
A Proofs

In this section, we provide proofs of the main results stated in our work.
Theorem 1. Suppose that f : RD ! Rd is a deterministic function with corresponding continuously
differentiable smoothed function g(x) = E"⇠N (0,�2I)f(x+ "). Then if for all x, kf(x)k2 = 1, then

g(x) is L�Lipschitz in l2�norm with L =
q

2
⇡�2 .

Proof. It is known that everywhere differentiable function g(x) with Jacobian matrix Jg(x) :
(Jg(x))ij = @gi

@xj
is L�Lipschitz in l2�norm with L = sup

x2RD

kJg(x)k2, where kJg(x)k2 =

sup
v:kvk2=1

kJg(x) · vk2 is the spectral norm of Jg(x).

Taking into account the fact that

g(x) = E
"⇠N (0,�2I)

f(x+ ") =
1

(2⇡�2)n/2

Z

RD

f(x+ ") exp

✓
�k"k22

2�2

◆
d", (15)

we may derive its Jacobian matrix:

Jg = rg(x) = r E
"⇠N (0,�2I)

f(x+ ") = r
✓

1

(2⇡�2)n/2

Z

RD

f(x+ ") exp

✓
�k"k22

2�2

◆
d"

◆
=

(16)

= r
✓

1

(2⇡�2)n/2

Z

RD

f(y) exp

✓
�ky � xk22

2�2

◆
dy

◆
= (17)

=
1

M

Z

RD

f(y)(x� y)> exp

✓
�ky � xk22

2�2

◆
dy, (18)

where M = (2⇡�2)n/2�2
. In order to estimate the spectral norm of Jg , one can estimate the norm of

dot product with normalized vector v:

kJg · vk2 =

����
1

M

Z

RD

f(y)(x� y)> · v exp
✓
�ky � xk22

2�2

◆
dy

����
2

. (19)

Here, we apply a trick: it is possible to rotate vectors in dot product (x � y)> · v in such a way
that one of the resulting vectors will have one nonzero component after rotation (without loss of
generality, assume that this is the first component, e1). Namely, given a rotation matrix Q = Q(v)
that is unitary (QQ

> = I), the expression from Eq. 19 becomes

kJg · vk2 =

����
1

M

Z

RD

f(y)(x� y)>QQ
> · v exp

✓
�ky � xk22

2�2

◆
dy

����
2

. (20)

Now, since the rotation does not affect the l2�norm, kQ>
vk2 = kvk2 = 1 and thus Q>

v = e and
|e1| = 1. More than that, under the change of the variables z> = (x� y)>Q, the following holds:

• kz>k2 = k(x� y)>Qk2 = k(x� y)>k2 since rotation is l2�norm preserving operation;

• y = x�Qz;

• dz = �Qdy for the diffentials, leading to dy = �Q
>
dz.

Thus, expression from Eq. 20 becomes
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kJg · vk2 =

����
1

M

Z

RD

f(x�Qz)z>e exp

✓
�kzk22

2�2

◆
(�Q

>)dz

����
2

. (21)

Now, we bound the norm from Eq. 21 using Cauchy–Schwarz inequality:

kJg · vk2  1

M

Z

RD

����f(x�Qz)z>e exp

✓
�kzk22

2�2

◆
(�Q

>)

����
2

dz  (22)

 1

(2⇡�2)n/2�2

Z

RD

|z1| exp
✓
�kzk22

2�2

◆
dz =

1

�2
E

z⇠N (0,�2I)
|z1|. (23)

since kf(x)k2 = 1 8x and kQk2 = 1, and kzT ek2 = |z1|. Here z1 is the first component of z>e.

The expectation from Eq. 22 is known to be equal to �

q
2
⇡ , and, thus

kJg · vk2 
r

2

⇡�2
8v : kvk2 = 1. (24)

Taking a supremum over all unit vectors v, we immediately get L 
q

2
⇡�2 what finalizes the proof.

Theorem 2. (Adversarial embedding risk) Given an input image x 2 RD and the embedding
g : RD ! Rd the closest point on to decision boundary in the embedding space (see Figure 2) is
located at a distance (defined as adversarial embedding risk):

� = k�k2 =
kc2 � g(x)k22 � kc1 � g(x)k22

2kc2 � c1k22
, (25)

where c1 2 Rd and c2 2 Rd are the two closest prototypes. The value of � is the distance between
classifying embedding and the decision boundary between classes represented by c1 and c2. Note
that this is the minimum l2�distortion in the embedding space required to change the prediction of g.

Proof. For the convenience, redraw Figure 2 in the Figure 6 with labeled points.

c1

c2

g(x)

�

O

A

B

C

D

Figure 6: The direction of adversarial risk in the space of embeddings is always parallel to the vector
c1 � c2. This is also true for the case of kc1k2 6= kc2k2.
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In the Figure 6, O is the origin,
�!
OA = c1,

��!
OB = c2,

��!
OC = g(x),

��!
CD = �,

��!
AB = c2 � c1.

We need to solve the following problem:

min k��!CDk2 = k�k2 (26)

s.t. k��!BDk2  k��!ADk2 (27)

It is obvious that to satisfy minimality requirement we should consider k��!BDk2 = k��!ADk2. Thus we
have

��!
AB is perpendicular to the ray

��!
OD. Therefore, to minimize

��!
CD = �, we need to find distance

from C to the ray
��!
OD.

The closest distance is perpendicular to
��!
OD.

��!
AB ? ��!

OD
��!
CD ? ��!

OD

)
=) ��!

CD k ��!
AB (28)

=) � =
��!
CD = �

��!
AB

k��!ABk2
= �

c2 � c1

kc2 � c1k2
(29)

=) ��!
OD =

��!
OC +

��!
CD = g(x) + �

c2 � c1

kc2 � c1k2
(30)

=)
( ��!

AD =
��!
OD ��!

OA = g(x) + �
c2�c1

kc2�c1k2
� c1

��!
BD =

��!
OD ���!

OB = g(x) + �
c2�c1

kc2�c1k2
� c2

(31)

Solving equation k��!BDk2 = k��!ADk2 implies

kg(x) +�� c1k22 = kg(x) +�� c2k22 . (32)

kg(x)� c1k22 + k�k22 + 2(g(x)� c1)
T� = kg(x)� c2k22 + k�k22 + 2(g(x)� c2)

T� (33)

kg(x)� c1k22 + 2(g(x)� c1)
T� = kg(x)� c2k22 + 2(g(x)� c2)

T� (34)

2(g(x)� c1)
T�� 2(g(x)� c2)

T� = kg(x)� c2k22 � kg(x)� c1k22 (35)

2(c2 � c1)
T� = kg(x)� c2k22 � kg(x)� c1k22 (36)

Using the fact that � = �
c2�c1

kc2�c1k2
we find that

� = k�k2 =
kc2 � g(x)k22 � kc1 � g(x)k22

2kc2 � c1k22
. (37)

B Additional experiments

In this section, we provide the results of additional experiments conducted to ease the assessment of
our method.

B.1 The distribution of required sample size

In figure 7 we depict the histograms showing the distribution of the smallest sample size required to
reach the confidence level on each dataset. All the experiments were conducted with the following
parameters: the variance of additive noise � = 1.0, maximum number of samples n = 100000. Note
that for all the experiments and for all values ↵ of interest, the required number of samples is less
than 10000 for most of the input images.
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(a) Cub-200-2011 (b) CIFAR-FS (c) miniImageNet

Figure 7: Histogram of the required sample sizes, n  100000, � = 1.0.

B.2 Empirical robustness and effect of data augmentation

In this section, we assess our approach against random attacks, against the adversarial attack, and
evaluate the effect of the data augmentation during the baseline model training.

For each dataset, we have sampled a random subset S of 500 test images and used it as a test set.

The random attacks were conducted on the plain baseline model f. In this experiment, the input x of
the model was perturbed by a random noise � of the fixed magnitude. In this case, empirical robust
accuracy is computed as follows:

CA(S, ") =
|(x, y) 2 S : h(f(x)) = h(f(x+ �)) = y|

|S| , k�k2 = ". (38)

Here and below, h(·) corresponds to the classification rule from Section 5.3.

For the adversarial attack, the smoothed model g was attacked at input point x with the FGSM attack
[10]. Namely, given an approximation of the smoothed model in the form ĝ(x) = 1

n

Pn
i=1 f(x+ "i),

the additive perturbation is computed as follows:

�(x) = sign

 
1

n

nX

i=1

rxf(x+ "i)

!
, (39)

so the additive perturbation corresponds to the projection of the mean gradient. In this case, the
empirical robust accuracy looks as follows:

CA(S, ") =
|(x, y) 2 S : h(g(x)) = h(g(x+ �)) = y|

|S| , k�k2 = ". (40)

Also, we have evaluated the effect of the data augmentation during the training of the baseline model.
For all datasets for both 1�shot and 5�shot settings, we have trained new baseline models without
data augmentation and evaluated associated smoothed models.

In the figures 8-9, we report results of the experiments. For all the smoothed models, we fixed the
confidence level ↵ = 10�4 and number of samples n = 1000. The variance � of additive noise for
Cub-200-2011 and CIFAR-FS datasets is set � = 1.0, for miniImageNet dataset � = 0.5.

In the figures, SM (no aug) corresponds to the certified accuracy of the smoothed model with the
baseline model trained without augmentation, SM (aug) corresponds to the certified accuracy of the
smoothed model with the baseline model trained with augmentation, PM (random attack) corresponds
to the empirical robust accuracy of plain baseline model under random attack and SM (adv attack)
corresponds to the empirical robust accuracy of the smoothed model under adversarial attack.

From the pictures, we made several observations. Firstly, the augmentation of the baseline model
with an additive noise increases the empirical robustness of the smoothed model, so it is natural to
augment the data to have both better robustness and larger accuracy when there is no attack. Secondly,
even the baseline models could not be attacked with random additive perturbation. Although the fact
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(a) Cub-200-2011 (b) CIFAR-FS (c) miniImageNet

Figure 8: Certified accuracy of smoothed models, empirical robust accuracy of the plain model under
random attack and empirical robust accuracy of the smoothed model under adversarial attack, 1�shot
case.

(a) Cub-200-2011 (b) CIFAR-FS (c) miniImageNet

Figure 9: Certified accuracy of smoothed models, empirical robust accuracy of the plain model under
random attack and empirical robust accuracy of the smoothed model under adversarial attack, 5�shot
case.

that the probability of randomly generated additive noise being adversarial is low, it is interesting to
show that it holds for the prototypical networks too. Finally, we observe that even adversarial attack
is not effective against smoothed models.

Note that our theoretical guarantees are provided for the worst-case behavior of the smoothed models,
in practice, smoothed encoders may have very strong empirical robustness.

B.2.1 Adversarial attack on the smoothed model: FGSM vs PGD

It is important to mention that a one-step FGSM attack is not the best tool to assess the model’s
robustness. In this section, we report the results of additional experiments where we compare FGSM
and its multi-step version, PGD [31] (projected gradient descent).

In all experiments, we run PGD attack for s = 20 iterations. The attack norm on each iteration is s
times smaller than the one in the FGSM experiment; it is done to compare methods of attacks on
corresponding magnitudes. For all the smoothed models, we fixed the confidence level ↵ = 10�4 and
the number of samples n = 1000. The variance � of additive noise for Cub-200-2011 and CIFAR-FS
datasets is set � = 1.0, for miniImageNet dataset � = 0.5.

All the models were evaluated in 1�shot setting. Results are reported in the figure 10.

It is notable that a multi-step attack is more effective against a smoothed model, especially on larger
norms of perturbations. Still, the model performs well even against a PGD attack.
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(a) Cub-200-2011 (b) CIFAR-FS (c) miniImageNet

Figure 10: Certified accuracy of smoothed models, empirical robust accuracy of smoothed models
under FGSM and PGD attacks, 1�shot case.
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