
Appendix for SNN-RAT: Robustness-enhanced Spiking
Neural Network through Regularized Adversarial

Training

Theorem 1. Given an L-layered SNN intended to inference T time-steps with θ as threshold, suppose
that there are Nl neurons in layer l for l = 1, 2, · · · , L. W l ∈ RNl×Nl−1 . For layer l, it satisfies:

D2(S
l, S̃l)2 ≤ 1

θ2
Λl

2
D2(S

l−1, S̃l−1)2 + Γl, (A1)

where Λl is a Lipschitz constant and Γl is a constant for layer l, which can be expressed as:

Λl = sup
s ̸=0,s∈ψNl−1

∥W ls∥2
∥s∥2

, (A2)

Γl =
NlT (T + 1)

λ

[
γl

θ
+

(
γl

θ

)2
]
, (A3)

where γl = sups̸=0,s∈χNl−1 ∥W ls∥∞+sups ̸=0,s∈χNl−1 ∥−W ls∥∞. χ = {0, 1}, ψ = {−1, 0, 1}.

Proposition 1. Given a weight matrix with real values W l ∈ RNl×Nl−1 . ψ = {−1, 0, 1}. It satisfies:

Λl = sup
s ̸=0,s∈ψNl−1

∥W ls∥2
∥s∥2

≤ ∥W l∥2 = σmax(W l), (A4)

where ∥W l∥2 is the induced l2 matrix norm, and σmax(W l) is the largest singular value of W l.

Proposition 2. Given a weight matrix with real values W l ∈ RNl×Nl−1 . χ = {0, 1}. It satisfies:

γl = sup
s ̸=0,s∈χNl−1

∥W ls∥∞ + sup
s ̸=0,s∈χNl−1

∥ −W ls∥∞ ≤ 2∥W l∥∞ ≤ 2
√
Nl−1∥W l∥2, (A5)

where ∥W l∥p is the induced lp matrix norm.

A Proofs

Proof for Theorem 1

Proof. For neurons following dynamics in Eq. 1-3 in the main text, Eq. 3 can be rewritten as:

ml(t) = λ(ml(t−)− sl(t)rl(t)), (A6)

where rl(t) represents the subtracted value by reset. When sl(t) = 1, rl(t)) = ml(t) ≥ θ; otherwise,
rl(t)) = 0. Thus, we have:

rl(t)sl(t) ≥ θsl(t). (A7)
By stacking Eq. 1 and Eq. A6, we have for t = 2, · · · , T :

ml(t)− λml(t− 1) = λ(W lsl−1(t)− sl(t)rl(t))

λml(t− 1)− λ2ml(t− 2) = λ2(W lsl−1(t− 1)− sl(t− 1)rl(t− 1))
(A8)
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Notice that the left sides of Eq. A8 can iteratively eliminate ml(t) in the T formulas. Usually the
initial membrane potential ml(0) is set to zero. Thus, we can obtain:

ml(T ) = W l
T∑
i=1

λT+1−isl−1(i)−
T∑
i=1

λT+1−isl(i)rl(i) (A9)

To simplify annotation,
∑t
i=1 λ

t+1−isl(i) is later denoted as hl(t). Thus, sl(t) = hl(t)−hl(t−1)
λ .

The weighted current W lsl−1(t) is naturally bounded by norms induced by l∞ norms. The upper
bound of currents in layer l is determined by (χ = {0, 1}):

ηl = sup
s ̸=0,s∈χNl−1

∥W ls∥∞ ≥ 0. (A10)

Similarly, the lower bound is determined by:

µl = inf
s ̸=0,s∈χNl−1

∥W ls∥∞. (A11)

For common cases where W l includes items of negative values, µl is negative and can be reformulated
as:

µl = −1 · sup
s ̸=0,s∈χNl−1

∥ −W ls∥∞ ≤ 0. (A12)

At timestep t, the reset mechanism of spike constrains ml(t) to be less than ηlt. Consider some
neuron receiving negative inputs all the time, ml(t) should be no less than µlt. Hence,

µlt ≤ W lhl−1(t)−
t∑
i=1

λt+1−isl(i)rl(i)

≤ W lhl−1(t)− θhl(t) ≤ ηlt.

(A13)

Thus, we have:
W lhl−1(t)− ηlt

θ
≤ hl(t) ≤ W lhl−1(t)− µlt

θ
. (A14)

So we can obtain:

sl(t)− s̃l(t) =
1

λ

[
hl(t)− hl(t− 1)− x̃l(t) + x̃l(t− 1)

]
≤ 2t

ηl − µl

λθ
+

1

θ
W l(sl−1(t)− s̃l−1(t)).

(A15)

Meanwhile, we have:
sl(t)− s̃l(t) ≤ 1, (A16)

and
1

θ
W l(sl−1(t)− s̃l−1(t)) ≤ ηl − µl

θ
. (A17)

Thus,

sl(t)− s̃l(t) +
1

θ
W l(sl−1(t)− s̃l−1(t)) ≤ 1 +

ηl − µl

θ
. (A18)

Combining Eq. A18 and Eq. A15, we obtain:

|sl(t)− s̃l(t)|2 − 1

θ2
|W l(sl−1(t)− s̃l−1(t))|2 ≤ 2t

λ

[
ηl − µl

θ
+

(
ηl − µl

θ

)2
]
. (A19)

For simplicity, we denote ηl − µl as γl. The calculation of ∥sl(t)− s̃l(t)∥22 should add the Nl nodes
up, which gives:

∥sl(t)− s̃l(t)∥22 =

Nl∑
i=1

|sli(t)− s̃li(t)|2

≤ 1

θ2
∥W l(sl−1(t)− s̃l−1(t))∥22 +

2Nlt

λ

[
γl

θ
+

(
γl

θ

)2
]
.

(A20)
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The l2 norm of weighted currents from previous layer l − 1 satisfies the following inequality:

∥W l(sl−1(t)− s̃l−1(t))∥22 ≤ Λl
2∥sl−1(t)− s̃l−1(t)∥22. (A21)

where Λl is the matrix norm induced by l2 norm (ψ = {−1, 0, 1}):

Λl = sup
s ̸=0,s∈ψNl−1

∥W ls∥2
∥s∥2

. (A22)

Hence, the l2 perturbation distance of spike train satisfies:

D2(S
l, S̃l)2 = ∥Sl − S̃l∥22

=

T∑
t=1

∥sl(t)− s̃l(t)∥22

≤ Γl +
1

θ2
Λl

2
D2(S

l−1, S̃l−1)2.

(A23)

where

Γl =
NlT (T + 1)

λ

[
ηl − µl

θ
+

(
ηl − µl

θ

)2
]
. (A24)

Proof for Proposition 1

Proof. Consider the induced matrix norm sup ∥W ls∥2

∥s∥2
from a discrete space s ̸= 0, s ∈ ψNl−1 where

ψ = {−1, 0, 1}, s ̸= 0 constrain the vector s not to be an all-zero vector. Now, let us examine the set
{s|s ̸= 0, s ∈ ψNl−1}. Each element of s can get the maximum absolute value 1, which means that
the set is in a hypersphere ∥s∥22 ≤ Nl−1. The expansion of domain leads to an possible increase of
supremum:

sup
s ̸=0,s∈ψNl−1

∥W ls∥2
∥s∥2

≤ sup
∥s∥2

2≤Nl−1

∥W ls∥2
∥s∥2

. (A25)

We rewrite the supremum over ∥s∥22 ≤ Nl−1 to the maximum of the traverse of the radius r.

sup
∥s∥2

2≤Nl−1

∥W ls∥2
∥s∥2

= max
r≤

√
Nl−1

sup
∥s∥2=r

∥W ls∥2
∥s∥2

. (A26)

By substituting ŝ = s/r into the right hand side of Eq. A26, we have:

max
r≤

√
Nl−1

sup
∥s∥2=r

∥W ls∥2
∥s∥2

= max
r≤

√
Nl−1

sup
∥ŝ∥2=1

r∥W lŝ∥2
r∥ŝ∥2

= max
r≤

√
Nl−1

sup
∥s∥2=1

∥W ls∥2
∥s∥2

= sup
∥s∥2=1

∥W ls∥2.

(A27)

According to theory of matrix norms [Malek-Shahmirzadi, 1983], sup∥s∥2=1 ∥W ls∥2 is actually
the spectral norm of W l and meanwhile the largest singular value of W l: σmax(W l). Combining
Eq. A25,A26,A27, we have:

sup
s ̸=0,s∈ψNl−1

∥W ls∥2
∥s∥2

≤ sup
∥s∥2=1

∥W ls∥2 = σmax(W l). (A28)

Proof for Proposition 2
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Proof. The set {s|s ̸= 0, s ∈ χNl−1 , χ = {0, 1}} is a subset of ∥s∥∞ = 1. Thus,

sup
s ̸=0,s∈χNl−1

∥W ls∥∞ ≤ sup
∥s∥∞=1

∥W ls∥∞ = sup
∥s∥∞=1

∥W ls∥∞
∥s∥∞

= ∥W l∥∞, (A29)

where ∥W l∥∞ is the induced l∞ matrix norm of W l. Similarly, we also have:

sup
s ̸=0,s∈χNl−1

∥ −W ls∥∞ ≤ sup
∥s∥∞=1

∥W ls∥∞ = ∥W l∥∞. (A30)

Based on the theory of norm equivalence, the following inequality holds: [Golub and Van Loan,
2013]:

∥W l∥∞ ≤
√
Nl−1∥W l∥2. (A31)

Thus, the following statement is satisfied:

sup
s ̸=0,s∈χNl−1

∥W ls∥∞ + sup
s ̸=0,s∈χNl−1

∥ −W ls∥∞ ≤ 2∥W l∥∞ ≤ 2
√
Nl−1∥W l∥2. (A32)

B Details of Implementation

The architectures used to illustrate the vulnerability in Sec. 3 of the main text are VGG-111 and
WideResNet-162 with inference timestep T=8. The leak factor λ is set to 1.0 in SNN. They are trained
on the CIFAR-10 and CIFAR-100 datasets [Krizhevsky et al., 2009]. In Sec. 5 of the main text, the
validation of our method is also based on the aforementioned two architectures. The training process
lasts for 200 epochs. Batch normalization are used in the network to overcome the gradient vanishing
or explosion for deep SNNs as suggested by Zheng et al. [2021]. In the training process, stochastic
gradient descent are deployed, and the initial learning rate is set to 0.1. The learning rate uses a cosine
annealing schedule with Tmax equaling the max number of epochs. The vanilla models are trained
without a regularized adversarial training scheme, so a decay of weights of 5e-4 is added to each
training iteration to improve the overall accuracy. The image data is first normalized by the means
and variances of the three channels and then fed into SNNs to trigger spikes. All the experiments are
conducted on the PyTorch platform [Paszke et al., 2019] on NVIDIA GeForce RTX 3090.

To overcome the non-differentiable problem and enable SNN training, the surrogate gradient function
is applied to supply gradients for training and BPTT attack.

∂sl(t)

∂ml(t−)
=

1

κ2
max

(
κ−

∣∣ml(t−)
∣∣ , 0) (A33)

In our implementation, we choose κ = 1.0 for all the experiments. Note that we adapt and modify
the implementation of gradient-based attacks of the torchattacks Python package [Kim, 2020] as we
need to perform successful attacks on SNNs.

C Comparison with State-of-the-art Work on Adversarial Robustness of SNN

We compare our methods with the state-of-the-art models and report the results in Tab. A1. One can
find that our proposed training scheme outperforms the others in terms of both clean accuracy and
perturbed accuracy. The evaluation is based on the VGG-11 experiments on the CIFAR-100 dataset.
The noise budget has been fixed to ϵ = 8/255 for FGSM and α = 0.01, step = 7 for PGD. The
attack is based on the surrogate gradient produced by BPTT. The performance of accuracy attacked
by FGSM is 25.86% for our work, higher than that proposed by Sharmin et al. [2020] (15.5%)
and Kundu et al. [2021] (22.0%). Apart from that, our clean accuracy (70.89%) is higher than that
proposed by Sharmin et al. [2020] (64.4%) and Kundu et al. [2021] (65.1%). This implies that our
proposed methods can bring better generalization compared to the SOTA robust models.

1The VGG-11 used follows the implementation in https://github.com/nitin-rathi/hybrid-snn-conversion.
2The WideResNet-16 used follows the implementation in https://github.com/xternalz/WideResNet-pytorch.

(MIT license)
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Table A1: Comapare with state-of-the-art work on adversarial robustness of SNN.

Our RAT scheme Sharmin et al. [2020] Kundu et al. [2021] Vanilla training

FGSM 25.86 15.5 22.0 5.30
PGD 10.38 6.3 7.5 0.02
Clean 70.89 64.4 65.1 73.33
Additional Cost Regularized Training - - -

Table A2: Checklist for characteristic behaviors caused by obfuscated and masked gradients.

Items to identify gradient obfuscation CBA BPTR BPTT

(1) Single-step attack performs better compared to iterative attacks Fail Pass Pass
(2) Black-box attacks performs better compared to white-box attacks NA Pass Pass
(3) Increasing perturbation bound can’t increase attack strength NA Pass Pass
(4) Unbounded attacks can’t reach ∼ 100% success NA Pass Pass
(5) Adversarial example can be found through random sampling NA Pass Pass

It is worth noting that although our training algorithm improves the robustness of SNNs, it comes
at a cost compared to the work of Sharmin et al. [2020] and Kundu et al. [2021]. The cost is
mainly reflected in the training time. First, our training includes time to generate adversarial noise.
Adversarial learning is a common scheme to improve robustness, and generating adversarial examples
using only BPTT differentiable approximation in SNN is a time-consuming operation. Our algorithm
mitigates the increase in training time by mixing in a faster yet efficient BPTR approximation. In
addition, the orthogonal regularization of the weights is computed every update, which also increases
the training time. Solutions to reduce the time consumption of regularization include sampling fewer
weights for regularizing, or reducing the number of regularization updates.

D Analysis of Gradient Obfuscation

We design and summarize three differentiable approximations, i.e. CBA, BPTT, BPTR, which can
be deployed in gradient-based attacks to show the vulnerability of SNNs. The main concern of the
gradient obfuscation lies in the inaccurate of updating gradients. In particular, the performance of
the three differentiable approximations was checked against the five tests that can identify gradient
obfuscation as done in Kundu et al. [2021]. Our analysis is mainly based on the quantification results
in Tab. 1 and Tab. 2 in the main text. Also, this will explain the reason why we choose BPTT and
BPTR in the procedure of the mixed training.

As shown in Tab. 1, for all the trials, the performance of single-step FGSM is worse than its iterative
counterpart PGD except for that of the WRN-16 experiment for CIFAR-100 (Attacked Accuracy:
FGSM 37.68% v.s. PGD 43.87%). Thus, the CBA approximation has the potential not to provide
powerful enough attacks.

Hence, the rest of the analysis is about BPTT and BPTR. The results in Tab. 1 and Tab. 2 certify
the success of BPTT and BPTR approximation in terms of Test(1) in Table R2. To verify Test(2) we
conduct black-box attacks on the proposed models and the vanilla ones. The black-box perturbation
performs weaker in Table 2, and Test(2) is satisfied. To verify Test(3)(4) we analyze VGG-11 on
CIFAR-10 with increasing attack bound. In Fig. A1, the classification accuracy decreases as we
increase ϵ and finally reaches an accuracy of random guessing. As suggested in Kundu et al. [2021],
Test(5) “can fail only if gradient-based attacks cannot provide adversarial examples for the model to
misclassify”. To sum up, we found no gradient obfuscation for the BPTT and BPTR approximation,
which are suitable for adversarial training and testing.

E Analysis of Computational Cost

The additional computational cost of SNN adversarial training is mainly reflected in the choice
of gradient approximation. Here we evaluate the computational time of adversarial testing. The
adversarial testing means that model should forward twice and backward once. During the tests, we
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Figure A1: Performance of untargeted FGSM attacks with different approximation. The red dashed
line represents the accuracy of random guess (10% for CIFAR-10).

Table A3: Ablation study and time cost for mixed adversarial training

Mixed AT BPTT AT BPTR AT

FGSM 45.23 48.93 22.0
RFGSM 64.61 68.15 7.5
Attack Cost (sec. per epoch) 25.48 38.09 13.23

fix the mini-batch size to 64 and run the test on a NVIDIA 3090 GPU. The results are presented in
Tab. A2. We find that among the three proposed approximations, CBA is the most efficient as it only
propagates through spiking neurons as if there is only ReLU activation. BPTR is almost as efficient
as CBA. Considering that BPTR is more powerful than CBA, BPTR is a fairly good attack for SNN.
Whereas, BPTT costs nearly 3 × of what CBA takes to complete testing.

cba bptr bptt
Approximation Method
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Figure A2: Computational time of adversarial testing.

F Societal Impact and Limitations

As our work is about evaluating and strengthening the robustness of SNN, there is no apparent
negative social impact. Our proposed method improves adversarial robustness, which has a far more
positive social impact. As regards limitations, our method may lose robustness when encountering
unseen adversarial attacks. As a result, adversarial training may require more types of attacks.
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