,c,j), c)�

NX

i=1

wiR`Ti ,PTi
( �1

� g)

3

5

= ES


sup
g2G

⇣
R̂w,S(g)� ES0R̂w,S0(g)

⌘�

 ESES0


sup
g2G

⇣
R̂w,S(g)� R̂w,S0(g)

⌘�
(13)

= ES,S0

2

4sup
g2G

NX

i=1

wi

CX

c=1

↵i(c)

ni,c

ni,cX

j=1

�
�`Ti

(g(Xi,c,j), c)� �`Ti
(g(X 0

i,c,j
), c)

�
3

5

= ES,S0,✏i,c,j

2

4sup
g2G

NX

i=1

wi

CX

c=1

↵i(c)

ni,c

ni,cX

j=1

✏i,c,j

�
�`Ti

(g(Xi,c,j), c)� �`Ti
(g(X 0

i,c,j
), c)

�
3

5

(14)

 ES,S0,✏i,c,j

2

4sup
g2G

NX

i=1

wi

CX

c=1

↵i(c)

ni,c

ni,cX

j=1

✏i,c,j�`Ti
(g(Xi,c,j), c)

3

5

+ ES,S0,✏i,c,j

2

4sup
g2G

NX

i=1

wi

CX

c=1

↵i(c)

ni,c

ni,cX

j=1

✏i,c,j�`Ti
(g(X 0

i,c,j
), c)

3

5 (15)

= 2ES,✏i,c,j

2

4sup
g2G

NX

i=1

wi

CX

c=1

↵i(c)

ni,c

ni,cX

j=1

✏i,c,j�`Ti
(g(Xi,c,j), c)

3

5.

(13) is implied by the convexity of sup
g2G

and Jensen’s inequality. The equality in (14) holds because
X

0

i,c,j
and Xi,c,j are i.i.d. and ✏i,c,j is symmetric. (15) can be justified by the elementary property of

supremum and symmetry of ✏i,c,j .

We need the next two lemmas to get rid of the �`Ti
’s when the set V ⇢ RC .

Lemma 24. Let H be a set of functions from X to RC , let � be a function from H to R, let a be a
positive real number, and let � : RC

! R be a Lipschitz function w.r.t. the norm k·k2. We denote
the Lipschitz constant of � by |�|. Then,

E✏ sup
f2H

✏a�(f(x)) + �(f)  E✏1,...,✏C sup
f2H

p

2a|�|
CX

c=1

✏cfc(x) + �(f)

where ✏, ✏1, . . . , ✏C are independent Rademacher variables and fc(x) denotes the c-th entry of f(x).

Proof. By Proposition 1 of Maurer [25],

8M 2 N, 8v 2 RM
, kvk2 

p

2E✏m

�����

MX

m=1

vm✏m

����� . (16)
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Fix � > 0, then 9f
⇤
, g

⇤
2 F ,

2

"
E✏ sup

f2H

✏a�(f(x)) + �(f)

#
� �

= sup
f,g2H

[a�(f(x)) + �(f)� a�(g(x)) + �(g)]� �

< a(�(f⇤(x))� �(g⇤(x))) + �(f⇤) + �(g⇤) (17)
 a|�|kf

⇤(x)� g
⇤(x)k2 + �(f⇤) + �(g⇤)

 E✏c

p

2a|�|

�����

CX

c=1

✏c(f
⇤

c
(x)� g

⇤

c
(x))

�����+ �(f⇤) + �(g⇤) (18)

 E✏c sup
f,g2H

"
p

2a|�|

�����

CX

c=1

✏c(fc(x)� gc(x))

�����+ �(f) + �(g)

#

= E✏c sup
f2H

"
p

2a|�|
CX

c=1

✏cfc(x) + �(f)

#
+ E✏c sup

g2H

"
�

p

2a|�|
CX

c=1

✏cgc(x) + �(g)

#
(19)

= 2E✏c sup
f2H

"
p

2a|�|
CX

c=1

✏cfc(x) + �(f)

#

The existence of f
⇤
, g

⇤ satisfying the inequality in step (17) is guaranteed by the definition of
supremum. Step (18) is implied by (16). In (19), we drop the absolute value as we can makeP

C

c=1 ✏c(fc(x)� gc(x)) non-negative by exchanging f and g for any realization of ✏c, c = 1, . . . , C.

Now we move on to the next step.

Lemma 25. Let N,C 2 N. Let H be a set of functions from X to RC . 8i = 1, . . . , N , let wi be a
positive real numbers, and let �i : RC

! R a Lipschitz function. Denote the Lipschitz constant of �i
by |�i|. Then,

E✏i sup
f2H

NX

i=1

✏iwi�i(f(xi)) 
p

2E✏i,c sup
f2H

NX

i=1

wi|�i|

CX

c=1

✏i,cfc(xi)

where ✏i’s and ✏i,c’s are independent Rademacher variables and fc(x) denotes the c-th entry of f(x).

Proof. Let m = 0, 1, . . . , N . We prove

E✏i sup
f2H

NX

i=1

✏iwi�i(f(xi)) 

E✏i,c,✏i

2

4sup
f2H

p

2
X

1im

wi|�i|

CX

c=1

✏i,cf(xi) +
X

m<iN

✏iwi�i(f(xi))

3

5

by induction on m.

The base case when m = 0 holds with equality. The case when m = N is the desired inequality.
Now, suppose the inequality hold for m� 1.
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E✏i sup
f2H

NX

i=1

✏iwi�i(f(xi))

 E✏i,c,✏i

2

4sup
f2H
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2
X

1i<m

wi|�i|
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X

miN

✏iwi�i(f(xi))

3
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"
sup
f2H
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2wm|�m|

CX

c=1
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✏i,cfc(xi) +
X

m<iN

✏iwi�i(f(xi))

3

5

In the first equality, we let �(f) denote the rest of the summation.

Lemma 26. Let G ⇢  � F s.t. sup
x2X,g2G

kg(x)k2  A for some constant A. Let N 2 N and
T = {Ti}

N

i=1 be a sequence of invertible column-stochastic matrices. Fix (w1, w2, . . . , wN )tr 2 �N

and ni,c 2 N for each i 2 NN and c 2 Y . Let S =
�
Xi,c,j : i = NN , c 2 Y, j = Nni,c

 
where each

Xi,c,j is drawn from the class conditional distribution PTi(· | c) and all Xi,c,j’s are independent.
8i 2 NN and c 2 Y , let ↵i 2 �̊C

s.t. ↵i(c) = PTi(Ỹ = c). Let ` be a proper loss s.t. 8i, c the
function �`Ti

(·, c) is Lipschitz. Write

R̂w,S(g) :=
NX

i=1

wi

CX

c=1

↵i(c)

ni,c

niX

j=1

�`Ti
(g(Xi,c,j), c))

and
eR(g) := eR`,P,T

�
 
�1

� g
�
= E

h
R̂w,S(g)

i
.

Then 8� 2 (0, 1], with probability at least 1� � w.r.t. to the draw of S,

sup
g2G

���R̂w,S(g)� eR(g)
��� 

vuut2 log
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⇣���`Ti
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✏i,c,j,c0gc0(Xi,c,j)

3

5,

where ✏i,c,j,c0 , i 2 NN , c 2 Y, c
0
2 Y, j 2 Nni,c are i.i.d. Rademacher random variables,

���`Ti

��
0
=

maxc
���`Ti

(0, c)
��, and

���`Ti

�� is the smallest real number such that it is a Lipschitz constant of
�`Ti

(·, c), 8i, c.

Proof of Theorem 26. The theorem is a direct result of Lemmas 23 and 25.

In Theorem 7, we saw that eR(g) is a risk for LMNTM satisfying an excess risk bound. Lemma 26
shows that R̂w,S(g) is an accurate estimate of eR(g), and therefore justifies its use as an empirical
objective for LMNTM.

The second term on the right hand side of the inequality in Lemma 26 depends on the choice of
hypothesis class G, and can be viewed as a generalization of Rademacher complexity to LMNTM. To
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make this term more concrete, we study two popular choices of function classes, the reproducing
kernel Hilbert space (RKHS) and the multilayer perceptron (MLP). We first consider the kernel class.
Proposition 27. Let k be a symmetric positive definite (SPD) kernel, and let H be the associated
reproducing kernel Hilbert space (RKHS). Assume k bounded by K, meaning 8x, kk(·, x)k

H
 K.

Let Gk

K,R
denote the ball of radius R in H and G = G

k

K,R
⇥ G

k

K,R
⇥ · · ·⇥ G

k

K,R| {z }
the Cartesian product of C G

k
K,R’s

. Then
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,

where ✏i,c,j,c0 , i 2 NN , c 2 Y, c
0
2 Y, j 2 Nni,c are i.i.d. Rademacher random variables. Thus the

generalization error bound becomes: 8� 2 [0, 1], with probability at least 1� �,

sup
g2G
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Proof of Proposition 27. For the reader’s convenience, we restate the result:
Proposition 28. Let k be a symmetric positive definite (SPD) kernel bounded by K and H be the
associated reproducing kernel Hilbert space (RKHS). i.e.kk(·, x)k

H
 K. Let Gk

K,R
denote the ball

of radius R in H and G = G
k

K,R
⇥ G

k

K,R
⇥ · · ·⇥ G

k
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the Cartesian products of C G
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where ai > 0, and ✏i,c are independent Rademacher random variables.

Proof. First, by Cauchy-Schwartz inequality, observe 8R > 0, g 2 G
k

K,R
, x 2 X

|g(x)| = |hg, k(·, x)i|  kgkHkk(·, x)kH  RK.

Thus,
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Equality (20) and (21) follow the reproducing property and the equality condition of Cauchy-Schwarz,
respectively. (22) is implied by Jensen’s inequality and (23) by the independence of Rademacher
random variables.

We now define the Rademacher Complexity-like term E✏i supg2G

P
M

i=1 ai✏ig(xi) formally and
characterize several properties which will be used in the proof of Proposition 31.
Definition 29. Let G be a subset of measurable functions from X to R. Denote the sample path
S = (xi)

M

i=1 and weights by a = (ai)
M

i=1 where ai � 0. Define

RadS,a(G) = E✏i sup
g2G

MX

i=1

ai✏ig(xi),

where ✏i’s are i.i.d. Rademacher random variables.
Proposition 30. RadS,a has the following properties:

1. G ⇢ H =) RadS,a(G)  RadS,a(H)

2. RadS,a(G1 + G2) = RadS,a(G1) + RadS,a(G2),
where G1 + G2 = {g1 + g2 : g1 2 G1, g2 2 G2}

3. 8c0 2 R,RadS,a(c0G) = |c0|RadS,a(G), where c0G := {c0g : g 2 G}

4. RadS,a(conv G) = RadS,a(G), where conv G denotes the convex hull of G.

5. Let µ : R ! R be a Lipschitz function and let |µ| be its Lipschitz constant. Then,

RadS,a(µ � G)  |µ|RadS,a(G), where µ � G = {µ � g : g 2 G}.

Proof. Property 1 and 2 immediately follow the definition. Property 3 is implied by the invariance of
✏i under negation. It remains to prove Property 4 and 5.

For Property 4:

RadS,a(conv G)

= E sup
n2N

sup
�2�n,gj2G

MX

i=1

ai✏i

nX

j=1

�jgj(xi)

= E sup
n2N

sup
�2�n,gj2G

nX

j=1

�j

MX

i=1

ai✏igj(xi)

= E sup
n2N

sup
�2�n,gj2G

max
j

MX

i=1

ai✏igj(xi)

= E sup
g2G

MX

i=1

ai✏ig(xi)

= RadS,a(G).
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For Property 5, we follow the idea of Meir and Zhang [27],

RadS,a(µ � G)

= E✏i sup
g2G

MX

i=1

ai✏i(µ � g)(xi)

= E✏i,i=2,3,...,ME✏1 sup
g2G

MX

i=1

ai✏i(µ � g)(xi)

=
1

2
E✏i,i=2,3,...,M

"
sup
g2G

 
a1(µ � g)(x1) +

MX

i=2

ai✏i(µ � g)(xi)

!

+ sup
g02G

 
�a1(µ � g

0)(x1) +
MX

i=2

ai✏i(µ � g
0)(xi)

!#

=
1

2
E✏i,i=2,3,...,M

"
sup

g,g02G

a1(µ(g(x1))� µ(g0(x1))) +
MX

i=2

ai✏i(µ � (g + g
0))(xi)

#


1

2
E✏i,i=2,3,...,M

"
sup

g,g02G

a1|µ||g(x1)� g
0(x1)|+

MX

i=2

ai✏i(µ � (g + g
0))(xi)

#

=
1

2
E✏i,i=2,3,...,M

"
sup

g,g02G

a1|µ|(g(x1)� g
0(x1)) +

MX

i=2

ai✏i(µ � (g + g
0))(xi)

#
(24)

=
1

2
E✏i,i=2,3,...,M

"
sup
g2G

 
a1|µ|g(x1) +

MX

i=2

ai✏i(µ � g)(xi)

!

+ sup
g02G

 
�a1|µ|g

0(x1) +
MX

i=2

ai✏i(µ � g
0)(xi)

!#

= E✏i sup
g2G

"
a1|µ|g(x1)✏1 +

MX

i=2

ai✏i(µ � g)(xi)

#
.

In step (24), we can drop the absolute value since we can always make (g(x1)� g
0(x1)) non-negative

by exchanging g and g
0 while leaving the rest of the equation invariant. Proceeding by the above

argument inductively on i, we eventually have

RadS,a(µ � G)  E✏i sup
g2G

MX

i=1

ai|µ|g(xi)✏i = |µ|RadS,a(G)

as desired.

To simplify the notations, we follow Zhang et al. [54] and define the real-valued MLP inductively:

N1 =
�
x ! hx, vi : v 2 Rd

, kvk2  �
 
,

Nm =

8
<

:x !

dX

j=1

wjµ(fj(x)) : v 2 Rd
, kvk1  �, fj 2 Nm�1

9
=

;,

where � 2 R+ and µ is a 1-Lipschitz activation function. Define an MLP which outputs a vector in
RC by G = Nm ⇥Nm ⇥ · · ·⇥Nm| {z }

the Cartesian product of C Nm’s

. To leverage standard techniques for the proof, we additionally

assume 8m 2 N, 0 2 µ �Nm.
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Proposition 31. Let G = Nm ⇥Nm ⇥ · · ·⇥Nm| {z }
the Cartesian product of C Nm’s

. Assume 8x 2 X , kxik  ↵ and 8m 2 N, 0 2

µ �Nm. Then,

ES,✏i,c,j,c0

2

4sup
g2G

NX

i=1

wi

���`Ti

��
CX

c=1

↵i(c)

ni,c

ni,cX

j=1

CX

c0=1

✏i,c,j,c0gc0(Xi,c,j)

3

5 

C↵2m�1
�
m

vuut
NX

i=1

w
2
i

���`Ti

��2
CX

c=1

↵
2
i
(c)

ni,c

,

where ✏i,c,j,c0 , i 2 NN , c 2 Y, c
0
2 Y, j 2 Nni,c are i.i.d. Rademacher random variables. Thus, the

generalization error bound becomes: 8� 2 [0, 1], with probability at least 1� �,

sup
g2G

���R̂w,S(g)� eR(g)
���



 
max

i

⇣���`Ti

��A+
���`Ti

��
0

⌘r
2 log

2

�
+ C↵2m�1

�
m max

i

���`Ti

��
!vuut

NX

i=1

w
2
i

CX

c=1

↵
2
i
(c)

ni,c

.

Proof of Proposition 31. For the reader’s convenience, we restate the result:
Proposition 32. Let G = Nm ⇥Nm ⇥ · · ·⇥Nm| {z }

the Cartesian products of C Nm’s

. Assume 8x 2 X , kxik  ↵ and 8k 2 N, 0 2

µ �Nk. Then,

E✏i,c

"
sup

gc2Nm

MX

i=1

ai

CX

c=1

✏i,cgc(xi)

#
 C↵2m�1

�
m

vuut
MX

i=1

a
2
i
.

where ai > 0, and ✏i,c are independent Rademacher random variables.

Recall that the MLP outputs a vector in RC . The set of MLPs is G = Nm ⇥Nm ⇥ · · ·⇥Nm| {z }
the Cartesian products of C Nm’s

where

the set Nm is defined inductively as

N1 =
�
x ! hx, vi : v 2 Rd

, kvk2  �
 

for m = 1, and

Nm =

8
<

:x !

dX

j=1

wjµ(fj(x)) : v 2 Rd
, kvk1  �, fj 2 Nm�1

9
=

; for m > 1.

� 2 R+, and µ is a 1-Lipschitz activation function. We now proceed with the proof of Proposition 32.

Proof. We have

E✏i,c

"
sup

gc2Nm

MX

i=1

ai

CX

c=1

✏i,cgc(xi)

#

= E✏i,c

"
sup

gc2Nm

CX

c=1

MX

i=1

ai✏i,cgc(xi)

#



CX

c=1

E✏i,c

"
sup

gc2Nm

MX

i=1

ai✏i,cgc(xi)

#

= CE✏i

"
sup

g2Nm

MX

i=1

ai✏ig(xi)

#

= CRadS,a(Nm)
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where

RadS,a(Nm) = E✏i

2

4 sup
hj2Nm�1,kvk1�

MX

i=1

ai✏i

0

@
dX

j=1

vj(µ � hj)

1

A(xi)

3

5.

Note
P

d

j=1 vj(µ � hj) 2 � conv(µ �Nm�1 � µ �Nm�1). Here the difference between two sets of
functions is G1 � G2 = {g1 � g2 : g1 2 G1, g2 2 G2} and �G1 = {�g1 : g1 2 G1} for a real number
�. Apply Proposition 30,

RadS,a(Nm)

 RadS,a(� conv(µ �Nm�1 � µ �Nm�1))

= �RadS,a(conv(µ �Nm�1 � µ �Nm�1))

= �RadS,a((µ �Nm�1 � µ �Nm�1))

= �(RadS,a(µ �Nm�1) + RadS,a(�µ �Nm�1))

= 2�RadS,a(µ �Nm�1)

 2|µ|�RadS,a(Nm�1)

Proceeding backward inductively on m, we have RadS,a(Nm)  2m�1
�
m�1RadS,a(N1). The set

N1 can be viewed as the ball with radius � centered at 0 in the RKHS associated to linear kernel
bounded ↵, so we can apply Proposition 28. Therefore,

RadS,a(Nm)  2m�1
�
m�1RadS,a(N1)  2m�1

�
m
↵

vuut
MX

i=1

a
2
i

and

E✏i,c

"
sup

gc2Nm

MX

i=1

ai

CX

c=1

✏i,cgc(xi)

#
 CRadS,a(Nm)  C↵2m�1

�
m

vuut
MX

i=1

a
2
i

as desired.

Proof of Theorem 11. Theorem 11 follows Lemma 26, Proposition 27, Proposition 31, and the fact
that ↵i(c)  1.

D.3 Proof of Proposition 12

Proof of Proposition 12. By Corollary 1.42 of Weaver [48], kkrs�`T (s, y)k2k1 is a Lipschitz
constant of �`T (·, y), where y 2 {1, 2 . . . , C}, r denotes the gradient of a function, krs�`T (s, y)k2
is a function maps s to a real number, and the k·k

1
takes the essential supremum over �C . We use

ti,j to denote the element at i-row and j-column of T .

�`T (s, y) = � log

 
CX

k=1

ty,k
e
sk

P
C

j=1 e
sj

!
= � log

 
CX

k=1

ty,ke
sk

!
+ log

0

@
CX

j=1

e
sj

1

A.

@�`T (s, y)

@si
= �

ty,ie
si

P
C

j=1 ty,je
sj

+
e
si

P
C

j=1 e
sj

= �

ty,i
e
siPC

k=1 e
sk

P
C

j=1 ty,j
e
sjPC

j=k e
sk

+
e
si

P
C

j=1 e
sj

= �
ty,ipiP

C

j=1 ty,jpj

+ pi
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In the last equality, we denote e
siPC

k=1 e
sk

by pi. Then,

krs�`T (s, y)k
2
2 =

CX

i=1

 
�

ty,ipiP
C

j=1 ty,jpj

+ pi

!2



CX

i=1

������
ty,ipiP

C

j=1 ty,jpj

+ pi

����� (25)



CX

i=1

 
ty,ipiP

C

j=1 ty,jpj

+ pi

!
= 2

The inequality in step (25) follows the observation that
�����

ty,ipiPC
j=1 ty,jpj

+ pi

����  1

E Confirmation of Probabilistic Model

In Section 5.2, we state that ↵(i) = P̄T (Ỹ = i), P�i(·) = P̄T (· | Ỹ = i), and �i(c) = P̄T (Y = c |

Ỹ = i) for matrix T with T (i, j) = �i(j)↵(i)
�(j) . Here we confirm these facts.

Let T be a stochastic matrix with entries T (i, j) = �i(j)↵(i)
�(j) . We construct the joint prob-

ability measure P̄T on X ⇥ Y ⇥ Y as described in Section 2. We can see P̄T

⇣
Ỹ = i

⌘
=

P
C

j=1 P̄T

⇣
Ỹ = i, Y = j

⌘
=

P
C

j=1 P̄T (Y = j)T (i, j) =
P

C

j=1 �(j)
�i(j)↵(i)

�(j) = ↵(i) and

8 events A ⇢ X , 8i, y 2 Y P̄T

⇣
Ỹ = i

⌘
= ↵i and 8A 2 MX , 8i, y 2 Y

P̄T

⇣
X 2 A, Y = y | Ỹ = i

⌘

=
1

↵(i)
P̄T

⇣
X 2 A, Y = y, Ỹ = i

⌘

=
1

↵(i)
P (X 2 A, Y = y)

�i(y)↵(i)

�(y)

= Py(X 2 A)�i(y)

= P�i(X 2 A, Y = y).

Hence, P̄T

⇣
· | Ỹ = i

⌘
= P�i(·), which implies that P̄T

⇣
Y = c | Ỹ = i

⌘
= P�i(Y = c) = �i(c),

and for a data point
⇣
X,Y, Ỹ

⌘
⇠ P̄T the event Ỹ = i entails that (X,Y ) ⇠ P�i .

F Grouping and Weights Optimization

To optimize the weights or the assignment of bags we would need to optimize the composition of
our two bounds: ✓(RL,P (f) � R

⇤

L,P
)  Emprical Risk + Generalization Error Bound � R

⇤

l,P,T
.

This is in contrast to the approach with backward correction [39] which does not require the excess
risk bound (because their excess target risk is simply proportional to the excess surrogate risk).
Therefore, to optimize the composition of our bounds, we’d need to estimate the surrogate Bayes
risk, a challenging task. We also note that both the generalization error bound and excess risk bound
involve weights wi and noise matrices Ti. Therefore, even if the surrogate Bayes risk were somehow
known, the resulting integer programming problem is much more involved than for the backward
correction, where it’s a simple matching problem.

Fortunately, LLPFC with random partitioning and weights which optimize solely generalization error
bound yields superior empirical results in the experiments and outperforms other multiclass LLP
methods by a significant margin. We believe weight optimization is much more important for the
backward correction, where the loss functions can have large and disparate magnitudes (which need
to be offset by carefully chosen weights), than it is for forward correction where the outputs of the
inverse link function are in the unit simplex and thus all of a comparable magnitude. A similar point
is made by Patrini et al. [30] in the last two sentence in the first paragraph of section 6.
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