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A Appendix

A.1 Effect of Background Augmentation

Reducing bias on the dataset is one of the fundamental problems in computer vision. A typical
example of data bias in the object-centric dataset is that the background of images contains locational
context. For instance, couch images are mostly captured in the living room, and motorcycle images
are taken outdoors hence the roadway or garage appears in the background most of the time. Such
a strong correlation between background information and the class labels makes the classification
networks biased toward the background so that the networks make predictions by looking at the
backgrounds rather than the foreground objects. Here, we demonstrate that our datasets, with
additional augmentations, are more resistant to such bias. We use a popular analysis tool, Grad-
CAM++ [1]], to verify that the classification model trained with our dataset avoids overfitting on
backgrounds. We use the official Grad-CAM++ implementation and feed test images. According
to Figure the classification model trained on our dataset focuses on the object, whereas the
classification model trained on the original CO3D focuses on the background for many outdoor
scenes.
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Figure a.1: Visualization of class activation maps generated by GradCAM++. The left and right
activation maps are generated from the ResNetl8 trained with the original CO3D images and
PeRFception—-CO3D images, respectively.

We also conduct control experiments about the strength of background augmentation. In detail,
we compare evaluated performance by changing the probability, i.e, 0%, 50%, and 100%, to apply
the background augmentation for each iteration. In comparison to the results without background
augmentation, the background augmentation with a probability of 50% increases the 2D classifi-
cation accuracy; whereas the 100% probability of background augmentation does not improve the
performance. In this ablation study, we determine the appropriate level of background augmentation
assistance for improving 2D classification accuracy. Table reports the results of the control
experiments.

We also visualize several examples of background augmented images on Figure [a.4]
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Table a.1: 2D classification accuracies (Acc@1/Acc@5) of the ResNet model trained either on
CO3D or PeRFception—CO3D and evaluated either on CO3D or PeRFception—-CO3D. * denotes the
ImageNet[2] pretrained network. PeRF-CO3D is an abbreviation of PeRFception-CO3D. p stands for
the probability to apply background augmentation.

Train Dataset CO3D PeRF-CO3D (p=0.0) PeRF-CO3D (p=0.5) PeRF-CO3D (p=1.0)
Test Dataset CO3D  PeRF-CO3D CO3D PeRF-CO3D CO3D PeRF-CO3D CO3D PeRF-CO3D
Acc@1 (u+o0)

ResNet18 84.74 £ 0.04 80.39 & 0.19 82.56 £ 0.24 81.43 £ 0.14 83.15 £ 0.10 82.05 & 0.24 81.93 £ 0.10 81.31 £ 0.12
ResNet34 86.18 £ 0.05 81.62 4 0.10 83.98 £ 0.07 82.71 £ 0.17 84.62 £ 0.14 83.61 & 0.04 83.40 & 0.10 82.54 £ 0.22
ResNet50 86.83 £ 0.02 82.19 4 0.09 84.12 £ 0.28 82.80 £ 0.37 84.83 £ 0.14 83.77 4 0.08 83.60 & 0.11 82.73 £ 0.04
ResNet101 87.42 + 0.04 82.86 4+ 0.06 84.97 £ 0.13 83.71 £ 0.13 85.95 £ 0.22 85.11 4 0.23 85.01 & 0.08 83.82 £ 0.05
ResNet152  87.75 £0.11 83.04 & 0.11 85.67 £ 0.31 84.35 £ 0.19 86.40 &= 0.04 85.28 £ 0.02 85.11 £ 0.09 84.06 & 0.09
ResNext50  86.84 £0.29 81.99 £ 0.14 84.21 4 0.08 83.04 £ 0.04 85.25 £ 0.16 84.32 4 0.18 84.06 + 0.38 83.23 £ 0.28
ResNext101 ~ 87.73 £ 0.03 82.90 + 0.07 85.22 4 0.09 84.17 £ 0.15 86.37 £ 0.10 85.48 £ 0.06 85.46 + 0.16 84.46 & 0.11
WideResNet50 87.32 4 0.05 82.45 £ 0.11 84.68 £ 0.15 83.64 + 0.27 85.58 4= 0.10 84.68 £ 0.02 84.35 £ 0.12 83.46 + 0.24
WideResNet101 87.80 £ 0.12 83.04 £ 0.10 85.36 4 0.26 84.15 4 0.19 86.32 & 0.21 85.30 £ 0.11 85.45 + 0.13 84.23 4- 0.23

ResNet18*  87.75 + 0.18 82.70 4 0.15 85.28 & 0.14 84.09 £ 0.20 85.97 £ 0.16 84.97 4 0.13 84.62 4 0.02 83.62 £ 0.13
ResNet34*  88.83 + 0.06 84.01 4 0.12 86.60 & 0.27 85.43 £ 0.22 87.19 + 0.31 86.25 4 0.19 86.09 4 0.11 85.01 £ 0.09
ResNet50*  89.51 + 0.21 84.76 4 0.04 87.49 & 0.11 86.60 £ 0.08 88.12 + 0.08 87.30 & 0.08 87.09 £ 0.12 86.25 £ 0.17
ResNet101*  90.21 4 0.09 85.60 £ 0.16 88.39 £ 0.22 87.46 4 0.17 89.00 £ 0.07 88.32 £ 0.13 88.28 4 0.07 87.26 + 0.01
ResNet152%  90.60 £ 0.10 86.26 £ 0.10 89.17 4 0.15 88.19 & 0.03 89.52 £ 0.20 88.73 £ 0.15 88.63 + 0.20 87.59 £ 0.13
ResNext50%  89.21 £ 0.14 83.90 + 0.28 87.28 4 0.06 86.28 & 0.14 87.82 £ 0.19 87.30 £ 0.06 86.81 + 0.27 86.09 & 0.25
ResNext101*  90.52 4 0.07 85.91 4 0.13 88.51 £ 0.19 87.82 £ 0.06 89.17 + 0.07 88.51 4 0.16 88.57 & 0.02 87.60 £ 0.18
WideResNet50* 89.78 £ 0.06 85.13 £ 0.33 87.80 4 0.18 86.88 4= 0.06 88.23 & 0.10 87.75 £ 0.25 87.12 + 0.11 86.50 & 0.08
WideResNet101# 90.45 4+ 0.10 85.97 4 0.09 88.53 & 0.04 87.59 £ 0.12 89.22 + 0.13 88.39 4 0.07 88.10 & 0.11 87.20 £ 0.10

Acc@5 (npt o)

ResNet18 96.24 £0.17 94.19 £ 0.16 95.55 &+ 0.18 95.00 £ 0.15 95.70 £ 0.11 95.37 & 0.05 95.30 £ 0.08 94.85 £ 0.09
ResNet34 96.68 £0.11 94.62 £ 0.11 95.88 4+ 0.07 95.37 £ 0.10 96.23 £ 0.03 95.89 4 0.06 95.74 £+ 0.11 95.29 £ 0.07
ResNet50 96.90 £ 0.07 94.67 £ 0.14 96.10 4 0.02 95.51 & 0.13 96.41 £ 0.11 95.99 £ 0.08 96.01 + 0.07 95.48 & 0.04
ResNet101 ~ 97.04 + 0.03 94.78 & 0.05 96.23 £ 0.07 95.58 £ 0.09 96.76 £ 0.10 96.32 4 0.12 96.39 & 0.03 95.74 £ 0.14
ResNet152  97.14 + 0.04 94.94 & 0.09 96.32 £ 0.09 95.73 £ 0.05 96.86 + 0.06 96.39 4 0.06 96.46 £ 0.07 95.92 £ 0.09
ResNext50  96.75 4 0.12 94.54 & 0.10 95.95 £ 0.15 95.32 + 0.13 96.49 4 0.10 95.92 £ 0.16 96.08 £ 0.12 95.47 + 0.15
ResNext101  96.98 £ 0.07 94.71 £ 0.12 96.09 & 0.11 95.54 & 0.07 96.71 £ 0.01 96.26 + 0.03 96.49 + 0.04 95.80 4 0.03
WideResNet50 96.84 4= 0.13 94.60 £ 0.10 96.05 & 0.04 95.52 & 0.05 96.44 £ 0.11 96.03 £ 0.03 96.10 & 0.16 95.55 £ 0.01
WideResNet101 97.05 £ 0.01 94.91 £ 0.08 96.26 4 0.07 95.70 £ 0.08 96.86 £ 0.11 96.31 4 0.10 96.49 + 0.06 95.89 £ 0.01

ResNetl18*  97.13 £ 0.10 95.04 4 0.16 96.39 + 0.08 95.89 £ 0.03 96.73 4 0.04 96.24 + 0.09 96.19 £ 0.08 95.67 £ 0.10
ResNet34*  97.39 + 0.14 95.28 & 0.15 96.67 & 0.08 96.18 £ 0.04 97.00 £ 0.13 96.50 & 0.09 96.61 £ 0.05 96.02 £ 0.03
ResNet50*  97.60 & 0.04 95.46 & 0.02 96.84 £ 0.04 96.39 £ 0.07 97.11 £ 0.05 96.69 & 0.08 96.95 & 0.06 96.37 £ 0.13
ResNet101*  97.90 £ 0.03 95.86 £ 0.05 97.06 & 0.19 96.74 £ 0.11 97.48 £ 0.02 97.13 £ 0.05 97.16 % 0.04 96.57 & 0.03
ResNet152*  97.97 £+ 0.04 95.97 £ 0.04 97.32 4+ 0.17 96.87 & 0.13 97.66 £ 0.07 97.24 £ 0.08 97.22 + 0.17 96.69 + 0.09
ResNext50*  97.33 +0.09 94.99 £ 0.11 96.54 & 0.09 96.04 & 0.02 97.08 £ 0.14 96.66 £ 0.07 96.57 & 0.12 96.03 + 0.04
ResNext101*  97.67 £0.03 95.51 £ 0.06 96.90 & 0.02 96.61 £ 0.03 97.32 £ 0.05 96.93 & 0.07 97.07 £ 0.04 96.52 £ 0.05
WideResNet50% 97.60 £ 0.07 95.53 £ 0.17 96.75 4 0.10 96.39 & 0.08 97.13 £ 0.02 96.84 £ 0.09 96.72 + 0.07 96.22 £ 0.05
WideResNet101* 97.76 & 0.07 95.67 £ 0.04 97.01 £ 0.05 96.62 % 0.07 97.48 4 0.07 97.10 £ 0.06 96.93 £ 0.09 96.48 + 0.06

A.2 Implementation Details

Here, we describe the thorough details of the data generation with Plenoxels [3] and the data
augmentation methods proposed in our main paper. We also provide the architectural details of 3D
semantic segmentation models trained on PeRFception-ScanNet dataset.

A.2.1 Data Generation

We use the official implementation of Plenoxels [3], which is implemented in PyTorch with custom
CUDA kernels. With a single RTX 3090 GPU, it takes up to 30 minutes per scene.

PeRFception-CO3D. Plenoxels uses a different learning rate for each parameter. Following the
default configuration for rendering Tanks and Temples [4] dataset, we use the learning rate 30 for
density values and 10~2 for spherical harmonic coefficients. We skip foreground rendering for 1,000
steps at the beginning of training for stable training. For total variation losses, we set the weight A as
5.0 x 1075 for foreground densities, 5.0 x 10~ for foreground spherical harmonics, 1.0 x 103 for
background colors, and 1.0 x 103 for background densities. The background brightness is set to
0.5. We set the lambda value to 10~° for the beta loss and 10719 for the sparsity loss, which is 10
times larger than the default configuration. We use the 9-dimensional spherical harmonic coefficients
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for each RGB channel. We prune voxels whose density values are below 1.28 during the upsampling
step.

PeRFception-ScanNet. As we described in Section 4.2 in our main paper, we initialize the voxel
grid with point clouds that are obtained by TSDF integration for smoother surface geometry. The
unprojected depth maps are aggregated into TSDF volume using the ground truth camera parameters.
Since the ScanNet depth maps often contain noisy observations, the resulting point cloud is contami-
nated with outlier points. To filter out the outliers, we discretize the point cloud into coarse voxels
with discretization size of 5cm and perform connected component analysis to detect disconnected
voxels which are likely to be outliers. The refined point cloud is then utilized as the initialization for
Plenoxels. The voxel grid is initialized with 2562 resolution and trained for 51,200 iterations. All the
other hyperparameters are same with CO3D but removed background rendering since all the points
of ScanNet datasets should be considered as foregrounds.

The input images are resized into 640*480 resolution. For all scenes, we exclude image frames that
are severely affected by motion blurs. Detecting blurriness was done automatically by OpenCV
blur detection algorithm and we filter out the 150 most blurry frames at most. We consider a scene
defective when the number of frames is too low after filtering blur images.

A.2.2 Random Pose Selection

Plenoxels show great rendering quality when the camera pose is close to the camera poses in the train
set. Unfortunately, it fails to reliably render frames when attempting to render extremely unobserved
parts, which are significantly out of train-view coverage. Thus, selecting appropriate poses is crucial
for photorealistic image generation. We propose an operation that selects an intermediate pose from
two input poses. The operator AA2R converts the axis-angle representation, i.e., (v, ) where v
stands for the axis and 6 stands for the angle, to the rotation matrix. R2AA is exactly the inverse
operation of AA2R. We compute the distance between the selected poses with distance functions
Dp and D, to choose a pair of poses that are close enough. We use the rotation threshold § = 2—147r
and the translation threshold 0.5.

ReduceAngle(R, s) = AA2R(R2AA(R),,s- R2AA(R)y)
IntermediateRot(Rq, Ra, s) = ReduceAngle(Rngl, s)Ry
Dr(R1,Ry) = arccos (Tr(Ry; 'Ry)/2 — 1)
Dy(t1,t2) = [tz — t]13
The main concept of the Algo[T]is to select an intermediate camera pose between randomly selected

camera poses in the train set. For intrinsic parameters and image shape, we randomly select intrinsic
matrix among intrinsic matrices in train set and use the corresponding image shape.

A.2.3 Architectural Details

We train three variants of 3D ResUNets implemented with sparse convolutional layers [S]] for semantic
segmentation on PeRFception-ScanNet dataset. The layer-wise architectural details are depicted in
Table

A.3 Analysis on Rate-Distortion Trade-off

We compare the reconstruction qualities by varying the resolution: 64, 128, 256, and 384. We follow
the setup from our paper and measure the average memory footprint and error metrics (PSNR, SSIM,
LPIPS) per scene on the randomly selected subset of our PeRFception-CO3D dataset. We report the
evaluated scores in Table The model with 128 resolution has shown the best trade-off between
memory and reconstruction quality.

We also explore several quantization methods and their optimal compression bit. We report the
evaluated scores in Table[a.4] “ours (SH)” applies our quantization on spherical harmonics coefficients



Algorithm 1 Random Pose Generation

Input
P ={{R;,t;}}i=1,2,...n : The set of poses in train split
0: The rotation distance threshold
d: The translation distance threshold
Output
Pout € R*** : The output pose

s: A random value from [0, 1]
J, k = RandomIndex(N), RandomIndex(N)
while D (R;,Ry) > 0 and D,(t;,t;) > ddo

J, k = RandomIndex(N), RandomIndex(N)
end while
R, = IntermediateRot(R;, Rk, )
pout[:?’: 3]= Rjk

Pout[:3,3] = st + (1 — 9)t;

Pout [37 3] =1
return poy¢

Table a.2: Architectures of Res16UNet variants for semantic segmentation on PeRFception-ScanNet.
We denote a convolution layer with its kernel size, output channel size, and convolution stride size.
All convolution layers except for the last layer have a Batch Normalization and a ReLU layer after
them. The layers with the tag "conv_tr" indicates the transposed convolution layers. We use a square

bracket to denote a residual block, with the number of blocks stacked.

layer name \ Res16UNet14A Res16UNet18A Res16UNet34C
init ‘ 33, 32, stride 1
convl \ 2332, stride 2
33,32, stride 1 33,32, stride 1 33,32, stride 1
blockl {33, 32, stride 1] 1 {33, 32, stride 1} 2 {33, 32, stride 1] < 2
conv2 ‘ 2332, stride 2
33, 64, stride 1 33, 64, stride 1 3%, 64, stride 1
block2 {33, 64. stride 1} 1 [33, 64, stride 1} 2 [33, 64, stride 1] <3
conv3 ‘ 23, 64, stride 2
(33,128, stride 1] (33,128, stride 1] (33,128, stride 1]
block3 132128 stide 1) * 1| [3%)128 swide 1] ¥ % | [3% 128, swide 1] ¥ 4
conv4 ‘ 22128, stride 2
(32,256, stride 1] (33,256, stride 1] (33,256, stride 1]
block4 133,256, stride 1| ! 132,256, stride 1| ™ 2 132,256, stride 1] 6
convd_tr | 2%, 128, stride 2 23,256, stride 2
(32,128, stride 1] (33,128, stride 1] (33,256, stride 1]
blocks 133,128, swide 1] * 1| 37,128, swide 1] 2 13%,256, stride 1] 2
conv5_tr | 2%, 128, stride 2
(33,128, stride 1] (33,128, stride 1] (33,128, stride 1]
block6 139,128, swide 1] <1 | 33 128, swide 1] <2 | |32, 128, swide 1] <2
convo_tr \ 23,96, stride 2
block? 33,96, stride 1 32,96, stride 1 9 33,96, stride 1
33,96, stride 1 33,96, stride 1 33,96, stride 1
conv7_tr ‘ 23,96, stride 2
block8 33,96, stride 1 1 33,96, stride 1 9 33,96, stride 1
33,96, stride 1 32,96, stride 1 33,96, stride 1
final ‘ 12,20, stride 1
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Table a.3: Reconstruction quality and required memory for different voxel resolutions.

Resolution Memory(MB) PSNR() SSIM(1) LPIPS(})

64 38.0 26.56 0.7464 0.4827
128 47.2 29.39 0.8081 0.4017
256 63.2 30.81 0.8551 0.3353
384 161.2 31.03 0.8619 0.3202

only; “ours (SH+D)” applies our quantization to both spherical harmonics coefficients and densities.
“clip” clips the feature values to a heuristically searched interval. In detail, we have clipped values
that are statistically found from 5 scenes. For spherical harmonics, we clipped values to [-0.1, 0.1]
since 90% of values are located inside the selected interval. For density values, we clipped to [0,
1000] to remove negative densities. We additionally seek the optimal bit for each compression
method. Original quantization method with 8 bit compression, i.e., ours(SH)-8bit, has shown the best
performance and has reasonable memory requirement.

Table a.4: Analysis on the memory usage and reconstruction quality of different quantization methods
and their quantization bits.

Quantization Method Bit Memory(MB) PSNR(1) SSIM(1) LPIPS(])

ours (SH) 16 114.5 30.65 0.8548 0.3363
ours (SH) 8 63.2 30.81 0.8551 0.3353
ours (SH) 4 374 27.48 0.7932 0.4512
ours (SH) 2 24.8 14.69 0.5325 0.6797
ours (SH + D) 8 60.8 30.53 0.8546 0.3369
ours (SH + D) 4 34.8 23.07 0.7238 0.5166
ours (SH + D) 2 21.8 14.65 0.5280 0.9981
clip 8 62.6 17.78 0.7227 0.4879
clip 4 374 17.72 0.6575 0.5502
clip 2 24.4 16.66 0.6476 0.5881

We additionally explore the effect of progressive scaling, i.e. upsampling and pruning step of
Plenoxel [3]] to progressively increase the resolution on memory footprint and rendering quality.
We consider two progressive scaling methods: weight-based scaling and density-based scaling.
According to Plenoxels [3], weight-based scaling applies threshold to the maximum weight T;(1 —
exp(l — 0;0;)) of each voxel over all training rays, whereas density-based scaling directly prunes
voxels by their density values. For more details, please refer to the supplementary materials of
Plenoxels. For each method, we change the threshold of each scaling method to find a good adjustment
between memory usage and rendering quality. We report the evaluated scores in Table We select
the “density-based scaling” method as our progressive scaling method with a sigma threshold 20,
which has shown the best trade-off between memory footprint and rendering quality.

Table a.5: Analysis on the progressive scaling methods with varying the pruning threshold.

Progressive Scaling Method Threshold Memory(MB) PSNR(1) SSIM(1) LPIPS(])

Density 5 69.0 30.66 0.8554 0.3352
Density 10 66.4 30.79 0.8550 0.3354
Density (ours) 20 63.2 30.81 0.8551 0.3353
Density 100 49.8 30.47 0.8547 0.3537
Weight (Plenoxels - default) 1.28 75.8 30.81 0.8557 0.3333
Weight 2.56 73.0 30.71 0.8560 0.3335
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Table a.6: PSNR of PeRFception-ScanNet dataset with varying resolutions. PCTL stands for
percentile.

Reso Mem (GB) Avg. PSNR (dB) 50th PCTL 75th PCTL 90th PCTL  95th PCTL

128 28.7 23.20 +£3.69 23.59 26.14 27.94 29.12
256 43.8 23.01 £3.96 23.38 26.10 28.02 29.20
512 113.8 22.94 +4.26 23.22 26.35 28.34 29.49

We also analyze the resolution vs. rendering quality trade-off on our PeRFception-ScanNet dataset.
To measure the trade-off rates, we train Plenoxels with lower (128) and higher (512) resolutions than
the default configuration (256) on a randomly selected subset of ScanNet scenes.

As reported in Table [a.6{and Figure there is no direct correlation between the resolution and the
average rendering quality on ScanNet reconstruction. This could be attributed to various non-trivial
factors. We visualized the histogram of PSNR distribution on the ScanNet dataset in Figure[a.2] The
X-axis represents the PSNR score, and Y-axis represents the percentage of scenes. Note that the
PSNR distribution of the higher resolution Plenoxel reconstructions exhibits fat-tailed distribution,
whereas the lower resolution reconstructions show the long-tailed distribution. We speculate that
this is due to the fact that higher resolution reconstruction results in each voxel learning spherical
harmonics parameters from fewer rays. Thus, errors in camera parameters or motion blur would result
in larger errors for smaller voxels as parameters are learned from fewer rays. Thus, the rendering
quality increases for the scenes with accurate camera poses and less motion blur, while it decreases
for noisy scenes. We conjecture that higher resolution reconstruction would yield better performance
if we have high-resolution images with accurate camera poses.

0.150 resol28
0.125 reso256
reso512
30.100
g 0.075
a \
0.050
0.025 \
0'00010 15 20 25 30 35

PSNR (dB)

Figure a.2: Distributions of PSNR values of PeRFception-ScanNet dataset with varying resolutions.

A.4 Dataset Statistics

PeRFception-CO3D dataset includes 18,618 object-centric scenes that cover all of the original CO3D
dataset scenes, only except those with incorrect camera poses. It contains a fair quantity of 51
different object-class labeled scenes; see Figure

A.5 Camera Manipulation

Camera manipulation has been one of the inaccessible augmentation techniques on conventional
image datasets. In contrast, our implicit data can be rendered from many continuous viewpoints and
with arbitrary camera parameters (e.g., intrinsics, extrinsics, and radial distortions), allowing us to
generate images with non-standard but realistic camera-level augmentations. We have not adopted
this augmentation skill while training 2D classification networks since most images do not have
distortions. We perform camera intrinsics augmentation and camera distortion augmentation and
Figure ja.4| visualizes several examples of such camera manipulations.
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Figure a.3: Statistics of PeRFception-CO3D dataset scene per object-class. The y-axis visualizes the
number of scenes for each class.

(a) Camera Intrinsics . FGD

(b) Camera Extrinsics

s

(c) Radlal Distortion

Figure a.4: Examples of camera manipulation and background augmentations. FGD and BGD are
source images for foreground and background respectively.

A.6 Quantitative Results

In this section, we provide additional quantitative results that are not included in the main paper.

Classwise Rendering Quality. We provide classwise PSNR, SSIM, and LPIPS scores of
PeRFception-CO3D dataset in Table

2D and 3D Perception Tasks. Table[a.T|reports the results of the 2D classification experiments. In
Table[a.8] we report the quantitative classification results on PeRFception-CO3D dataset. In Table
we report the scenewise semantic segmentation results on PeRFception-ScanNet dataset. For all
experiments, we perform three experiments with different random seed values and report the mean
and standard deviation of evaluation metrics.

2D Classification Anlaysis. We conduct additional 2D classification experiments using the pretrained
Vision Transformer (ViT) [6] models to show that our PeRFception-CO3D dataset improves the clas-
sification performance. Similar to our ResNet 2D classification experiments, we train ViT models on
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either CO3D images or PeRFception renderings and test on the CO3D test split and the PeRFception-
CO3D test split. As reported in the Table the ViT models trained on the PeRFception-CO3D train
set achieve higher classification accuracy than those trained on the CO3D train set. We conjecture
that the domain gap for ViT models is much smaller, and the data augmentations on PeRFception
made the ViT models to be more robust in real images.

apple backp ball banana bbb bbg bench bicy book bottle bowl broce cake
PSNR  29.56 28.99 29.06 30.62 29.21 30.03 27.01 27.67 28.88 29,85 31.83 29.67 29.02
SSIM  0.8767 0.8702 0.8661 0.8951 0.8691 0.8898 0.7883 0.8246 0.8746 0.8671 0.8717 0.8584 0.8695
LPIPS 0.3263 0.3349 0.3614 0.2591 03566 0.3347 0.3471 0.3416 0.3453 0.3110 0.3135 0.3479 0.3452
car carrot cellp chair couch cup donut  frisbee hairdryer handbag hotdog hydrant kbd
PSNR  23.63 28.78 29.33 28.32 29.31 28.83 28.78 30.06 29.12 28.39 28.95 26.12 29.74
SSIM  0.7259 0.8573 0.8603 0.8524 0.8727 0.8628 0.8695 0.8720  0.8706 0.8622  0.8738 0.7428  0.8789
LPIPS 0.4003 0.3609 0.3511 0.3475 0.3358 0.3602 0.3484 0.3386 0.3351 03367  0.3639 03416  0.3301
kite laptop micro motor mouse orange park pizza plant remote  sandwc skb stop
PSNR  29.04 27.99 27.75 25.61 29.04 28.55 24.69 29.00 28.63 29.23 29.00 28.57 23.48
SSIM  0.8693  0.8535 0.8506 0.7772 0.8687 0.8521 0.7420 0.8687 0.8452 0.8667 0.8738  0.8458 0.7234
LPIPS 0.3293 03530 0.3650 0.3641 0.3486 0.3469 0.3835 0.3214 03436 0.3668 0.3459 0.3536 04121
suit teddy toast toil tbus tplane ttrain ttruck tv umb vase wine  overall
PSNR  28.87 29.39 28.05 32.61 28.15 29.30 28.42 28.63 27.69 28.62 28.47 28.13 28.82
SSIM  0.8609 0.8713 0.8564 0.9297 0.8549 0.8703 0.8438 0.8627 0.8709 0.8504 0.8536 0.8420 0.8564
LPIPS 03526 0.3345 0.3466 0.2841 0.3579 03537 0.3765 0.3546 0.3865 0.3601 0.3570 0.3820 0.3451

Table a.7: Classwise rendering quality of PeRFception-CO3D dataset.

Table a.8: Score tables for 3D classification networks. We repeat each experiment for 3 times and
report the mean (1) and standard deviation (o). D denotes density and SH denotes spherical harmonic
coefficients.

Acc@1 (u £ o)

Input Feature None D SH SH+D

3DResNetl4  59.36 £0.30 7244 4+0.29 71.87+0.61 7292+042
3DResNetl8  63.85+0.33 75.184+0.70 75.58+0.37 75.72+£0.25
3DResNet34  64.55+0.84 7638 +0.34 76.51+0.61 76.50+ 0.03
3DResNet50 6525 +0.75 76424+0.19 77.59+0.17 77.53+£0.27
3DResNetl01  66.21 +£0.93 77.27 £0.61 78.04 £0.58 77.19 +0.89

Acc@S5 (u+ o)

Input Feature None D SH SH+D

3DResNetl4  81.30 £0.87 90.04 £0.13 89.60 +0.36  90.83 + 0.03
3DResNetl8 8447 £0.54 91.10+0.24 9098 £0.40 91.54 +£0.21
3DResNet34 8426 £047 91.79£0.61 91.79+0.49 91.98 £0.08
3DResNet50  85.71 £0.64 92914+0.24 9273+0.21 9293 +£0.54
3DResNet101  86.50 £0.09 92.68 +£0.34 93.24 +0.49 93.09 £0.21

Table a.9: 2D classification accuracies (Acc@1) of the ImageNet [2] pretrained ViT model trained
either on CO3D or PeRFception—-CO3D and evaluated either on CO3D or PeRFception—-CO3D. PeRF-
CO3D is an abbreviation of PeRFception-CO3D. p stands for the probability to apply background
augmentation.

Train Dataset CO3D PeRF-CO3D (p=0.5)

Test Dataset CO3D PeRF-CO3D CO3D PeRF-CO3D
ViT/S-16 87.61 83.80 87.64 86.54
ViT/L-16 88.30 84.90 88.65 87.59
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Table a.10: Evaluated semantic segmentation performance on PeRFception-ScanNet dataset without
(left) and with (right) spherical harmonic coefficients as input feature. D denotes density and SH

denotes spherical harmonic coefficients.

mloU (%) mAcc (%)
Input Feature None D SH SH+D None D SH SH+D
3DResl6UNet14A [5] 65.83 65.88 66.01 6641 7441 7419 7449  75.19
3DRes16UNetl18A [5] 66.78 67.67 68.15 68.25 7545 76.54 7691 77.46
3DRes16UNet34C [5] 67.82 68.79 6842 6917 7631 77.28 77.10 77.85
FPT (5cm) [7] 67.16 6799 6742 68.35 7457 7135 76.61 77.22

A.7 Qualitative Results

We provide additional qualitative results introduced in the main paper. Figure[a.5]illustrates several
examples of PeRFception-CO3D with accurate geometric information and photorealistic rendering
quality. Figure and compare visual reconstruction ability of CO3D and PeRFception-
CO3D. Figure and[a.TT] visualize rendered novel views and their corresponding error maps.
In Figure we provide the qualitative results of rendered novel views and their corresponding
error maps on PeRFception-ScanNet dataset. Figure[a.13|visualizes reconstructed sparse voxels of
PeRFception-ScanNet with predicted semantic labels. We have attached an additional video to show

our photorealistic rendering.



Table a.11: Scenewise statistics of semantic segmentation networks on the PeRFception-ScanNet
validation split. All experiments are performed with three different random seed values and the mean
and standard deviation are reported.

IoU D SH bath bed bksf cab chair cntr curt desk door floor

14A 88.7£0.8 79.64+0.3 63.7+1.3 60.8+1.0 86.5+£0.5 52.0£1.5 59.3£1.7 62.9£1.4 43.940.6 94.840.0
14A v 86.6+0.5 77.1+1.0 64.1+0.9 59.4+0.5 86.9£0.5 48.5£5.6 53.9+1.7 63.14+1.1 54.5+1.1 94.6+0.1
14A 88.3+1.1 79.14+1.2 64.5+0.4 60.8+0.4 86.6+£0.4 51.1£0.8 49.9£2.0 65.7+0.7 50.840.9 94.840.0
14A v 87.5+0.2 78.44+0.4 63.1+1.1 59.4+0.7 86.8+£0.4 53.0£3.1 53.0£1.9 63.7£0.3 54.941.3 94.7+0.0

18A 89.3+0.4 80.24+0.7 65.3+1.1 59.6+0.8 87.2+£0.7 50.8£2.0 58.1£0.7 63.5+0.5 45.0+1.3 94.9+0.1
18A v 86.6+0.3 79.1£0.7 68.1+2.1 60.4+1.1 85.6+£0.8 51.9£0.8 55.7£1.1 64.9£0.6 57.1+0.7 94.61+0.2
18A v’ 87.6£0.9 79.2+1.1 66.5£1.0 61.6£0.8 87.7£0.3 53.5£1.7 51.1£3.2 63.6+0.7 55.74+0.3 94.94+0.0
18A v v 86.840.5 78.14+1.1 68.14+0.5 62.3+0.8 87.5+0.3 53.0+0.4 54.9+2.7 61.4£0.7 58.9+0.1 94.9+0.1

34C 88.6+0.4 79.0+0.8 65.2+1.4 61.3+1.0 87.5+£0.3 53.7£0.9 62.1£2.7 63.04+0.3 48.7+1.1 94.94+0.0
34C v 87.8+0.9 78.3+0.8 69.1+2.3 62.8+1.3 88.1+£0.3 54.2+4.3 58.0£2.2 64.94+0.7 58.24+1.2 94.94+0.0
34C v’ 89.3£0.6 80.7£0.9 66.7£0.1 63.2£1.6 88.5£0.5 56.9£3.2 58.7£2.2 65.1£2.2 55.3+0.7 94.94+0.0
34C v v 88.0+0.7 80.1£1.1 68.2£1.8 62.6£0.9 87.9£0.3 55.7£1.8 61.7£1.2 64.940.2 58.7+£0.9 94.940.1

ENEN

IoU D SH othr pic ref show sink sofa tab toil wall wind

14A 47.0+0.6 10.9+0.7 57.3£1.0 62.0£0.5 75.0£0.3 79.7£1.2 65.940.8 92.24+0.9 80.8+0.1 55.7+0.2
14A v 46.6+1.2 21.1+1.0 59.0£2.3 55.3£1.4 73.0£0.5 79.9£1.5 67.24+1.6 92.3+0.8 82.7+0.3 58.0+0.7
14A 47.1+1.5 16.9+2.2 60.1£1.0 65.4£0.8 74.1£0.8 77.8+1.3 68.0+0.5 91.8+0.9 81.9+0.6 57.8+0.9
14A v 45.0+2.1 21.5+0.8 56.8+2.1 57.6£1.7 73.6£0.8 79.6+1.3 67.3+0.6 92.6+0.1 82.7+0.4 59.1+1.4

18A 47.8+0.5 13.4£0.1 60.2+0.5 68.9+1.7 75.5+0.7 80.0+1.6 65.4+1.4 93.3+1.4 81.44+0.2 58.94+0.5
18A v 48.3+£0.2 21.4£0.6 61.0£0.7 63.5£1.6 71.6+2.2 79.8+1.5 66.9£1.8 92.0+1.4 83.5+0.0 60.9+1.3
18A v’ 49.6£1.5 21.3£0.8 60.6+£2.4 71.0£2.4 73.9+0.6 80.2£0.6 66.2+0.8 93.7+0.0 83.5+0.1 61.54+0.9
18A v v 49.740.5 22.240.2 60.0+0.7 62.64+0.9 74.0+0.2 81.5+1.5 66.3+0.3 92.7+0.6 84.0+0.3 62.44+0.7

34C 48.44+0.8 13.9+0.3 61.5£1.1 71.0£0.8 75.2£0.2 82.24+0.8 65.6+0.3 93.44+0.5 81.8+0.3 60.0£1.8
34C v 46.3+0.6 23.6+1.9 63.6£1.2 66.1£0.3 73.3£0.5 81.8+1.0 67.1+0.5 91.9+0.5 84.0+0.1 61.6+0.9
34C 49.240.6 21.5+£0.9 64.1£3.5 72.8£0.9 73.7£1.1 80.9£1.1 66.4+1.1 92.5+0.7 83.5+0.0 59.4+1.0
34C v 48.4+1.1 22.1+£1.5 63.1£2.0 67.5£1.2 73.4£1.1 79.94+0.6 65.0+1.0 92.3+1.2 84.5+0.1 63.1£1.5

ENEN

N

Acc D SH bath bed bksf cab chair cntr curt desk door floor

14A 91.9+1.2 85.4+0.4 79.4£0.9 75.2£0.2 92.0£0.7 61.8+1.3 69.1+0.6 80.1+2.3 53.2+0.7 98.4+0.0
14A v 89.5+0.5 81.94+1.3 80.0+0.9 74.4£1.4 91.7£0.4 57.4£8.7 61.5+0.6 80.04+3.1 63.7+1.7 98.2+0.1
14A 91.7+1.3 84.3£0.8 78.2£1.4 75.6£0.6 91.0£0.3 63.4+0.5 61.5+1.4 81.24+1.2 60.9+1.5 98.2+0.1
14A v 91.4£0.2 83.5£0.3 78.3£2.8 74.7£1.6 91.1£0.2 63.3+3.7 62.84+1.0 80.7+0.5 65.1+1.7 98.3+0.0

18A 92.840.2 86.3£0.2 79.6£2.0 76.4£0.9 92.4£0.6 62.5+2.8 72.24+0.9 81.5+1.9 54.2+2.8 98.1+0.1
18A v 89.74+0.3 83.1+0.4 80.7+0.4 71.9£4.5 89.0£2.3 61.5£0.4 66.2+0.1 82.3+1.4 69.3+0.9 98.3+0.1
18A 91.440.7 84.2+0.4 79.9£0.8 76.6£1.5 92.5£0.3 64.94+3.2 62.7+1.8 83.6+1.0 66.2+0.5 98.2+0.0
18A v 90.3+1.4 82.4+1.0 81.4£0.3 78.6£1.0 92.4£0.3 62.6+0.2 68.1+3.1 81.1+2.3 71.7£0.5 98.2+0.0

34C 92.8+1.1 85.1+0.5 80.2£1.9 76.2£2.0 93.0£0.5 63.8+0.8 72.6+2.2 81.1+1.6 58.7+1.0 98.2+0.0
34C v 91.0+1.1 82.7+1.3 83.0£1.0 77.1£1.2 92.240.2 63.44+5.0 69.7+3.3 81.9+1.5 69.0+2.0 98.3£0.0
34C v’ 92.8+0.8 85.6+£0.4 80.3£2.9 78.0£1.4 92.94+0.4 68.3+3.1 69.0+1.3 83.7£0.6 66.7£1.5 98.3+0.0
34C v v 91.5+£1.1 84.5£0.9 83.2£1.8 76.94+0.9 92.31+0.2 66.7+2.0 70.9+1.7 82.6+0.2 68.9£1.2 98.3+0.0

<

AN

Acc D SH  othr pic ref show sink sofa tab toil wall wind

14A 54.240.7 11.8+0.5 64.6£1.1 70.0£0.9 82.6£0.7 90.0+0.5 76.94+0.4 95.24+0.4 94.4+0.1 64.9+£0.5
14A v 54.24+1.9 24.4+1.5 66.4£2.8 62.7£1.2 81.4£1.7 90.0+0.7 77.24+0.8 94.4+1.2 95.4+0.3 70.0£2.2
14A 55.242.8 19.4+2.5 66.0£1.3 73.0£0.8 80.5£1.1 89.54+0.7 78.84+1.3 94.1+1.2 94.8+0.1 68.2+1.0
14A v 52.442.1 25.4+0.7 67.7£0.8 64.7£1.3 81.3£0.6 90.0+0.1 78.0+0.6 94.3+0.3 95.1+0.3 68.4£1.9

18A 55.44+1.3 15.1+£0.2 66.2+£0.5 75.9£1.9 83.3£1.8 89.7+0.7 75.942.3 95.84+0.6 94.2+0.3 67.9+0.2
18A v 56.24+0.1 25.0+£1.7 69.8£1.5 71.6£3.9 84.1£0.6 90.3+0.3 79.0+1.0 96.9+1.9 95.4+0.7 70.7+0.6
18A 56.5+1.6 24.0+£0.8 68.2+£0.6 77.4£2.8 81.3£1.3 89.3+1.6 77.4+1.4 95.24+0.1 94.9+0.0 71.8+0.3
18A v 56.24+0.9 27.8+0.6 69.7£1.7 68.6£0.8 82.0£1.2 90.0+0.9 76.6+2.1 95.1+0.2 94.7+0.1 71.4+0.6

34C 55.9+1.6 15.2+0.1 69.5£1.3 78.1£0.5 83.2£1.1 90.5+0.5 77.24+0.5 96.0+0.2 94.4+0.3 67.8+3.1
34C v 52.7+1.1 28.7+£2.0 72.7£0.3 72.4£0.3 82.4£0.7 90.6+0.2 79.54+0.7 95.6+0.5 95.3+0.2 71.6+1.2
34C v’ 55.7+£1.3 25.2+1.0 70.7£2.6 79.6+£0.6 81.1£2.4 89.5£0.4 78.1£2.8 95.3+0.2 94.54+0.3 71.4+1.7
34C v v 547+£2.0 27.6£1.9 72.8£1.1 73.9£1.3 81.7£1.9 91.0£0.6 76.5£1.2 95.44+0.3 95.3+0.1 74.1+1.4

<

AN
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(a) Source (b) CO3D - pcd (c) Ours (shape) (d) Ours (color)

Figure a.5: Visualization of a few example data of original CO3D and PeRFception-CO3D.
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(a) GT (b) Mask (c) Masked GT (d) CO3D (e) Ours

Figure a.6: Comparing visual reconstruction quality of original CO3D and PeRFception-CO3D.
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(a) GT (b) Mask (c) Masked GT (d) CO3D (e) Ours

Figure a.7: Comparing visual reconstruction quality of original Co3D and PeRFception-Co3D.
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(a) GT (b) Mask (c) Masked GT (d) CO3D (e) Ours

Figure a.8: Comparing visual reconstruction quality of original Co3D and PeRFception-Co3D.
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Figure a.9: Rendered class-wise novel views of PeRFception-CO3D. The number in error maps

denote the estimated PSNR.
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Figure a.10: Rendered class-wise novel views of PeRFception-CO3D. The number in error maps

denote the estimated PSNR.
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Figure a.11: Rendered class-wise novel views of PeRFception-CO3D. The number in error maps
denote the estimated PSNR.
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Figure a.12: Rendered class-wise novel views of PeRFception-ScanNet. The number in error maps
denote the estimated PSNR
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Figure a.13: Qualitative results of semantic segmentation on PeRFception-ScanNet dataset. (1st,
3rd columns) Ground truth point cloud with ground truth semantic labels, (2nd, 4th columns)
Reconstructed sparse voxels with predicted semantic labels
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