
A Details on Datasets

We report in Tab. 5 and Tab. 5 global statistics of the data described in . Overall our conclusions are
drawn from a total of over 270k scores.

# of tasks # of instance
GLUE 105 15

SGLUE 24, 15
XTREM 15 5

Table 4: Summary of the considered benchmarks. Overall the total number of the score is over 2010.

# of tasks # of instance
PC 19 240
TC 19 300

FLICKR 14 864
MLQE 10 7000
RSUM 15 2500
SEVAL 17 1600
TAC08 15 2976
TAC09 15 2596
TAC11 15 2376

Table 5: Summary of the considered datasets. Overall this benchmark is composed of over 276276
scores.

B Additional Experiments

In this section, we report additional experimental results including the details of the robustness to
the scaling experiment (see Ssec. B.1), the ranking on XTREM (see Ssec. B.2), complete results
on the experiments when adding adding/removing metrics/tasks when Task Level Information (see
Sssec. B.3.1) and Instance Level Information is available (see Sssec. B.3.2). In the main paper
we only report the aggregated score for the agreement analysis when instance level informatino is
available, we report detailed results on Ssec. B.4.

B.1 Toy Experiment on Scale

We display in Fig. 7 the results of the toy experiment on scaling robustness. When corrupting one
task by rescaling, we see that the error of the ranking induced by σmean increases to 1 while the error
of ranking-based aggregation remains constant.
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Figure 7: Synthetic Experiment on robustness to scaling. Error is measured in term of Kendall
distance.

B.2 Ranking of SGLUE

We display in Tab. 6 the resulting ranking on the three considered benchmark. Although aggregation
procedures tend to agree on good and bad systems, when changing the aggregation function, the
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Figure 8: Experiment on task addition/removal when Task level information is available.

rankings vary. Thus conclusion depending on the answer to the initial question ”what are the best
systems?” might change.

GLUE SGLUE XTREM
σ∗ Team σmean σ∗ Team σmean σ∗ Team σmean

0 (1430) Ms Alex 0 (88.6) 0 (289) Liam 0 (90.0) 0 (55) ULR 0 (83.2)

1 (1405) ERNIE 1 (88.0) 1 (278) Ms Alex 1 (89.4) 1 (50) CoFe 1 (82.6)

2 (1397) DEBERTA 2 (87.9) 2 (268) ERNIE 2 (89.3) 2 (44) InfoLXL 3 (80.6)

3 (1391) AliceMind 3 (87.8) 3 (263) HUMAN 3 (89.2) 3 (42) VECO 4 (80.3)

4 (1375) PING-AH 5 (87.6) 4 (256) DEBERTA 5 (88.8) 4 (35) Unicoder 5 (79.4)

5 (1362) HFL 4 (87.7) 5 (256) Zirui 4 (88.8) 5 (34) PolyGlot 2 (80.6)

6 (1361) T5 6 (87.5) 6 (234) T5 6 (87.7) 6 (31) ULR-v2 6 (79.4)

7 (1358) DIRL 10 (86.7) 7 (205) Alibaba 7 (86.8) 7 (29) HiCTL 8 (79.1)

8 (1331) Zihan 7 (87.6) 8 (182) Anuar 8 (86.1) 8 (29) Ernie 7 (79.1)

9 (1316) ELECTRA 11 (86.7) 9 (181) Huawei 11 (83.4) 9 (21) Anony 10 (78.3)

Table 6: Qualitative analysis between ranking obtained with σ∗ or σmean. Results in parenthesis
report the score of the considered aggregation procedure.

B.3 Complete results on the task addition/removal experiments

B.3.1 Task Level Aggregation

Results of task addition/removal experiments when Task level information is available are reported
in Fig. 8. Overall, we observe that ranking-based aggregation is more robust than mean-based
aggregation.

B.3.2 Instance Level Aggregation

Results of task addition/removal experiments when instance-level information is available are reported
in Fig. 9. Overall, we observe that ranking-based aggregation is more robust than mean-based
aggregation.

B.4 Agreement analysis on Instance Level Aggregation

To further complete the experiment on agreement analysis of Fig. 5.3 report results on individual
tasks. We report in Fig. 10 the correlation of ranking when Top K systems for different values of K
while Fig. 11 reports the agreement analysis.

B.5 Possible Extensions

For the futur we would like to extend the proposed ranking procedures to:

• Sequence Labelling Task [15, 16, 21] where instances are sequences, thus ordering matters.

• Emotion classification [22, 37, 45, 97] where score are continuous.
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Figure 9: Experiment on task addition/removal when Instance level information is available.

• NLG [19, 20, 24–26, 88] where instance are sentences where both ordering and content
matter.

C Dispersion Analysis

In this section, we introduce the notion of dispersion across a set of different rankings σ1, . . . , σT .

C.1 Dispersion as a measure performance

Suppose you have two ranking candidates, σA and σB , to summarize σ1, . . . , σT . A natural question
consists in measuring the performance of σA and σB . Denoting by d the Kendall distance, a natural
measure is

σ 7→
T∑
t=1

d(σ, σt). (1)
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Figure 10: Test size experiements

Of course, in our task-level framework, our candidate σ∗ will achieve better performance than the
mean since it is designed to minimize this quantity. From a probabilistic point of view, one can see
σ1, . . . , σT as an i.i.d. realization of a r.v. Σ on the symmetric group SN . Denoting by P is law and
E the associated expectation, Equation (1) is an approximation of

σ 7→ E[d(σ,Σ)]. (2)

C.2 Dispersion to measure ranking complexity

In order to take into account the intrinsic complexity of ranking σ1, . . . , σT , a natural way would be
to compute some kind of Dispersion among these permutations. Using the same notations as before,
one can rely on the pairwise distance.

T∑
t1,t2=1

d(σt1 , σt2) (3)

On a practical perspective, the computational complexity of Equation (3) is O(T 2N logN). Never-
theless, it is possible to efficiently approximate this value via empirical stopping algorithms based on
Berstein or Hoeffding bounds [56, 65]. Notice that the pairwise distance has a solid theoretical foun-
dation as to be the base for a measure of the spread. It is an empirical approximation of E[d(Σ,Σ′)]
where Σ and Σ′ are independent with law P. Therefore, both are directly related to the noise level in
different probabilistic models for permutations [43]. Moreover, the former is the basis of statistical
uniformity tests for ranked data building upon it [12].
Remark 2. A known relation between E[d(σ,Σ)] and E[d(Σ,Σ′)] has remarkable consequences on
assessing the quality of our estimation. It says that the former is bounded below (respectively, above)
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Figure 11: Test size experiements
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by 0.5 (respectively, 1) times the latter [56]. This fact has broad practical application since it means
that the measure of the expected quality of the estimators σ2l and σl is lower an upper bounded by
the intrinsic difficulty of the problem, which we can approximate via sample statistics in Equation (3).

We conclude by noting that E[d(Σ,Σ′)] is the natural ranking counterpart of the variance for real-
valued aggregation σmean. However, when the scores are not on the same scale, then the variance of
the scores is no longer interpretable as a measure of spread in the population.

C.3 Experiments

We report in Tab. 7 the results of the dispersion analysis. We compare the dispersion to measure
performance obtained with the induced ranking by σ∗ σmean and the one obtained by 100 random
permutations.
Takeaways As expected, σ∗ obtains a lowest dispersion which further validate our approach.

σ∗ σmean Random
GLUE 793 805 2746

SGLUE 44.9 47.21 137.3
XTREM 12.25 12.75 50.6

Table 7: Results of the dispersion analysis on the considered benchmarks.
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