
A Appendix

A.1 Proof of Proposition 2.3

Lemma A.1. Let (Xn)n∈N be a sequence of random variables with infinite mean and variance. Let

us assume that there exists a random variable X with finite mean and variance such that Xn
d→ X ,

where d denotes convergence in distribution. Given the number of samples K, let the empirical mean
and variance random variables (µ̂n)n∈N, (σ̂n)n∈N defined as

∀n ∈ N, µ̂n =
1

K

K∑
k=1

Xn,k

σ̂n =
1

K − 1

K∑
k=1

(Xn,k − µ̂n)
2

where the Xn,k are i.i.d samples. Then we have

µ̂n
d→ µ̂ as well as σ̂n

d→ σ̂ (12)

where µ̂, σ̂ are resp. the empirical mean and variance of the limiting distribution X .

The proof is a straightforward application of the continuous mapping theorem.

Lemma A.2. Let (Xn)n∈N, (Yn)n∈N be a sequence of random variables such that |Xn| = Op(1)
and |Yn| = Op(1). Let us assume that there exists a real valued sequence (an)n∈N such that
|Xn − Yn| = Op(an). Given K, let the empirical variance random variables (σ̂X

n )n∈N defined as

∀n ∈ N, σ̂X
n =

1

K − 1

K∑
k=1

(Xn,k − 1

K

K∑
k=1

Xn,k)
2

We define similarly (σ̂Y
n )n∈N. Then,

|σ̂X
n − σ̂Y

n | = Op(an)

Proof.

|σ̂X
n − σ̂Y

n | =| 1

K − 1

K∑
k′=1

[
(Xn,k′ − 1

K

K∑
k=1

Xn,k)
2 − (Yn,k′ − 1

K

K∑
k=1

Yn,k)
2
]
|

=
1

K − 1
|

K∑
k′=1

[
(Xn,k′ − 1

K

K∑
k=1

Xn,k − Yn,k′ +
1

K

K∑
k=1

Yn,k)(Xn,k′ − 1

K

K∑
k=1

Xn,k + Yn,k′ − 1

K

K∑
k=1

Yn,k)
]
|

=
1

K − 1
|

K∑
k′=1

[
(Xn,k′ − Yn,k′ − 1

K

K∑
k=1

(Xn,k − Yn,k))(Xn,k′ + Yn,k′ − 1

K

K∑
k=1

(Xn,k + Yn,k))
]
|

=Op(|
K∑

k′=1

[
(Xn,k′ − Yn,k′ − 1

K

K∑
k=1

(Xn,k − Yn,k))
]
|)

=Op(

K∑
k=1

|Xn,k − Yn,k|)

=Op(an)

15



A.1.1 Discrepancy between non-linear and linearly trained neural network during training

We adapt Theorem H.1. from [25] to show that the discrepancy between the original and the linearly
trained network for the MSE loss that we consider is bounded as supt ∥f lin

t (x) − f(x, θt)∥22 ≤
O(h−2) as well. The proof is an adaptation of the one in [25] with very minor differences. We
piggyback on the main result in their proof which was obtained with Grönwall’s inequality, which
requires the continuity of the derivative of the activation function.

Let a neural network f such the width of all hidden layers are identical, h1 = h2 = ... = hL−1 = h,
and such that ϕ′ is bounded and Lipschitz continuous on R. Let the training data (X ,Y) contained in
some compact set, such that the NTK of f on X is invertible. Let ft the model trained on the MSE
loss with gradient flow at timestep t with some learning rate.
Assumption A.3. ∀δ > 0,∃C,N : ∀h > H , with probability at least 1−δ over random initialization,

sup
t
∥Θθ0 −Θθt∥F ≤ C

h
(13)

Proposition A.4. Under assumption A.3, when trained with gradient flow on the MSE loss, we have

∀x, ∀δ > 0,∃C,H : ∀h > H ,

P
[
sup
t
∥f lin

t (x)− ft(x)∥2 ≤ C

h

]
≥ 1− δ (14)

Proof. Let glin(t) = f lin
t (X )−Y and g(t) = ft(X )−Y . Starting from equation (S118) from [25],

we have
∥glin(t)− g(t)∥2 ≤ η0tσte

−λ0η0t+σtη0t∥g(0)∥2 (15)
where σt = sup0≤s≤t∥Θθt −Θθ0∥op, η0 the learning rate and λ0 is the smallest eigenvalue of Θθ0 .

Because the functions are trained on MSE loss L, we have

d

dt
(f lin

t (x)− ft(x)) =η0Θθ0(x,X )L′(f lin
t )− η0Θθt(x,X )L′(ft) (16)

=η0Θθ0(x,X )glin(t)− η0Θθt(x,X )g(t) (17)

=η0(Θθ0(x,X )−Θθt(x,X ))glin(t)− η0Θθt(x,X )(g(t)− glin(t)) (18)

Integrating and taking the L2 norm,

∥f lin
t (x)− ft(x))∥ ≤η0

∫ t

0

∥(Θθ0(x,X )−Θθt′ (x,X ))∥∥glin(t′)∥dt′ (19)

+η0

∫ t

0

∥Θθt′ (x,X )∥∥g(t′)− glin(t′)∥dt′ (20)

≤η0∥g(0)∥
∫ t

0

∥(Θθ0(x,X )−Θθt′ (x,X ))∥e−λ0η0t
′
dt′ (21)

+ η0

∫ t

0

[∥Θθ0(x,X )∥+ ∥Θθt′ (x,X )−Θθ0(x,X )∥ (22)

· ∥g(0)∥η0t′σt′e
−λ0η0t

′+σt′η0t
′
dt′ (23)

(24)

where we used ∥g(0)∥ = ∥glin(t′)∥ ≤ ∥glin(0)∥e−λ0η0t
′

the triangular inequality and equation 15.

Because g(0) converges in distribution to a mean zero gaussian distribution, and because Θθ0
converges in probability to Θ∞, we can find H such that ∀h > H , with probability at least 1− δ′,

∥g(0)∥2 ≤ C (25)

and
∥Θθ0(x,X )∥2 ≤ C (26)

16



where C > 0 is a constant.

Because the NTK at initialization converges in probaility to Θ∞ assumed to be invertible, there exists
H ′ such that ∀h > H ′,

∥Θθ0 −Θ∞∥F≤
λmin

2
(27)

Where λmin is the smallest eigenvalue of Θ∞. Thus ∥Θθ0 −Θ∞∥op≤ λmin

2 , and so λ0 > λmin

2

From assumption A.3, let us fix H ′′, C ′ such that ∀h > H ′′, with probability at least 1− δ′

σt = sup
0≤t′≤t

∥Θθ′
t
−Θθ0∥op ≤ sup

0≤s≤t
∥Θθt −Θθ0∥F ≤ C ′

h
(28)

and

sup
0≤t′≤t

∥Θθ′
t
(x,X )−Θθ0(x,X )∥2 ≤ C ′

h
(29)

And therefore ∀h > max(H ′, H ′′, 2C′

λmin ), with probability at least 1 − δ′, σt < λ0, and therefore∫ t

0
t′e−λ0η0t

′+σt′η0t
′

is bounded by some C ′′.

Putting everything together, ∀n > max(H,H ′, H ′′, 2C′

λmin ), with probability at least 1− 3δ′,

∥f lin
t (x)− ft(x))∥ ≤η0C

∫ t

0

C ′

h
e−λminη0t

′
dt′ + η0[C +

C ′

h
]Cη0

C ′

h
C ′′ ≤ K

h
(30)

(31)

with K some constant. By taking δ′ = δ
3 we get the result that ∥f lin

t (x)− ft(x))∥ = Op(
1
h )

Finally, using Lemma A.2 and the fact that f lin(x) and f(x) are bounded with high probability since
they both converge in distribution to a gaussian with finite variance, we have, at the end of training,

|V̂(f(x))− V̂(f lin(x))| = Op(
1

h
)

for some finite sample empirical variance.

It remains to show that ∀x, ∀δ, ∃C > 0, H > 0 : ∀h > H ,

P
[ 1
h
≤ CV̂

[
(Qθ0(x,X )− Q̄(x,X ))(Y − f(X , θ0))

]]
≥ 1− δ (32)

i.e.

P
[ 1
C

≤ V̂
[√

h(Qθ0(x,X )− Q̄(x,X ))(Y − f(X , θ0))
]]

≥ 1− δ (33)

Following Proposition 2.1 and Lemma A.1, we have

V̂
[√

h(Qθ0(x,X )− Q̄(x,X ))(Y − f(X , θ0))
] d→ V̂

[
Z(x)

]
where Z is a linear combination of 2 chi-square distribution with finite and no-zero moments, which
proves the result.

A.2 Delta method

A.2.1 Proof of Proposition 2.1

We start with the special case of a single hidden layer neural network. We provide the following
Lemma, which is a slight variation of the Delta method.

17



Lemma A.5. Let Xh ∈ Rn, Yh ∈ Rn be two sequences of multivariate independent random variables
that satisfy Xh

dist.→ N (µ,Σ1) and
√
h(Yh − Ȳ )

dist.→ N (0,Σ2) in distribution for some constant Ȳ .
Let a function g : Rn → Rn with continuous partial derivative. Then,

√
h
[
g(Yh)

TXh − g(Ȳ )TXh

] dist.→ Z (34)

such that Z is a linear combination of 2 Chi-square distributions, and

E[Z] = 0 (35)

V[Z] = Tr(∇T g(Ȳ )Σ2∇g(Ȳ )Σ1) + Tr(∇T g(Ȳ )Σ2∇g(Ȳ )µµT ) (36)

Proof. By applying the multivariate delta method, we have
√
h
[
g(Yh)− g(Ȳ )

] dist.→ N (0,∇T g(Ȳ )Σ2∇g(Ȳ )) (37)

Given the independence assumption of Xh and Yh, we have the independence of Xh and√
h
[
g(Yh)

T − g(Ȳ )T
]
, and therefore (Xh,

√
h
[
g(Yh)

T − g(Ȳ )T
]
) converge in distribution to the

Cartesian product of their respective limiting random variables. Using the continuity of the dot-
product operation, and applying again the continuous mapping theorem, we have

√
h
[
g(Yh)− g(Ȳ )

]T
Xh

dist.→ Z = GT
1 G2 (38)

where G1,G2 are normally distributed multivariate random variables with (mean, covariance) resp.
(0,∇T g(Ȳ )Σ2∇g(Ȳ )) and (µ,Σ1).

Note that if the Xh are constant, or converge to a constant value, the limiting distribution Z is a
Gaussian distribution. In general however, given the independence of G1 and G2, Z as the product of
2 independent Gaussians is a linear combination of two Chi-square distributions.

Finally, we have

E[Z] = 0 (39)

V[Z] = E[GT
2 G1GT

1 G2] (40)

= E[Tr(GT
2 G1GT

1 G2)] (41)

= E[Tr(G1GT
1 G2GT

2 )] (42)

= Tr(E[G1GT
1 G2GT

2 ]) (43)

= Tr(E[G1GT
1 ]E[G2GT

2 ]) (44)

= Tr(∇T g(Ȳ )Σ2∇g(Ȳ )[Σ1 + µµT ]) (45)

which concludes the lemma.

Let us now prove Proposition 2.1. For one hidden layer networks, given a width h, it is straightforward
to see (see A.4) that the empirical NTK Θh (whereby the weight initialization is a random variable)
is the sum of h i.i.d. random variables which mean equals the infinite width NTK Θ∞, i.e

∀(X ,X ′),

Θh(X ,X ′) =
1

h

∑
i

Θ̂i(X ,X ′) (46)

Θ̂i(X ,X ′) ∼i.i.d Θ̂(X ,X ′) (47)

E[Θ̂(X ,X ′)] = Θ∞(X ,X ′) (48)

Proposition A.6. For one hidden layer networks,
√
h[Qθ0(x,X )− Q̄(x,X )](Y − f(X , θ0))

d→ Z

18



where Z is the linear combination of 2 Chi-Square distributions, and

E[Z] =0

V[Z] =Vc
1(x) + Vi

1(x)

Vc
1(x) =V[Θ̂(x,X )Θ̄(X ,X )−1Y] + V[Q̄(x,X )Θ̂(X ,X )Θ̄(X ,X )−1Y]

− 2Cov[Q̄(x,X )Θ̂(X ,X )Θ̄(X ,X )−1Y, Θ̂(x,X )Θ̄(X ,X )−1Y],

Vi
1(x) =V[Θ̂(x,X )Θ̄(X ,X )−1f(X , θ0)] + V[Q̄(x,X )Θ̂(X ,X )Θ̄(X ,X )−1f(X , θ0)]

− 2Cov[Q̄(x,X )Θ̂(X ,X )Θ̄(X ,X )−1f(X , θ0), Θ̂(x,X )Θ̄(X ,X )−1f(X , θ0)].

Proof. Following the Central Limit Theorem, we have the following convergence in distribution:

√
h
[
Θh(X ,X ′)−Θ∞(X ,X ′)

] dist.→ N (0,Σ) (49)

where Σ is the covariance matrix between the entries of Θ̂(X ,X ′).

Let the function
g(W, v) = vTW−1 (50)

for any invertible block matrix W , and vector v.

Note that g(Θh(X ,X ),Θh(X , x))(Y − f(X , θ0)) is the prediction of a linearly trained neural
network evaluated on x trained on X , given a functional initialization f(., θ0) and NTK Θh. We wish
to estimate the asymptotic behavior of the expectation and variance of this quantity in the limit of
h → ∞. However, these moments are not always defined because the support of Θh(X ,X ) contains
non invertible instances of the gram schmidt matrix (e.g. all weights initialized at 0), which induces
divergent moments. However, because of the convergence in probability of Θh to Θ∞ (which is
invertible by assumption), the event of such singularities becomes rarer as h increases, and the delta
method allows us to get the asymptotic expectation and variance.

Using the fact that g has continuous first partial derivatives, and the independence of f(X , θ0) and
Θh, following Lemma A.5,

√
h
[
g(Θh(X ,X ),Θh(X , x))f(X , θ0)− g(Θ∞(X ,X ),Θ∞(X , x))f(X , θ0)

] dist.→ Z (51)

with Z being the linear combination of 2 Chi-Square distributions, and

E[Z] = 0 (52)

V[Z] = Tr
(
ΣK(X ,X )

)
+ Tr

(
ΣYYT

)
(53)

(54)

where, by vectorizing matrices and using gk the k-th entry of the value of g,

Σi,j = ∇T
W gi(Θ∞(X ,X ),Θ∞(X , x))Cov[vect(Θ̂(X ,X ))]∇W gj(Θ∞(X ,X ),Θ∞(X , x))

+∇T
v gi(Θ∞(X ,X ),Θ∞(X , x))Cov[Θ̂(X , x)]∇vgj(Θ∞(X ,X ),Θ∞(X , x))

+∇T
W gi(Θ∞(X ,X ),Θ∞(X , x))Cov[vect(Θ̂(X ,X )), Θ̂(X , x)]∇vgj(Θ∞(X ,X ),Θ∞(X , x))

+∇vgi(Θ∞(X ,X ),Θ∞(X , x))Cov[vect(Θ̂(X ,X )), Θ̂(X , x)]∇T
W gj(Θ∞(X ,X ),Θ∞(X , x))

Using ∇vgk(W, v) = W−1uk and ∇W gk = vect(−W−T vuT
kW

−T ) , where uk is the vector 0
everywhere except for the k-th position which is 1, the expression can be rewritten as

Σ =Cov[Θ∞(X ,X )−1Θ̂(X ,X )TΘ∞(X ,X )−1Θ∞(X , x)]

+ Cov[Θ∞(X ,X )−1Θ̂(X , x)]

− 2Cov[Θ∞(X ,X )−1Θ̂(X ,X )TΘ∞(X ,X )−1Θ∞(X , x),Θ∞(X ,X )−1Θ̂(X , x)]

19



Finally, we can notice that the following expression equals that of 53

V[Θ̂(X , x)TΘ∞(X ,X )−1f(X , θ0)]

+ Cov[Θ∞(X , x)TΘ∞(X ,X )−1Θ̂(X ,X )TΘ∞(X ,X )−1f(X , θ0)]

− 2Θ∞(X , x)TΘ∞(X ,X )−1Cov[Θ̂(X ,X )TΘ∞(X ,X )−1f(X , θ0), Θ̂(X , x)TΘ∞(X ,X )−1f(X , θ0)]

+ V[Θ̂(X , x)TΘ∞(X ,X )−1Y]

+ Cov[Θ∞(X , x)TΘ∞(X ,X )−1Θ̂(X ,X )TΘ∞(X ,X )−1Y]

− 2Θ∞(X , x)TΘ∞(X ,X )−1Cov[Θ̂(X ,X )TΘ∞(X ,X )−1Y, Θ̂(X , x)TΘ∞(X ,X )−1Y]

which concludes the proof by using E[Θ̂] = Θ∞.

A.2.2 Approximation in the general case

In the general case, we can no longer apply the central limit theorem to asymptotically describe the
NTK as a gaussian. Nonetheless, the delta method is often used in a form that is essentially identical
to that above, but without the asymptotically normal assumption, so long as the fluctuation of the
variable around the mean vanishes, i.e. ∥Θθ0({X , x}, {X , x})− Θ̄({X , x}, {X , x})∥F = op(1).

Using the identity M−1 = M̄−1 + M̄−1(M̄ −M)M̄−1 + M̄−1
[
(M̄ −M)M̄−1

]2
M̄M−1 for any

pair of invertible matrices M,M̄ , we can rewrite f lin as

f lin(x) =f(x) + Θθ0(x)Θ
−1
θ0

(Y − f)

=f(x) + Θθ0(x)[Θ̄
−1 + Θ̄−1(Θ̄−Θθ0)Θ̄

−1 + Θ̄−1
[
(Θ̄−Θθ0)Θ̄

−1
]2
Θ̄Θ−1

θ0
](Y − f)

=f(x) + Θ̄(x)[Θ̄−1 + Θ̄−1(Θ̄−Θθ0)Θ̄
−1 + Θ̄−1

[
(Θ̄−Θθ0)Θ̄

−1
]2
Θ̄Θ−1

θ0
](Y − f)

+ [Θθ0(x)− Θ̄(x)][Θ̄−1 + Θ̄−1(Θ̄−Θθ0)Θ̄
−1 + Θ̄−1

[
(Θ̄−Θθ0)Θ̄

−1
]2
Θ̄Θ−1

θ0
](Y − f)

=f(x) + Θ̄(x)Θ̄−1(Y − f)

+ Θ̄(x)Θ̄−1(Θ̄−Θθ0)Θ̄
−1(Y − f) + (Θθ0(x)− Θ̄(x))Θ̄−1(Y − f)

+
[
Θθ0(x)− Θ̄(x)Θ̄−1Θθ0

]
Θ̄−1(Θ̄−Θθ0)Θ̄

−1(Y − f)

+ op(∥Θθ0({X , x}, {X , x})− Θ̄({X , x}, {X , x})∥2F )

where we note Θθ0 = Θθ0(X ,X ),Θθ0(x) = Θθ0(X , x) (resp. for Θ̄, f ) for ease of notation.

For sufficiently large width, with high probability the remainder term will be negligible. Keeping the
empirical mean and variance in mind, we can now take the expectation and variance ignoring the rare
singularities.

E[f lin(x)] ≈Θ̄(x)Θ̄−1Y + E
[
[Θθ0(x)− Θ̄(x)Θ̄−1Θθ0 ][Θ̄

−1(Θ̄−Θθ0)]
]
Θ̄−1Y

20



V[f lin(x)] ≈K̄(x, x) + Θ̄(x)Θ̄−1K̄(X ,X )Θ̄−1Θ̄(x)T − 2Θ̄(x)Θ̄−1K̄(X , x)

+ V[(Θθ0(x)− Θ̄(x))Θ̄−1(Y − f)]

+ V[Θ̄(x)Θ̄−1(Θ̄−Θθ0)Θ̄
−1(Y − f)]

+ 2Cov[Θ̄(x)Θ̄−1(Θ̄−Θθ0)Θ̄
−1(Y − f), (Θθ0(x)− Θ̄(x))Θ̄−1(Y − f)]

− 2Cov[f(x)− Θ̄(x)Θ̄−1f,
[
Θθ0(x)− Θ̄(x)Θ̄−1Θθ0

]
Θ̄−1(Θ̄−Θθ0)Θ̄

−1f ]

=K̄(x, x) + Q̄(x,X )K̄(X ,X )Q̄(x,X )T − 2Q̄(x,X )K̄(X , x)

+ V[Θθ0(x)Θ̄
−1(Y − f)]

+ V[Q̄(x,X )Θθ0Θ̄
−1(Y − f)]

− 2Cov[Q̄(x,X )Θθ0Θ̄
−1(Y − f),Θθ0(x)Θ̄

−1(Y − f)]

− 2E
[
[Θθ0(x)− Q̄(x,X )Θθ0 ][Θ̄

−1(Θ̄−Θθ0)Θ̄
−1]

]
[K̄(X , x)− K̄(X ,X )Q̄(x,X )T ]

=Va(x) + Vc(x) + Vi(x) + Vcor(x)

Assuming the fluctuation of Θθ0 around its mean is in the order of O(h− 1
4 ) (see A.2.3), we have

Vc(x),Vi(x),Vcor(x) all of order O( 1h ). While the variance of the true residual might not be finite
for the same reason as why V[f(x)] is not, expanding the approximation to one order higher yields
Vres(x) ≈ O( 1

h2 ).

A.2.3 Fluctuation of the NTK initialization

For one hidden layer networks, we can bound the fluctuation of the NTK at initialization using the
Central Limit Theorem, which yields V[Θθ0 ] = O( 1√

h
).

While we do not provide a proof, a similar heuristic argument presented in Appendix C. of [38] can
be used to argue for the same bound in the general case of arbitrary depth networks.

A.3 Other remarks

A.3.1 Interpretation of variance terms

Given a centered functional initialization g and an NTK Θ̄, a fully trained neural network has the
functional expression

f(x) = g(x) + Θ̄(x,X )Θ̄(X ,X )−1(Y − g(X )). (55)

The predictive variance is then

V[f(x)] =E[(g(x)− Θ̄(x,X )Θ̄(X ,X )−1g(X ))2] (56)

=E[g(x)2 + Θ̄(x,X )Θ̄(X ,X )−1g(X )g(X )T Θ̄(X ,X )−1Θ̄(x,X )T (57)

− 2Θ̄(x,X )Θ̄(X ,X )−1g(X )g(x)] (58)

=V[g(x)] + Θ̄(x,X )Θ̄(X ,X )−1Cov[g(X )]Θ̄(X ,X )−1Θ̄(x,X )T (59)

− 2Θ̄(x,X )Θ̄(X ,X )−1Cov[g(X ), g(x)] (60)
(61)

For any Θθ0 , and f centered and decorrelated, by defining g(x) = Θθ0(x,X )Θ̄(X ,X )−1f(X , θ0),
we get

V[f(x)] = V[Θθ0(x,X )Θ̄(X ,X )−1f(X , θ0)] + V[Q̄(x,X )Θθ0(X ,X )Θ̄(X ,X )−1f(X , θ0)]
(62)

− 2Cov[Q̄(x,X )Θθ0(X ,X )Θ̄(X ,X )−1f(X , θ0),Θθ0(x,X )Θ̄(X ,X )−1f(X , θ0)]. (63)

which is identical to Vi(x) from Proposition 2.1.

21



A.3.2 Noise correlation

In general, the noise in the NTK and in the functional initialization are related, as they come from
the same weight initialization θ0. Therefore, the analytical expression in Proposition 2.2 would have
another covariance term. This covariance term disappears as we consider the models f gd-c and f gd-a

defined in Section 3.2.2, which still manage to describe the predictive variance of the full model f as
the interpolation of the two.

We can nevertheless construct a model such that the 2 noises are decorrelated for validating the taylor
expansion from Prop 2.1, by sampling 2 initialization independently, θf0 and θk0 , and defining the
model as such:

f lin-d(x) = f(x, θf0 ) +Qθk
0
(x,X )(Y − f(X , θf0 )) (64)

We use such f lin-d to compute the predictive variance in Fig. 2 and 4.

A.4 Moments of the Neural Tangent Kernel

We consider the MLP defined in Section 2. We will consider the case where the output dimension
hL is 1 for ease of notation, but the derivations can be trivially extended into the multiple dimension
case. The NTK is defined as:

∀x, x′ ∈ Rd,

Θ(x, x′) := ∇θf(x)∇θf(x
′)T =

L∑
l=1

hl∑
i=1

[
∇wl,i

f(x)∇wl,i
f(x′)T +

∂f

∂bl,i
(x)

∂f

∂bl,i
(x′)

]
(65)

where wl,i is the i-th column of Wl, and bl,i the i-th element of bl.

Denoting by zl,i the i-th pre-activation in layer l for the input x, we have

∇wl,i
f =

∂f

∂zl,i
∇wl,i

zl,i =
∂f

∂bl,i

σw√
hl−1

xT
l−1

And thus

Θ(x, x′) =

L∑
l=1

hl∑
i=1

(
σ2
w

hl−1
xT
l−1x

′
l−1 + 1)

∂f

∂bl,i
(x)

∂f

∂bl,i
(x′)

= 1 +
σ2
w

hL−1
xT
L−1x

′
L−1 +

L−1∑
l=1

(
σ2
w

hl−1
xT
l−1x

′
l−1 + 1)

hl∑
i=1

ϕ′(zl,i)ϕ
′(z′l,i)

∂f

∂xl,i
(x)

∂f

∂xl,i
(x′)

(66)

where the x′
l, z

′
l are the counterparts of xl and zl evaluated at x′.

For the single hidden layer case (e.g. L = 2), the above expression can be simplified into

Θ(x, x′) = 1 +
σ2
w

h

h∑
i=1

[
ϕ(zi)ϕ(z

′
i) + (1 +

σ2
w

d
xTx′)w2

2,0,iϕ
′(zi)ϕ

′(z′i)
]

(67)

where h = h1, d = h0, w2,0,i the i-th element of w2,0, and zi = z1,i.

A.4.1 NTK first moment for 1 hidden layer MLP

For a single hidden MLP, we have

E[Θ(x, x′)] = 1 + E
[
ϕ(z)ϕ(z′)

]
+ (1 +

σ2
w

d
xTx′)E

[
ϕ′(z)ϕ′(z′)

]
(68)

which is identical to the infinite width deterministic NTK [24].

22



A.4.2 NTK second moment for 1 hidden layer MLP

Here, we assume the network to be a 1 hidden layer MLP. We then have

Θ(x, x′) = 1 +
σ2
w

h

h∑
i=1

[
ϕ(zi)ϕ(z

′
i) + (1 +

σ2
w

d
xTx′)w2

2,0,iϕ
′(zi)ϕ

′(z′i)
]

(69)

and thus, using Cov(zi, zj) = 0, Cov(w2,0,i, w2,0,j) = 0 for any i ̸= j

∀x, x′, x′′, x′′′ ∈ Rd,

Cov[Θ(x, x′),Θ(x′′, x′′′)]

=
σ4
w

h2

h∑
i=1

Cov
[
ϕ(zi)ϕ(z

′
i) + (1 +

σ2
w

d
xTx′)w2

2,0,iϕ
′(zi)ϕ

′(z′i), ϕ(z
′′
i )ϕ(z

′′′
i )

+ (1 +
σ2
w

d
x′′Tx′′′)w2

2,0,iϕ
′(z′′i )ϕ

′(z′′′i )
] (70)

Since the zi and w2,0,i are further identically distributed, by denoting by z, w the random variables
respectively drawn from the same distributions,

Cov[Θ(x, x′),Θ(x′′, x′′′)]

=
σ4
w

h
Cov

[
ϕ(z)ϕ(z′) + (1 +

σ2
w

d
xTx′)w2ϕ′(z)ϕ′(z′), ϕ(z′′)ϕ(z′′′)

+ (1 +
σ2
w

d
x′′Tx′′′)w2ϕ′(z′′)ϕ′(z′′′)

]
=
σ4
w

h
Cov

[
ϕ(z)ϕ(z′), ϕ(z′′)ϕ(z′′′)

]
+ (1 +

σ2
w

d
xTx′)(1 +

σ2
w

d
x′′Tx′′′)

σ4
w

h
Cov

[
w2ϕ′(z)ϕ′(z′), w2ϕ′(z′′)ϕ′(z′′′)

]
+ (1 +

σ2
w

d
x′′Tx′′′)

σ4
w

h
Cov

[
ϕ(z)ϕ(z′), w2ϕ′(z′′)ϕ′(z′′′)

]
+ (1 +

σ2
w

d
xTx′)

σ4
w

h
Cov

[
ϕ(z′′)ϕ(z′′′), w2ϕ′(z)ϕ′(z′)

]
=
σ4
w

h
Cov

[
ϕ(z)ϕ(z′), ϕ(z′′)ϕ(z′′′)

]
+ (1 +

σ2
w

d
xTx′)(1 +

σ2
w

d
x′′Tx′′′)

σ4
w

h

[
3Cov[ϕ′(z)ϕ′(z′), ϕ′(z′′)ϕ′(z′′′)]

+2E[ϕ′(z)ϕ′(z′)]E[ϕ′(z′′)ϕ′(z′′′)]
]

+ (1 +
σ2
w

d
x′′Tx′′′)

σ4
w

h
Cov

[
ϕ(z)ϕ(z′), ϕ′(z′′)ϕ′(z′′′)

]
+ (1 +

σ2
w

d
xTx′)

σ4
w

h
Cov

[
ϕ(z′′)ϕ(z′′′), ϕ′(z)ϕ′(z′)

]

(71)

In particular, we have

V[Θ(x, x′)] =
σ4
w

h
V
[
ϕ(z)ϕ(z′)

]
+ (1 +

σ2
w

d
xTx′)2

σ4
w

h

[
3V[ϕ′(z)ϕ′(z′)] + 2E[ϕ′(z)ϕ′(z′)]2

]
+

2σ4
w

h
(1 +

σ2
w

d
xTx′)Cov

[
ϕ(z)ϕ(z′), ϕ′(z)ϕ′(z′)

]
(72)

23



Cov[Θ(x, x′),Θ(x, x)] =
σ4
w

h
Cov

[
ϕ(z)ϕ(z′), ϕ(z)2

]
+ (1 +

σ2
w

d
xTx′)(1 +

σ2
w

d
xTx)

σ4
w

h

[
3Cov[ϕ′(z)ϕ′(z′), ϕ′(z)2]

+ 2E[ϕ′(z)ϕ′(z′)]E[ϕ′(z)2]
]

+ (1 +
σ2
w

d
xTx′)

σ4
w

h
Cov

[
ϕ(z)2, ϕ′(z)ϕ′(z′)

]
+ (1 +

σ2
w

d
xTx)

σ4
w

h
Cov

[
ϕ(z)ϕ(z′), ϕ′(z)2

]
(73)

A.4.3 Special case of ReLU activation

We now give the analytical expression of the first and second moments of the NTK for the 1 hidden
layer MLP ReLU activation that are required to compute the predictive variance for a single training
data setting. For simplicity, we assume the bias to be initialized to 0.

∀z ∈ R,
ϕ(z) = 1z>0z (74)

ϕ′(z) = 1z>0 (75)

Following the previous notation, given x, the hidden activations are i.i.d. random variables z =
σw√
d
wT

1 x where w1 is a univariate standard Gaussian random variable. σw is typically chosen to be
√
2 for ReLU activations.

We can rewrite a multivariate standard gaussian random variable as w1 = r.u where r = ||w1||2
is a real valued random variable distributed such that its squared value follows the Chi-squared
distribution of degree dim(w1) = d and u = w1

||w1||2 is a multivariate random variable uniformly
distributed on the unit sphere. The 2 random variables are furthermore independent.

Let x, x′ ∈ Rd. We denote by θ = arccos( xT x′

||x||||x′|| ) the angle between the vectors. We define
Sx,x′ = {u ∈ Rds.t.||u||2 = 1, uTx > 0, uTx′ > 0}.

We then have
ϕ(z)ϕ(z′) = 1z>0z1z′>0z

′

=
2

d
1z>01z′>0w

T
1 xw

T
1 x

′

=
2

d
1u∈Sx,x′ r

2uTxuTx′

=
2

d
1u∈Sx,x′ r

2uT
∥ xu

T
∥ x

′

=
2||x||||x′||

d
r2||u∥||21β∈[−π−θ

2 ,π−θ
2 ] cos(β +

θ

2
) cos(β − θ

2
)

(76)

Where u∥ is the component of u which is in the 2-dimensional subspace spanned by x, x′ if θ ̸= 0,
and any 2-dimensional subspace including x otherwise. β = sign(uT

|| y). arccos(u
T
||

v
||v|| ), with

v = x
||x|| +

x′

||x′|| and y a unit vector in the subspace orthogonal to v, is its angle in the subspace,
uniformly distributed on [−π, π]. ϕ(z)ϕ(z′) is thus the product of 3 independent distribution, a
random variable from a Chi-squared distribution of degree d, another one which depends on β, and
finally on ||u∥||.
Furthermore we have

ϕ′(z)ϕ′(z′) = 1z>01z′>0

= 1u∈Sx,x′

= 1β∈[−π−θ
2 ,π−θ

2 ]

(77)

24



ϕ′(z)ϕ′(z′) is thus a Bernouilli distribution of probability p = π−θ
2π .

Let us now compute the various quantities required for the predictive variance:

E
[
ϕ(z)ϕ(z′)

]
=2

||x||||x′||
d

E[r2]E[||u∥||2]E[1β∈[−π−θ
2 ,π−θ

2 ] cos(β +
θ

2
) cos(β − θ

2
)]

=||x||||x′||Cd
1

2π
[(π − θ) cos(θ) + sin(θ)]

(78)

where we used cos(β + θ
2 ) cos(β − θ

2 ) =
1
2 [cos(2β) + cos(θ)] and E(χ2

d) = d.

V
[
ϕ(z)ϕ(z′)

]
=4

||x||2||x′||2

d2
E[r4]E[||u∥||4]E[1β∈[−π−θ

2 ,π−θ
2 ] cos

2(β +
θ

2
) cos2(β − θ

2
)]

− 4
||x||2||x′||2

d2
E[r2]2E[||u∥||2]2E[1β∈[−π−θ

2 ,π−θ
2 ] cos(β +

θ

2
) cos(β − θ

2
)]2

=
||x||2||x′||2

d2
(2d+ d2)C ′

d

1

4π

[3
2
sin(2θ) + (π − θ)(cos(2θ) + 2)

]
− ||x||2||x′||2C2

d

1

4π2
[(π − θ) cos(θ) + sin(θ)]2

(79)

where we used V(χ2
d) = 2d and Cd = E[||u∥||2] = 2

d , C ′
d = E[||u∥||4] = 8

2d+d2 .

Likewise,

E
[
ϕ′(z)ϕ′(z′)

]
=
π − θ

2π
(80)

V
[
ϕ′(z)ϕ′(z′)

]
=
π − θ

2π
(1− π − θ

2π
) (81)

as given by the Bernouilli distribution.

Finally,

Cov
[
ϕ(z)ϕ(z′), ϕ′(z)ϕ′(z′)

]
=E

[
ϕ(z)ϕ(z′)

]
(1− E[ϕ′(z)ϕ′(z′)]) (82)

and by using 1u∈Sx,x′1u∈Sx,x
= 1u∈Sx,x′ as well as E[ϕ′(z)2] = 1

2 ,

Cov
[
ϕ(z)ϕ(z′), ϕ′(z)2

]
=E

[
ϕ(z)ϕ(z′)

]
(1− E[ϕ′(z)2]) (83)

Cov
[
ϕ(z)2, ϕ′(z)ϕ′(z′)

]
=E

[2
d
r2(uT

∥ x)
2
1u∈Sx,x′

]
− E

[
ϕ(z)2

]
E
[
1u∈Sx,x′

]
=2∥x∥2CdE

[
1β∈[−π−θ

2 ,π−θ
2 ] cos

2(β − θ

2
)
]
− ∥x∥2Cd

2

π − θ

2π

=
∥x∥2Cd

4π

[
2(π − θ) + sin(2θ)− (π − θ)

]
=
∥x∥2Cd

4π

[
(π − θ) + sin(2θ)

]
(84)

Cov
[
ϕ(z)ϕ(z′), ϕ(z)2

]
=E

[ 4

d2
r4(uT

∥ x)
3uT

∥ x
′
1u∈Sx,x′

]
− E

[
ϕ(z)2

]
E
[
ϕ(z)ϕ(z′)

]
=4

2d+ d2

d2
∥x∥3∥x′∥C ′

dE
[
1β∈[−π−θ

2 ,π−θ
2 ] cos

3(β − θ

2
) cos(β +

θ

2
)
]

− ∥x∥2Cd∥x∥∥x′∥Cd
1

4π
[(π − θ) cos(θ) + sin(θ)]

=
2d+ d2

16d2π
∥x∥3∥x′∥C ′

d

[
sin(3θ) + 9 sin(θ) + 12(π − θ) cos(θ)

]
− ∥x∥3∥x′∥C2

d

4π
[(π − θ) cos(θ) + sin(θ)]

(85)

25



Cov
[
ϕ′(z)ϕ′(z′), ϕ′(z)2

]
= E

[
ϕ′(z)ϕ′(z′)

]
(1− E[ϕ′(z)2])

=
π − θ

4π

(86)

Putting everything together in eq 68,72 and 73, and using

K̄(x, x′) = E
[
ϕ(z)ϕ(z′)

]
= ||x||||x′|| 1

dπ
[(π − θ) cos(θ) + sin(θ)] (87)

gives us the analytical expression of the following variance terms:

V[f lin−a(x′)] =K̄(x′, x′)− 2
E[Θ(x′, x)]

E[Θ(x, x)]
K̄(x, x′) +

E[Θ(x′, x)]2

E[Θ(x, x)]2
K̄(x, x) (88)

V[f lin−c(x′)] =
1

E[Θ(x, x)]2
V[Θ(x′, x)] +

E[Θ(x′, x)]2

E[Θ(x, x)]4
V[Θ(x, x)]

− 2
E[Θ(x′, x)]

E[Θ(x, x)]3
Cov[Θ(x, x),Θ(x, x′)]

(89)

V[f lin−i(x′)] =
1

E[Θ(x, x)]2
V[Θ(x′, x)f(x)] +

E[Θ(x′, x)]2

E[Θ(x, x)]4
V[Θ(x, x)f(x)]

− 2
E[Θ(x′, x)]

E[Θ(x, x)]3
Cov[Θ(x, x)f(x),Θ(x, x′)f(x)]

=K̄(x, x)V[f lin−c(x′)]

(90)

In particular, when ∥x∥, ∥x′∥ <<
√
d , the first-order approximation of V[f lin−c(x′)] becomes a

function which only depends on θ, which could be seen on Fig. 1. We analytically validate the
expression in Fig. 7.

26



B Appendix: empirical results

In this Appendix Section, we provide more data on similar experiments described in Section 2 and
3 of the manuscript. Generally, we conducted our experiments on 4 Linux servers with 8 Nvidia
RTX 3090 GPUs with 24 GB memory each. The presented experiments are compute-intensive which
led to experiments validating our theoretical propositions on rather small networks and datasets.
During the development, we conducted many scans over ensemble width and depth as well as datasets
over the course of several months. Despite heavily relying on PyTorch, we conducted NTK kernel
experiments with the following Github codebase. We thank the authors for providing this excellent
resource (https://github.com/google/neural-tangents).

Further details about our general setup and training specifications are not described in the text.
Missing details may be described in the accompanied code.

• We choose a learning rate η = 0.1 and trained all of our models with gradient descent and
momentum (0.9) for all (linearized) training experiments. Although the learning rate is
relatively high, we saw that the models trained with gradient descent align very well with
the kernel models.

• For the CNN, we always use filter size of 3 and padding. Every 2nd layer, we use a stride of
2. Before the last layer, we flatten the features and linearly project to the output. We always
use the NTK initialization as introduced above.

• For the SGD results in Table 1, we used a batchsize of 1000.
• Whenever we used kernel models and a small dataset (N=100), we restricted the problem to

be a binary classification problem.
• For the WRN 28-10 experiments, we used learning rate η = 0.03 and batchsize 128 the

standard network specifications as in https://github.com/hysts/pytorch_wrn, with momentum.
We train the model for 10 epochs for the cross entropy loss, and 30 for the MSE loss.

• For all models trained on the MSE loss, we use as target the centered one-hot encoding of
the class variable, as in [31].

• For the AUROC computation, we used the standard method from the SciPy package.

B.1 Additional empirical results

The following results are presented in the Appendix:

• Figure 5 and Table 3: Confirmation of the assumption used in Proposition 2.3 for MLP and
CNN respectively trained on a subset of MNIST and CIFAR10.

• Figure 6: R(f) for CNNs trained on a subset of CIFAR10 in support of Proposition 2.3.
• Table 4: AUROC for all OOD datasets i.e. SVHN, LSUN, TIN, iSUN, CIFAR100.
• Table 5: Predictive variance (on test set), test set accuracy and AUROC for kernel as well

as models trained with gradient descent on full MNIST (N=50000). The same trend as for
N=1000 is observed i.e. the gradient descent ensembles follow closely the linearly trained
ensembles behavior.

• Table 6: Test set accuracy and AUROC for (stochastic) linearly trained models as well as
models trained with (stochastic) gradient descent on a subset of MNIST (N=1000). We
observe tiny differences between the stochastic and its non-stochastic counterpart.

• Table B.1: Test set accuracy and AUROC for WRN 28-10 ensembles of size 8 trained
on CIFAR100. We trained the models with the cross entropy (CE) and MSE loss, for
respectively 10 and 30 epochs. For the MSE loss, the network output was regressed against
the one-hot encoding of the target class, centered to be of 0 mean and rescaled by a factor
10.

• Table B.1: Test set accuracy and AUROC for an AlexNet ensembles of size 8 trained on
FashionMNIST, with the cross entropy (CE) loss, for 50 epochs, with momentum.

For computing the AUROC values that play a central part in our empirical evaluation we simply
collect predictions from in-distribution i.e. the test dataset of the corresponding training dataset as

27

https://github.com/google/neural-tangents
https://github.com/hysts/pytorch_wrn


64 128 256 512 1024

h

2

0.2
V[
f

(x
)]

1/h Vi Vc Vcor

32 64 128 256

h

2

0.2

V[
f

(x
)]

1/h Vi Vc Vcor

64 128 256 512 1024

h

2

0.2

V[
f

(x
)]

1/h Vi Vc Vcor

32 64 128 256

h

2

0.2

V[
f

(x
)]

1/h Vi Vc Vcor

Figure 4: Verification of the scaling of 1/h of the variance terms influenced by the kernel noise as
well as 1/h2 of the residual. Although the theoretical result holds only for depth L = 2 (line plots),
the same scaling is observed for deeper networks as suggested by our informal result (L = 3 in
dashed lines, L = 5 in dashed-dotted lines). Upper Row: Predictive variance Vi,Vc, as well as Vcor

of an ensemble of MLPs (left) and CNN (right) of various depths and widths trained on a subset of
MNIST (N=100). Lower Row: Predictive variance Vi,Vc as well as Vcor of an ensemble of MLPs
(left) and CNN (right) of various depths and widths trained on a subset of CIFAR10 (N=100).

128 256 512 1024 2048

h

0.4

0.02||Θ
0
−

Θ
t
||/

(||
Θ

0
|||
|Θ
t
||)

1/h MNIST-L2 MNIST-L3

32 64 128 256 512

h

0.4

0.02

||Θ
0
−

Θ
t
||/

(||
Θ

0
|||
|Θ
t
||)

1/h CIFAR10-L2

Figure 5: Verification of scaling of 1/h of for the relative neural tangent kernel change. Left: MLPs
on a subset of MNIST (N=100) for depth L ∈ {2, 3}. Right: CNNs on a subset of CIFAR10 (N=100)
for depth L = 2. All plots are in log-log scale.

well as predictions from the out-of-distribution datasets which vary across setups, see above. To
compute per in- and out-of-distribution pair, we compute the auroc values with the help of the publicly
available sklearn package and its metrics.roc_auc_score function. We report the average over
the pairs.

Table 3: Further verification of scaling of 1/h of for the relative neural tangent kernel change.
∥Θ0 −Θt∥/∥Θ0∥ for trained MLPs on a subset of MNIST (N=500) for depth L ∈ {2, 3}.

Depth Width
512 1024 2048 4096

2 0.2214 0.1406 0.0676 0.0368

3 0.3500 0.2218 0.1226 0.0701

28



Table 4: Predictive variance, test set accuracy and AUROC for deep ensembles of size 10 of CNNs
(h = 256, L = 3) trained an a subset (N=1000) of CIFAR10. We indicate small standard deviations σ
obtained over 3 ensembles of size E with ±.00. In all experiments, the various disentangled models
show significant differences in behavior. All linearly trained models follow the gradient descent
models behavior tightly. When optimizing with SGD, isolating initial noise sources still affect the
ensemble behavior significantly and can lead to improved OOD detection as well as test set accuracy
in this more realistic settings.

Model CNN, CIFAR10, N=1000, E=10, η=0.1

V Test (%) C100 SVHN LSUN TIN iSUN

f lin 0.400±0.005 36.43±.90 0.537±.005 .532±.006 .809±.004 0.796±.003 .783±.004

f lin-c 0.106±0.001 37.20±.44 0.535±.002 .567±.006 .693±.001 0.689±.003 .674±.004

f lin-a 1.277±0.051 30.90±.53 0.526±.002 .510±.006 .764±.003 0.749±.004 .738±.000

f lin-i 0.443±0.008 32.85±.21 0.531±.001 .591±.003 .683±.001 0.681±.004 .660±.000

f gd 0.442±0.004 39.70±.52 0.534±.003 .516±.002 .789±.003 0.774±.001 .763±.004

f gd-c 0.112±0.001 37.47±.49 0.535±.002 .562±.004 .691±.004 0.683±.003 .670±.002

f gd-a 1.316±0.045 30.53±1.15 0.527±.002 .509±.004 .758±.005 0.746±.004 .734±.003

f gd-i 0.505±0.004 31.20±.14 0.524±.000 .583±.000 .656±.003 0.654±.007 .638±.003

Train CIFAR10, N=50000, E=5, batchsize=1000, η=0.1

V Test (%) C100 SVHN LSUN TIN iSUN

f sgd .03±.00 62.68 ±.36 .557±.00 .557±.01 .884±.00 .878±.00 .864±.00

f sgd-c .01±.00 57.03 ±.14 .548±.00 .554±.00 .791±.00 .791±.00 .781±.00

f sgd-a .19±.01 58.83 ±.22 .536±.00 .455 ±.00 .864±.00 .858±.00 .845±.00

Table 5: Test set accuracy and AUROC for deep ensembles of size 5 of MLPs (h = 1024, L = 3)
trained on full MNIST. We indicate small standard deviations σ obtained over 3 ensembles with ±.00.
In all experiments, the various disentangled models show significant differences in behavior. All
linearly trained models follow the gradient descent models behavior tightly even in this regime of full
MNIST.

Model MLP, MNIST, N=50000, η=0.1

V Test (%) FM EM KM

f sgd .08±.00 95.7±.1 .974±.01 .930±.00 .991±.00

f sgd-c .01±.00 94.4±.0 .924±.02 .873±.01 .962±.00

f sgd-a .22±.03 97.5±.1 .988±.00 .943±.00 .995±.00

f lin .05±.00 96.5±.1 .965±.01 .986±.00 .995±.00

f lin-c .01±.00 94.4±.0 .923±.01 .872±.02 .965±.00

f lin-a .23±.03 97.8±.0 .987±.00 .940±.00 .993±.00

128 512 1024

h

.2

.4

R
(f

)

L = 2 L = 3

Figure 6: R(f) of CNNs with multiple widths and depths (L ∈ {2, 3}) trained on a subset (100) on
CIFAR10. As predicted, we observe that R(f) remains bounded as the width increases.

29



Table 6: Comparison of gradient and stochastic gradient descent for deep ensembles of MLPs
(h = 1024, L = 3) trained on a subset (N=1000) of MNIST. For the linearly trained models,
gradients for the different batches are computed at initialization and applied stochastically. The two
different optimization methods lead to practically indistinguishable behavior measured through test
set accuracy and AUROC. The batchsize is set to 100 for the sgd models.

Model MLP, MNIST, N=1000, η=0.1

Test FM EM KM

f sgd-lin 91.60 .968 .922 .982
f sgd-lin-c 89.70 .930 .879 .965
f sgd-lin-a 91.20 .980 .923 .987

f sgd 91.10 .976 .924 .986
f sgd-c 89.70 .932 .882 .966
f sgd-a 90.50 .981 .923 .988

f lin 91.60 .968 .922 .982
f lin-c 89.70 .930 .879 .965
f lin-a 91.20 .980 .923 .987

f gd 91.10 .976 .923 .986
f gd-c 89.70 .932 .882 .966
f gd-a 90.50 .981 .923 .988

Table 7: Test set accuracy and AUROC for WRN 28-10 ensembles of size 8 trained on CIFAR100,
with the cross entropy (CE) and MSE loss. Standard deviations σ computed over 5 seeds are indicated
with ±. In bold are values that statistically significantly outperform f sgd with p < 0.2.

Model WRN 28-10, CIFAR100, batchsize 128, η=0.03

Test (%) C10 SVHN LSUN TIN iSUN

f sgd(CE) 67.57±0.37 0.703±0.003 0.776±0.005 0.735±0.003 0.742±0.004 0.741±0.003

f sgd-c(CE) 67.59±0.35 0.708±0.003 0.778±0.004 0.738±0.004 0.744±0.005 0.744±0.006

f sgd-a(CE) 67.26±0.11 0.705±0.003 0.773±0.003 0.735±0.003 0.741±0.001 0.742±0.002

f sgd(MSE) 63.00±0.15 0.704±0.003 0.741±0.005 0.715±0.004 0.739±0.005 0.722±0.005

f sgd-c(MSE) 62.90±0.06 0.705±0.002 0.746±0.004 0.720±0.005 0.743±0.004 0.725±0.006

f sgd-a(MSE) 62.19±0.24 0.710±0.004 0.740±0.009 0.729±0.006 0.749±0.004 0.730±0.004

Table 8: Test set accuracy and AUROC for an AlexNet ensembles of size 5 trained on FashionMNIST,
with the cross entropy (CE) loss. Standard deviations σ computed over 3 seeds are indicated with ±.
In bold are values that statistically significantly outperform f sgd with p < 0.2.

Model AlexNet, FMNIST, batchsize 512, η=0.01

Test (%) MNIST EMNIST KMNIST

f sgd(CE) 93.22±0.39 0.868±0.014 0.856±0.004 0.935±0.006

f sgd-c(CE) 93.21±0.13 0.883±0.007 0.867±.011 0.933±0.005

f sgd-a(CE) 93.12±0.09 0.880±0.011 0.838±0.006 0.926±0.003

0.10 0.05 0.00 0.05 0.10
0.10

0.05

0.00

0.05

0.10

0.0000
0.0016
0.0032
0.0048
0.0064
0.0080
0.0096
0.0112
0.0128
0.0144

0.10 0.05 0.00 0.05 0.10
0.10

0.05

0.00

0.05

0.10

0.00000
0.00008
0.00016
0.00024
0.00032
0.00040
0.00048
0.00056
0.00064

0.10 0.05 0.00 0.05 0.10
0.10

0.05

0.00

0.05

0.10

0.0000

0.0018

0.0036

0.0054

0.0072

0.0090

0.0108

0.0126

0.10 0.05 0.00 0.05 0.10
0.10

0.05

0.00

0.05

0.10

0.00000
0.00008
0.00016
0.00024
0.00032
0.00040
0.00048
0.00056
0.00064
0.00072

Figure 7: Left 2 plots: Empirically measured Va (left) and Vc (center left) using an ensemble of size
100 linearly trained 1 hidden layer MLPs with 512 hidden units trained on a single datapoint (green
point) with target 1 in the 2d space. Right 2 plots: analytically computed Va (center right) and Vc

(right) using the derivation in A.4.3.

30


