
A Appendix

A.1 SafeBench statistics

We present the statistics of testing scenarios generated by each generation algorithm in Table 8.
For each algorithm, we report the statistics both before and after scenario selection, where we only
keep scenarios that have high transferability across AD algorithms. By applying the 4 generation
algorithms, we obtain 3, 140 testing scenarios in total, from which we select 2, 352 testing scenarios
for AD evaluation.

A.2 SafeBench design details

Our evaluation platform runs in the Docker container and is built upon the Carla simulator [28]. We
design 4 components (nodes) that are highly flexible for users to customize: ego vehicle, agent node,
scenario node, and evaluation node. These components communicate with each other through ROS.
We detail the platform design as follows.

Docker image We provide a docker image containing SafeBench, which makes the platform
more portable. The docker image is built based on Ubuntu 20.04. Inside the docker image, we
have pre-installed Carla 0.9.11 and ROS Noetic for simulation and communication in SafeBench
respectively.

ROS services The communication between different nodes is implemented using ROS services. For
example, when the AD algorithm in the agent node is ready, it will request the waypoint information
specified by the scenario node. The scenario node will send out the waypoint information in the
current scenario once it receives a request from the agent node.

CARLA We use Carla 0.9.11 as our traffic simulator. The scenario runner [29] is incorporated in
the scenario node to easily define and execute different scenarios. In the agent node, we develop our
RL agent based on Gym Carla [89] environment which supports an OpenAI gym style interaction
between the agent and Carla simulator.

A.3 Definition of scenarios and examples of route variants

We first give detailed definitions of the 8 traffic scenarios considered in SafeBench in Table 7 and
screenshots of them in Figure 4. We also develop benign scenarios based on these safety-critical
scenarios. In benign situations, everything is the same except that the other vehicles are auto-piloted.
As a result, we have 8 kinds of benign scenarios, and we can compare the benign performances with
safety-critical ones.

We show more examples of route variants incorporated in our evaluation platform in Figures 5, 6
and 7.

A.4 Evaluation metrics

We follow the equations introduced in Section 3.4 to calculate evaluation metrics. Specifically,
for route following stability, we first set xmax to 5 and then calculate the expectation. For other
metrics, we directly calculate the expectation of each variable over the scenario distribution P . When
calculating the overall score, we follow the maximum allowed value m

i
max and weights wi for each

metric m
i given in Table 9. The weight for each metric depends on the evaluation level. Metrics

in Safety Level are assigned the highest weights since they focus on serious violations of traffic
rules. Among the 4 safety level metrics, the weight of CR is 5 times larger than others’ weights.
The weights of metrics in Functionality Level are one-half of the weights in Safety Level, while the
weights in Etiquette Level are only one-fifth of them. Such a weight setup first emphasizes safety and
then encourages the ego vehicle to complete the given tasks in a comfortable way.

A.5 Implementation details of AD algorithms

Reward function During training, all RL algorithms share the same reward function. The reward
is a weighted sum of 7 items. We set the weight of longitudinal speed to 1, the weight of lateral

17



Table 7: Scenario Description
Scenario Name Description

Straight Obstacle The ego vehicle encounters an unexpected cyclist or pedestrian on the road and
must perform an emergency brake or an avoidance maneuver. As shown in
Figure 4a, the vision of the ego vehicle is usually blocked by an obstacle, which
is safety-critical since the reaction time left for the ego vehicle is very short.

Turning Obstacle As shown in Figure 4b, while turning at an intersection, the ego vehicle finds
an unexpected cyclist or pedestrian on the road and must perform an emergency
brake or an avoidance maneuver.

Lane Changing In this scenario, the ego vehicle should perform a lane changing to evade a
leading vehicle, which is moving too slowly. In addition, there is another leading
vehicle in the adjacent lane, which is traveling at a normal speed. The ego vehicle
needs to avoid hitting both cars when overtaking. See Figure 4c for more details.

Vehicle Passing The ego vehicle must go around a blocking object using the opposite lane, dealing
with oncoming traffic. The ego vehicle should avoid colliding with both cars and
also avoid driving outside the lane. We provide an example in Figure 4d.

Red-light Running When the ego vehicle is going straight at an intersection, a crossing vehicle runs
a red light. The ego vehicle is forced to take actions to avoid potential collisions
as shown in Figure 4e.

Unprotected Left-turn As shown in Figure 4f, the ego vehicle is performing an unprotected left turn at
an intersection while there is a vehicle going straight in the opposite lane.

Right-turn In this scenario, the ego vehicle is performing a right turn at an intersection, with
a crossing vehicle in front. Collision avoidance actions must be taken to keep
safe. We present an example in Figure 4g.

Crossing Negotiation In this scenario, the ego vehicle meets another crossing vehicle when passing
an intersection with no traffic lights. As shown in Figure 4h, the ego vehicle
should negotiate with the other vehicle to cross the unsignalized intersection in
an orderly and safe manner.

Table 8: Statistics of SafeBench testing scenarios.

Algo. Scenario
Selection

Traffic Scenarios
TotalStraight

Obstacle
Left-turn
Obstacle

Lane
Changing

Vehicle
Passing

Red-light
Running

Unprotected
Left-turn Right-turn Crossing

Negotiation

LC Before 100 100 100 100 100 100 100 100 800
After 41 13 100 99 42 69 59 58 481

AS Before 100 100 100 100 100 100 100 100 800
After 68 42 100 100 72 86 53 64 585

CS Before 100 100 90 90 90 90 90 90 740
After 60 76 90 90 74 77 83 79 629

AT Before 100 100 100 100 100 100 100 100 800
After 59 33 99 100 100 87 89 90 657

Total Before 400 400 390 390 390 390 390 390 3140
After 228 164 389 389 288 319 284 291 2352

acceleration to 0.2, and the weight of steering to 5. If the ego vehicle encounters a collision or drives
out of lane, we give a reward of �1 as a penalty. If the speed of the ego vehicle is larger than a
threshold, we give a reward of �10 as a penalty. The speed threshold is set to 9. We also add a
constant reward of 0.1.

Action space Similarly, the action space of every RL model is the same, which includes acceleration
and a steering value. For acceleration, the maximum and minimum allowed values are 3 and �3,
respectively. We limit the absolute value of steering to no greater than 0.3. After having the
acceleration and steering, we need to convert these values into Carla’s vehicle control format, where

18



(a) Straight Obstacle (b) Turning Obstacle

(c) Lane Changing (d) Vehicle Passing

(e) Red-light Running (f) Unprotected Left-turn

(g) Right-turn (h) Crossing Negotiation

Figure 4: Pre-crash scenarios.

we need to calculate the throttle and brake of the ego vehicle. The throttle and brake are calculated
using the following equations:

throttle =

⇢
acc/3, acc > 0
0, otherwise

, brake =

⇢
0, acc > 0
�acc/8, otherwise

(2)

where acc denotes the acceleration given by RL models. Both throttle and brake will be clipped to
the interval [0, 1].

Model Architecture The model we used for deep RL methods is a simple multi-layer perceptron.
The size of the hidden layer is [256, 256]. When adding bird-eye view images or camera images
into input information, we use a separate image encoder to extract image features. The encoder
is end-to-end trained with the actor network in RL models. We provide more details about the
architecture of the image encoder in Table 10.

19



(a) Two-lane highway (b) Three-lane bridge (c) Three-lane bridge with a speed
limit sign

Figure 5: Example route variants of scenario 3.

(a) Single-lane T-junction without
surrounding buildings

(b) Single-lane T-junction with sur-
rounding buildings

(c) Two-lane intersection

Figure 6: Example route variants of scenario 6.

(a) Single-lane T-junction (b) Two-lane intersection (c) Two-lane T-junction

Figure 7: Example route variants of scenario 7.

DDPG hyperparameters The policy learning rate is 0.0003, and the Q-value learning rate is 0.001.
The standard deviation for Gaussian exploration noise added to the policy at training time is 0.1. The
discount factor is 0.99. The number of models in the Q-ensemble critic is 1.

SAC hyperparameters The policy learning rate and Q-value learning rate are set to be 0.001. The
entropy regularization coefficient, which is equivalent to the inverse of the reward scale in the original
SAC paper, is 0.1. The discount factor equals 0.99, and the number of models in the Q-ensemble
critic is 2.

TD3 hyperparameters The policy learning rate and Q-value learning rate are set to 0.001. The
standard deviation for Gaussian exploration noise added to the policy at training time is 0.1. The
standard deviation for smoothing noise added to noise is 0.2 The limit for the absolute value of
smoothing noise is 0.5. Policy update delay is 2. The discount factor is 0.99. The number of models
in the Q-ensemble critic is 2.

PPO hyperparameters The policy learning rate is 0.0003, and the Q-value learning rate is 0.001.
The clip ratio of the policy object is 0.2. The target KL divergence is 0.01. We set both actor and
critic training iterations to 80. The discount factor is 0.99, and the number of interaction steps is
1000.

A.6 Training details of AD algorithms

All of the 4 deep RL algorithms are trained in Carla town03. Because town03 is the most complex
town, with a 5-lane junction, a roundabout, unevenness, a tunnel, and more, according to Carla’s
official document. The number of warm-up steps for off-policy methods is 600. The interpolation
factor in polyak averaging for the target network is 0.995. The number of training epochs is different

20



Table 9: Constants and weights used in SafeBench evaluation metrics.

Symbol Safety Level Functionality Level Etiquette Level
CR RR SS OR RF Comp TS ACC YV LI

mi
max 1 1 1 50 1 1 60 8 3 20

wi 0.495 0.099 0.099 0.099 0.050 0.050 0.050 0.020 0.020 0.020

Table 10: Model architecture of image encoder.
Layer Input Channels Output Channels Kernel Size Stride Padding
Convolution Layer 1 3 32 3 2 1
Convolution Layer 2 32 64 3 2 1
Max Pooling Layer 1 64 64 3 3 0
Convolution Layer 3 64 128 3 2 1
Convolution Layer 4 128 256 3 2 1
Max Pooling Layer 256 256 3 2 0
Fully Connect Layer 1 1024 512 - - -
Fully Connect Layer 2 512 256 - - -
Fully Connect Layer 3 256 128 - - -

for different algorithms and different input states. For example, SAC with 4D+Cam input is trained
for 324 epochs while DDPG with 4D input state is trained for 370 epochs. We train our RL models
on NVIDIA GeForce RTX 3090 GPUs, and the training usually takes one day. For each trained
model, we achieve a stable reward value of around 1500 for one episode.

During scenario generation, we also train a SAC model with 4D input state space as a surrogate
model. The training process is the same as other models except that we use a different random seed
to produce a different training result.

A.7 Detailed scenario generation results

We show the full scenario generation and selection statistics in Table 11. We note that we don’t
use any personal information since our experiments are based on Carla simulation. In addition to
collision rate (CR), overall score (OS), and the overall selection rate (SR), we also report the average
percentage of route completion (Comp) for each scenario before and after selection to measure
different algorithms’ ability to influence task performances. We find that AT achieves the lowest
Comp and S-Comp, which demonstrate its effectiveness in attacking the AD system’s functionality.

A.8 Full benchmark results

We report the performance of all AD algorithms tested on SafeBench in Table 12. We trained AD
models with different input state spaces and evaluate their performance in both benign scenarios
and safety-critical scenarios. Specifically, we provide the 4D input to all the 4 AD algorithms.
For the 4D+Dir input state, we provide it to SAC, TD3, and PPO. We also equip SAC and PPO
with both 4D+BEV and 4D+Cam state spaces. As shown in the table, we first notice that a large
performance gap between evaluation results on benign and safety-critical scenarios always exists
no matter what kind of input information we provide to the AD algorithm, which demonstrates
that our testing scenarios can generalize to algorithms with different inputs. Besides, similar to the
results of algorithms with 4D input, we also observe the trade-off between performance on benign
and safety-critical scenarios in 4D+BEV and 4D+Cam input state spaces. For instance, when using
4D+Cam as input state space, SAC obtains a better score on benign scenarios while PPO gets a
higher score on safety-critical scenarios. Finally, among different agents, PPO with 4D+BEV input
achieves the best OS on SafeBench testing scenarios, which indicates potential possible directions for
researchers to design their own model architecture and input state space.

21



Table 11: Full statistics of scenario generation and selection.

Metric Algo.
Traffic Scenarios

Avg.Straight
Obstacle

Turning
Obstacle

Lane
Changing

Vehicle
Passing

Red-light
Running

Unprotected
Left-turn

Right-
turn

Crossing
Negotiation

CR "
LC 0.320 0.140 0.560 0.920 0.410 0.630 0.458 0.470 0.489
AS 0.570 0.350 0.650 0.900 0.600 0.820 0.520 0.550 0.620
CS 0.610 0.630 0.322 0.900 0.767 0.756 0.667 0.711 0.670
AT 0.680 0.310 0.700 0.930 1.000 0.850 0.500 0.900 0.734

S-CR "
LC 0.756 0.923 0.560 0.919 0.833 0.870 0.661 0.793 0.789
AS 0.794 0.595 0.650 0.900 0.833 0.930 0.792 0.797 0.787
CS 0.967 0.684 0.322 0.900 0.932 0.870 0.711 0.797 0.773
AT 0.847 0.485 0.697 0.930 1.000 0.966 0.562 1.000 0.811

Comp #
LC 0.842 0.934 0.704 0.680 0.805 0.744 0.843 0.780 0.792
AS 0.713 0.928 0.649 0.673 0.740 0.646 0.827 0.762 0.742
CS 0.693 0.874 0.886 0.674 0.656 0.666 0.760 0.680 0.736
AT 0.681 0.938 0.595 0.652 0.535 0.644 0.817 0.583 0.681

S-Comp #
LC 0.631 0.559 0.704 0.679 0.601 0.647 0.771 0.631 0.653
AS 0.600 0.884 0.649 0.673 0.639 0.595 0.725 0.655 0.678
CS 0.521 0.866 0.886 0.674 0.582 0.614 0.740 0.640 0.690
AT 0.576 0.905 0.596 0.652 0.535 0.594 0.794 0.536 0.649

OS #
LC 0.765 0.825 0.613 0.451 0.755 0.632 0.630 0.646 0.665
AS 0.654 0.718 0.577 0.465 0.659 0.544 0.599 0.606 0.603
CS 0.629 0.577 0.738 0.464 0.569 0.571 0.520 0.522 0.574
AT 0.600 0.737 0.557 0.455 0.460 0.526 0.607 0.423 0.546

S-OS #
LC 0.565 0.461 0.613 0.451 0.533 0.518 0.528 0.476 0.518
AS 0.548 0.600 0.577 0.465 0.535 0.492 0.451 0.480 0.518
CS 0.465 0.550 0.738 0.464 0.483 0.519 0.496 0.473 0.524
AT 0.523 0.654 0.558 0.455 0.460 0.471 0.574 0.372 0.508

SR "
LC 0.410 0.130 1.000 0.990 0.420 0.690 0.590 0.580 0.601
AS 0.680 0.420 1.000 1.000 0.720 0.860 0.530 0.640 0.731
CS 0.600 0.760 1.000 1.000 0.822 0.856 0.922 0.878 0.855
AT 0.590 0.330 0.990 1.000 1.000 0.870 0.890 0.900 0.821

A.9 Full diagnostic report

In this section, we provide the diagnostic report of all AD algorithms tested on SafeBench. We
evaluate different combinations of input state spaces and RL algorithms on 3 different levels of
evaluation metrics. Results are shown in Table 13. We also provide an overall score for each level
in Table 14. We find that PPO achieves the highest OS in most cases of input, with the highest
score of 0.679 with 4D+BEV state space. In addition, regarding the collision rate, by comparing
agents with different input state spaces, we notice that AD algorithms with 4D input have the highest
CR, while algorithms with 4D+BEV input get the lowest CR, which indicates that BEV is the most
helpful information for AD systems to drive safely. Finally, we also observe the trade-off between
functionality level metrics and safety level metrics with state spaces other than 4D, which means
agents that perform well at the functionality level may not be safe regarding the safety level metrics.
For example, with 4D+BEV input, PPO achieves lower CR than SAC, while its Comp is also 10.1%
lower than SAC. A similar phenomenon can also be found with 4D+Cam input state space.

22



Table 12: The performance of all AD algorithms tested on SafeBench. We evaluate 4 algorithms using
4 different state spaces. We report the average overall score (OS) on testing scenarios generated by all the 4
scenario generation algorithms with driving route variations. Benign indicates the performance of AD algorithms
tested on normal driving scenarios. The last two columns show the OS averaged over all benign and safety-critical
scenarios. Dir: 4D+Dir, BEV: 4D+BEV, Cam: 4D+Cam.

State
Space Algo. Traffic Scenarios Avg Avg

Straight
Obstacle

Turning
Obstacle

Lane
Changing

Vehicle
Passing

Red-light
Running

Unprotected
Left-turn

Right-
turn

Crossing
Negotiation Benign Safety-

critical

4D

DDPG 0.545 0.526 0.440 0.501 0.611 0.444 0.411 0.507 0.603 0.498
SAC 0.533 0.474 0.577 0.471 0.482 0.501 0.503 0.432 0.833 0.497
TD3 0.479 0.596 0.477 0.592 0.532 0.525 0.459 0.482 0.830 0.518
PPO 0.761 0.611 0.426 0.432 0.755 0.728 0.605 0.655 0.819 0.622

Dir
SAC 0.608 0.591 0.670 0.435 0.624 0.548 0.552 0.522 0.752 0.569
TD3 0.728 0.543 0.499 0.451 0.665 0.595 0.645 0.590 0.848 0.590
PPO 0.506 0.526 0.601 0.428 0.558 0.474 0.487 0.568 0.628 0.518

BEV SAC 0.501 0.567 0.647 0.446 0.486 0.521 0.449 0.434 0.840 0.506
PPO 0.818 0.632 0.555 0.393 0.918 0.664 0.729 0.847 0.731 0.694

Cam SAC 0.634 0.570 0.436 0.427 0.481 0.529 0.527 0.425 0.812 0.504
PPO 0.542 0.503 0.407 0.425 0.928 0.519 0.579 0.808 0.613 0.589

Table 13: Diagnostic report of all AD algorithms tested on SafeBench. We test 4 AD algorithms with 4
different state spaces on all selected testing scenarios and report the evaluation results on three different levels.
Dir: 4D+Dir, BEV: 4D+BEV, Cam: 4D+Cam.

State
Space Algo. Safety Level Functionality Level Etiquette Level OS "CR # RR # SS # OR # RF " Comp " TS # ACC # YV # LI #

4D

DDPG 0.780 0.089 0.087 12.619 0.504 0.466 20.860 2.488 0.405 5.764 0.489
SAC 0.829 0.216 0.146 3.115 0.882 0.648 16.827 1.830 0.704 2.580 0.499
TD3 0.783 0.231 0.141 2.535 0.903 0.670 17.644 2.680 1.493 2.545 0.516
PPO 0.603 0.287 0.150 0.099 0.901 0.751 18.021 2.461 1.506 3.528 0.606

Dir
SAC 0.676 0.209 0.152 5.658 0.740 0.705 23.386 1.892 0.640 4.565 0.558
TD3 0.655 0.270 0.144 0.885 0.887 0.718 18.899 2.417 1.187 4.694 0.579
PPO 0.739 0.045 0.077 17.607 0.685 0.534 21.336 2.911 0.893 4.875 0.513

BEV SAC 0.782 0.229 0.141 6.057 0.883 0.674 17.863 2.952 1.566 4.448 0.506
PPO 0.416 0.262 0.151 2.180 0.782 0.756 30.651 2.592 1.290 7.319 0.679

Cam SAC 0.829 0.261 0.149 0.014 0.926 0.637 15.480 4.354 1.885 6.139 0.485
PPO 0.600 0.050 0.127 15.101 0.708 0.599 31.914 2.631 0.827 6.327 0.576

A.10 Robustness evaluation examples and visualizations

In this section, we show detailed examples and visualizations of performing diverse adversarial attacks
on AD systems. In Figure 8, we provide the adversarial examples of using 3 different adversarial
attacks to attack 4 different point cloud segmentation models in AD algorithms. In fig. 9, we provide
the visualization results of applying 4 adversarial physical semantic perturbations and transformations
to different traffic objects to attack multi-modal object detection models in AD systems.

23



Table 14: Level scores for different levels of evaluation metrics. We provide 3 different scores to sum up the
safety, functionality, and etiquette levels. The weights are the same as the weights used for the overall score.

State Space Algorithms Safety Functionality Etiquette Overall

4D

DDPG 0.459 0.541 0.755 0.489
SAC 0.428 0.750 0.803 0.499
TD3 0.457 0.759 0.680 0.516
PPO 0.568 0.783 0.671 0.606

Dir
SAC 0.518 0.685 0.773 0.558
TD3 0.537 0.763 0.689 0.579
PPO 0.479 0.621 0.698 0.513

BEV SAC 0.450 0.753 0.629 0.506
PPO 0.682 0.675 0.627 0.679

Cam SAC 0.431 0.768 0.507 0.485
PPO 0.565 0.050 0.693 0.576

Figure 8: LiDAR point cloud of static traffic scenes generated by 3 attacking methods (Point Attack,
Pose Attack, Scene Attack). Red color means the prediction of 4 point cloud segmentation algorithms.

A.11 Complexity analysis

We provide complexity analysis of scenario generation algorithms in 2 aspects. First, for the
algorithm itself, the complexity depends on the searching algorithm inside it. The 4 scenario
generation algorithms considered in SafeBench all use blackbox searching algorithms, but they differ
in efficiency. For example, AdvSim uses Bayesian Optimization, which improves efficiency by
prioritizing hyperparameters that appear more promising from past results. Second, for the AD
algorithm, the complexity depends on the robustness of the surrogate RL model. A stronger RL
algorithm usually needs more optimization steps to reach our safety-critical requirements.

24



Figure 9: Physical semantic perturbations and transformations of vehicles and pedestrians. For
vehicles, we consider different types, colors, and rotations. For pedestrians, we consider different
body shapes, skin colors, and rotations.

A.12 Potential negative societal impacts.

In SafeBench platform, we consider 8 safety-critical scenarios and design 10 variations for each
scenario. We also systematically incorporate 4 scenario generation algorithms with different opti-
mization strategies to fully explore the weakness of AD algorithms. As we will open-source our
platform, attackers may leverage our code and data to perform real-world adversarial attacks against
existing AD systems. We suggest using our platform to evaluate the safety and robustness of AD
systems in various scenarios before deploying them to the real world. Since our platform is flexible,
developers and researchers can also add more safety-critical scenarios to further test and improve AD
systems.

25


	Introduction
	Related work
	SafeBench: benchmarking platform for safety evaluation
	Platform structure
	Safety-critical testing scenarios
	Safety-critical scenario generation algorithms
	Adversary-based generation
	Knowledge-based generation

	Evaluation metrics

	Benchmark evaluation on SafeBench
	AD algorithms tested on SafeBench
	Driving scenarios for testing
	Benchmark results
	Robustness Evaluation: Physical semantic attacks against AD algorithms

	Conclusion
	Appendix
	SafeBench statistics
	SafeBench design details
	Definition of scenarios and examples of route variants
	Evaluation metrics
	Implementation details of AD algorithms
	Training details of AD algorithms
	Detailed scenario generation results
	Full benchmark results
	Full diagnostic report
	Robustness evaluation examples and visualizations
	Complexity analysis
	Potential negative societal impacts.


