A Computing AFAC points

In this appendix we prove Theorem 4] which states that AFAC points can be computed in polynomial
time.

We focus on the constrained optimization problem throughout this appendix. We will later
need the following lemma, which gives a simple bound on the magnitude of the Lagrange multipliers
of (Peon)-

Lemma 4. Ler (y,\) be such that |VyL(y,\)|| < e1. If o-LICQ holds at y, then ||\ <
o eIV W)

Proof. Let J := Vh(y). Since VL(y,\) = Vf(y)+JT\, and J is full rank, then
A = (UNT(VL(y,\)-Vf(y)), where J! is the pseudo-inverse of J. Hence ||\ <
e eIV O

A.1 The algorithm

Cartis et al. [14] proposed a method for computing g-th order critical points for ¢ € {1,2,3}.
However, they use a nonstandard notion of criticality which is not easy to translate into our setting.
We present here a slight modification of this algorithm that accommodates more general criticality
conditions.

Consider the least squares functions

v(y) = [R)I?  wty) = (Fly)-t)° + [h©)]*
We denote 11 = p(t, -) the function obtained by fixing the value of ¢. Algorithmbelow is a variant
of the method from [[14]]. It consists of two phases. The first phase attempts to find an approximately
feasible solution through the unconstrained problem min, v(y). If successful, the second phase
minimizes f while preserving feasibility. To do so, it solves a sequence of problems min,, u(tx, y),
where the values {¢x } ;>0 are decreasing.

Algorithm 1 Constrained optimization algorithm based on [|14]

Input: Initial point yo € R", tolerances eo € R, e R%, constant § € (0, 1).
Output: A point y € R™ and a number ¢ < f(y).

PHASE 1
y1 = local min,, v(y) starting with yq
to == f(y1)
if v(y1) > (deo)? then return (y1,t0)

PHASE 11

ty = fy) — (§—v(y1))'/?
for k =2,3,4,... do
Y := local miny pu(tx_1, y) starting with yz_q
if u(te_1,yx) < (0€o)? then > case (a)
tr = fyr) — (g —v(yr))'/?
if x (11, yx) < € then return (yg, tx)
itk 1) > (90)? & f(yr) < tr—1 then > case (b)
te = 2f(yx) — tk—1
if x (11, yx) < € then return (yg, tx)
if u(te_1,yx) > (0€0)? & f(yr) > tix_1 then > case ()
return (yk7 tk), with ¢, 1= tp_1

Algorithm relies on an inner method for solving the unconstrained problem min,, ¢)(y), where ® is
either v or 1y =pu(t, ). Given €= (ey, ..., €;) €RY, the inner method looks for a point y such that
x(¥,y) < €, for some criticality measure x = (X1, ---,Xq). We assume that the j-th component

x; (1, y) only involves derivatives {V¥)(y)}4<; up to order j. For instance, the AC-criticality
condition from (1)) corresponds to the case

x @, y) = (Ve ()|l, —min cig(V*(y)) ) . (10)
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Given an initial point y° and tolerances € € R%, the inner method produces iterates {y*}~ ;. We

assume that the final point 4 achieves these tolerances and that the objective function decreases
proportionately to N:

xW,yV)<e and  YP(y°) — YY) > Nryple), (11)

for some k., >0 and some function p. Hence, the number of iterations N is proportional to p(€)~".

The next theorem provides guarantees for Algorithm[I] Our proof closely follows that of [14] Thm.4.5]
but has the advantage that it applies to a general class of criticality measures, as opposed to [14],
which relies on a particular nonstandard measure of criticality. However our complexity is larger than
in [|14]] by a factor of eal.

Theorem 8. Assume that:

* The inner method satisfies (L1)) for the function v with constant k,,.
* The inner method satisfies (1)) for the function p, and the constant k,, is independent of t.
* There exists 3> €g and fiow € R such that f(y) > fiow for all y € Mg, where Mg := {y :

1P ()| <B}-
Then the total number of inner iterations made in Algorithm([I]is at most
p(e)™" (k' wyo) + eoriy’ (1=0)"" (f(y1) = frow+5)) . (12)
and the algorithm returns a pair (y,t) such that:
either t<fy), ()]l < €o, x(ney) <€ (132)
or t=f(y), [P(y)[| > deo, xi(vy) <e.  (13b)

A.2  Proof of Theorem

Let K be the number of outer iterations of Algorithm[I] Consider the sets of indices:
= {1} U{k : 2<k <K and case (a) is applied},
B := {k:2<k<K and case (b) is applied}.
The following lemma gives a few properties of Algorithm [I] Its proof is identical to [[14], Lem.3.1].
Lemma 5. If the algorithm reaches Phase II, then:

v(y) < ute, yr) < €, 0< flyr) — tx < co, fork > 1, (14)
wte, yp) = €2, tr—1 — tr > (1=0)eo, fork € A, (15)
1t ye) = p(te—1,yr), th—1 > tg, fork € B, (16)
pltr, yx) = (6e0)?, X (i Yr) < €, Jork =K. (7

Let (y,t) be the output of Algorithm [} and let us show (I3). Assume first that the algorithm
terminates in Phase I. Then y is a local minimum of v, v(y) > (d€p)?, and ¢t = f(y). Hence (I3b)
holds. Assume now that the algorithm terminates in Phase II. By (14) and (7, we have

t< fly),  (Beo)® <m(y)<es,  x(u,y) <e

If f(y) <t then ||h(y)]| <+/ue(y) <eo, so (13d) holds. Consider now the case that f(y) =¢. Note
that p:(y) =v(y), Viue(y) =Vr(y). Then x1(ue, y) = x1(v, y), as they only involve derivatives up

to order 1. Since ||h(y)|| = +/ut(y) > deo, then (I3b) holds.

We proceed to show that the number of inner iterations is bounded by (12). Each outer iteration k of
Algorithm T] calls the inner method once. Let N, be the number of inner iterations made in this call.

The total number of inner iterations is Zszl Nj.

We first analyze Phase I. The inner method is applied to the problem min,, v(y), starting with g and
terminating with y;. By (T1)), we have

v(yo) > v(yo) — v(y1) > N1k, pe).
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It follows that N1 < v(yo)/kup(€).

We proceed to Phase II. For each a € A, let n(a) be the next integer that lies in A. For the largest
a € A we define n(a) := K, where K is the final iteration. We can group the indices k > 2 as
follows:

{2,3,...,K} = U K,, K, :={a+1,a+2,...,n(a)}.
a€A

We will show that for any a € A we have that
N(K,) == Y Np < €§/ruple). (18)
kEK,

Consider an iteration k& € K,. The inner method is applied to min, p(tx—1,y), starting with yz_,
and terminating with yy. By (T1), we have

p(te—1,Yr—1) — p(tk—1,yx) > Nik,p(e€).
Observe that K, \ {n(a)} C B. By (I6), we have
p(te—1,yk) = p(te, ye)  for k€ Ko\ {n(a)}.
Also note that ((t,, y,) = €2 by (I3). Therefore,

6(2) > /J(taaya) - (n(a)_l yn(a))

_Z (tr—1,yk—1) — 1(te—1,Yk) ZNk@p

keK, keK,
By rearranging the above inequality we get (I8).

Let us now upper bound the cardinality of A. By (T3) and (T6) we have that t;,_1—ty is at least (1—8)eg
for k € A, and is positive for k € B. Also note that tg = f(y1) and tx > f(yx)—€0 > fiow—0

by (T4). Then
K

FW)=fowtB = to—tx = Y (toa—tk) = D> (to1—tr) > |Al(1-0)eo,

k=1 keA
and hence |A| < (f(y1)—fiow+B)/(1—0)eo.

Combining everything, we derive

v(yo) +f(y1)_flow+ﬁ. €2
— a€ = Kkyp(e) (1-6)eo K p(€)’

which is equal to (T2).

K
ZNk < N1+ |A]- majl(N(Ka) <

A.3 Proof of Theorem [

We finally show that AFAC points can be computed in polynomial time. Let €¢, €1, €2, v, R be as in
the statement of Theorem[d] We consider Algorithm|[I] with parameters

=1/2, q = 2, € := (e1,€2),
-1 -1
€y ‘= &g, €1 = RA Ep€1, €2 = lRA EpE2.
For the inner method we use the ARC algorithm from Theorem@, using the crltlcahty measure @)

Algorithm [[]returns a pair (y, ¢). The associated multiplier is X := (f(y)—t)~! h(y) € R™, which s
defined only if f(y) # t.

In order to apply Theorem I we have to check that the functions v and p; = u(t, ) are smooth
enough so that the inner algorithm satisfies (IT).

Lemma 6 ( [[14, Lem.4.1]). Assume that {ij}?:o, {th};’.zo are uniformly bounded and Lipschitz
continuous on a set D C R™. Then
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(i) {V7 1/}?:0 are uniformly bounded and Lipschitz continuous on D.

(i) {V7 11t }5_q are uniformly bounded and Lipschitz continuous on D N By, with By := {y :
| f(y)—t|<1}, and the constants are independent of t.

The above lemma shows that v is smooth on 95 and i, is smooth on Mig N By, with By := {y :
| f(y)—t|<1}. Note that all points y, produced by Algorithmlie in Mg N B, because of (T4). Since
v, j1y are sufficiently smooth, we can apply Theorem 3] (see also [13]]). We conclude that the inner
method satisfies (IT)) with

p(e) = min{e}, &3} = Q(min{ege?, efed}).
Hence, by Theorem I the total number of inner iterations is O(p(e)™!) =

O(max{e;?e;?,e5°€5°}). Since each inner iteration requires O(1) function evaluations
(see Theorem [3), then the total number of function evaluations has the same order of magnitude.

Let us see that the conditions (2) hold. Let (y, t) be the output of Algorithm 1} By Theorem 8] this
pair satisfies either (13a)) or (I3b). Let us see that (I3b) cannot occur. Assume that

1Pl > €/2, (V)] < e
Observe that ||h(y)|| <eo < by (14), and hence o-LICQ holds at y. Then
eeo < 20lh(y)ll < 2[Ihy) VA = Vel < e

Also note that
Ry < 5o(1+Ly)7" < o,
e1/e0 = Ry'ey < 3oer < 3o
The last two equations give a contradiction.
Then the output (y, t) satisfies (I3a). Hence, ¢t < f(y) and

MWl < €0, V@l < e, VZuly) = —ely.
Let o := (f(y)—t)~1, so that A = a h(y). It can be checked that a1, (y) = ||(1, \)||?. Note that
wi(y) > (e0/2)? by (T7), and hence
a = w2V < 260 (L))
The Lagrangian function L(y, A) = f(y)+A-h(x) is closely related to 1:(y). A simple calculation
gives that
VL(ya A) = - %vuf(y)v
VEL(y,N) = a (5V2uly)—J "),

where J := (gigg) is the augmented Jacobian.

19)

We proceed to verify (Za). We already have that ||h(y)|| < €o. Note that
IVLy. Ml = 5aVi@)l < e (LY e = BIA, )] e (20)
We claim that || (1, A)|| < Rx. By Lemma@and R '<0/2,e1<1, we have
INF < o7 BT all @M+ IV < sA+HIAD + o7 Ly
It follows that |[A[| < 1+2¢ 'Ly = Ry —1 and hence |(1,))|| < R,, as we claimed. Then
IVL(y, M| < e1 by @0).

We now verify (2b). Let u € R™ of unit norm such that || Ju|| <+, where J:= Vh(y). We need to
show that u” V2L(y, \)u > —e5. By (19), we have

WV Ly, Nu = a (5u" V2 ui(y)u — || Jul®). @1)
Note that u” V21, (y)u > —e2 = —3 R} 'epeo. We bound || Ju| next:

Jj= Vi) _ (VL(y,\) i -\
Vh(y) 0 J )
[ Jull < VLN + 1@ Tull < er+y (LA < 2Ry eoea)/?,
where we used that £1 and yR), are at most 5 (R} 'eoe2)'/? by (3). Hence
a (3u" V2 (y)u— || Jull®) > =5 M I(LA)]) - (3R "0 ea) > —ea.
Together with 1)), we get that u” V2 L(y, \)u > —e,.

17



B Proofs from Section [l

Proof of LemmaB] Let L(X) := f(X) — S e X, with S := S(X). This is a convex function with
VL(X) =0, so X is its global minimum. Note that

f(X) = L(X)+SeX > L(X) - (e21n) ¢ X > L(X) — 2| X[V/n,
LX) = f(X) =5 X = f(X)— 5K = f(X)—=1v/m

Since L(X) > L(X), the result follows from the above equations. O
The next lemma is an analogue of Lemma 2]

Lemma 7. Let Y be an (g1,€2)-AC point of (BM,). If 0,(Y) < \/e2/Ra, then YYT is €'~
approximately optimal for (SDP,J), with €' := (0, Rye1, 5e2).

Proof. LetY satisfy (9), and let us show that Y'Y'7 satisfies (§). The first-order condition is easy to
check. We proceed to show that u” S(X)u> —¢), for any unit vector u € R™. Let z € R? be a unit
vector such that | Y z|| = 0, (Y"). The matrix U :=uz" satisfies |U||=1and |[UYT|| < ||Ju|||Y 2| =

0,(Y). Then |A(UYT)|| < /25 and by (9B) we have
u'S(X)u=S(YYT) e UUT > —£5—4||A(UYT)|?> > —5es. O
Proof of Proposition2} As A € ., there is a spurious -AC point Y. By Lemma([7} we must have

0,(Y)>/22/Ra. Note that |[S(YY 7)Y || <e;. Together with (), we conclude that S(YYT) €
tubes(Sy_,). Let A := 2(A(Y'Y”)—b). Note that ||A|| > 2&, and

X =2 AYYT) = bl| < 2(JJAIIY]* + [1B])) < Ra.
Then A € Dy and A*(X) = S(YYT) € tubes(S}:_,). O

Proof of Theorem[7} The result in Proposition 2] can be expressed as:
e C {A€(S")™:0 € tubes(S;_,)+A"(Dr)},

which is closer to the formula in Proposition Consider an e-net N of Dy, where € :== §/R 4. It
suffices to take (3R, /€)™ = (3r/8)™ points for the e-net. A reasoning similar to (7)) gives

e C {A€ (S")™:0 € tubeys (S, _,) +A"(N))}

- U {A e (S")™: A*(() € tubeys(Sy_,))}-
LeEN

Let £ € NV, and consider the linear map
¢do: (SM)™ = S", A A*().

This is a surjective map. Moreover, the scaled map Hiél\ ¢¢ gives an isometry (ker ¢pp)~ = S™. It
follows that

(ZSZ(A) S tub625(82_p) < A€ tubeg(;/w” ((j);l(Sﬁ_p)) .
Since ||£]| > 2¢¢, we conclude that

e C | tubese, (Ve),  with Vg == ¢, ' (S)_,).
LeN

The final part of the proof is similar to the one in Theoremlﬂ The variety V; is a cylinder over S}
so it has the same codimension 7(p) and degree n—p+1asS};_,
dimension 7(n)m. Using the union bound and Theorem [6] we get

_p’
The ambient space is (S™)™, of

Pr[A € o] < #N - PrlA € tubes o, (V2)] < (35/0)™ - de (2n°md fozo) . O

18



C Explicit complexity estimates

In this section we provide explicit complexity estimates for Theorems|[T|and[2] We first introduce some
notation. Consider constants v > 3 > 0 and sets M, D M, where M, := {V : |AYYT)-b| <
t}. We assume that § is small enough so that p-LICQ holds globally on 9t. On the other hand,
o > 0 is sufficiently large so that a point Yy € 901, is always known. We further assume that 91,
is compact. This is satisfied, for instance, when the feasible set of is compact and satisfies
Slater’s condition, as shown next.

Lemma 8. Assume that the set {X : A(X)=b, X =0} is compact and satisfies Slater’s condition
(i.e, 3X : A(X)=b, X =0). Then M, is compact for any t > 0.

Proof. Consider the SDP max{/ e X : A(X)=b, X =0} and its dual min{b7\ : A%(\)=TI}. Let
R2 be the primal optimal value, which is finite by compactness. Strong duality holds by Slater’s
condition. So the dual optimum is attained at some A, and A*(\) = I, bI'N = RS. GivenY € M;,

Y[ =TeYYT <A*(XN) e YY" =X-AYYT) =X-b+ A (AYY")=b) < R} +t||All.
We conclude that M; is contained in a ball of radius (RZ + t||A||)'/2. O

Notice that a suitable value « can be obtained from an arbitrary point Yy € R™*P. On the other hand,
B should be Q(gmin), where gy is the smallest LICQ constant among all feasible points Y € 01,.

C.1 Solving

Assume that an approximately feasible solution Y} is known. Consider the following setting:

* psatisfies 7(p) > (14n)m-+nt for some given constants n,t ER .

» A, b are fixed and C is uniformly distributed on a ball B, (C).

* d3 € R, such that: Mg is compact, a point Yy € Mg is known, and o-LICQ holds on 3.
* Ry,L; € Ry are constants that bound ||Y|| and ||CY||, for Y € Mig.

* (BM) is solved with the method from Theorem [4] initialized at Yj.

The next theorem shows that the Burer-Monteiro method solves in polynomial time with high
probability.
Theorem 9. Let p€ (0,1] arbitrary, and let
Eoi="7:=¢€ & =€, g£9:= 16R§ €,
with € := K~ p(o/4n3)11/n,
where Ry and K are the problem dependent constants

Ry:=2+20"'Ly, K:=|A|Br)",  r:=RyAl.

The algorithm from Theorem returns a pair (Y, \) after O(e~©) function evaluations. With probabil-
ity at least 1 —O(a /n®)!, the pair (YY T, \) is (¢, €* Ry, 16 R5 €)-approximately optimal for (SDP).

Proof. The smoothness assumptions in Theoremare satisfied since Mg is compact. Then (Y, A) is
an (g, v)-AFAC pair with ||\|| < Ry. Note that

§ = el All/y = €|l Al < (1/35)Y7 (0/2en3)+1/n

is as in Corollary [Il Hence (YY7T,\) is (go,e1 Ry, £2)-approximately optimal for (SDP) with
probability 1—O(a/n?)t. O

The above theorem shows that Y'Y obtained is approximately optimal for the perturbed prob-
lem with high probability. Let (SDP) denote the SDP problem in which we use the unperturbed
cost matrix C. We can also show that Y'Y is also approximately optimal for (SDP).
Corollary 3. Consider the setup of Theorem @] With probability at least 1 —O (o /n3)!, the pair
(YYT \) is (], €7, €¥)-approximately optimal for (SDP), where £}, €/, €4 = O(0).
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Proof. Let X :=YYT. We know that (X, \) is (), €}, €} )-approximately optimal for (SDP) with
high probability. Let S := C'—A*()\), S := C'—A*(\) be the slack matrices for and (SDP).
Observe that

IAMX)—=bll < &y < O(o), (22)

ISX|| < |SX] + I(S=8)X|| < e} + ol X]| < O(0), (23)

S = S —||S=8|I, = —(eh+o)I, = —O(0)I,. (24)

So the optimality conditions of (SDP) hold with (e, ¢} = O(o). O

C.2 Solving (SDP})
Consider the following setting:

* psatisfies 7(p) > (14+n)m-+nt for some given constants n,t ER .

* bis fixed and A is uniformly distributed on a ball B,(.A).

* Ja € R, and a matrix Yj such that 91, is compact and Yy € 91,

* Ry € R, is a constant that bounds || Y|, for Y € 9,

* (B is solved with the method from Theorem [3]initialized at Yj.
Theorem 10. Let p< (0, 1] arbitrary, and let

g1 =672 gyi=¢ e:=K! (pa2/2n3m)1+1/n,
where K := R4 (3,%)1/’7, expressed in terms of
k= 2(RaRY +|b|)Ra, Ra = |A|+o.

The algorithm from Theorem returns a point Y after O(e=3) function evaluations. With probability
at least 1—O(0% /n®m)?, we have that YYT is (p 0, €3/ Ry , 5¢)-approximately optimal for (SDPJ).

Proof. The smoothness assumptions in Theorem [3|are satisfied since 901, is compact. Therefore Y is
an (g1, €2)-AC point. Note that

d:=e1Ra/\/ea=€¢Ras = (1/3/{)1/"(p02/2n3m)1+1/"
is as in Corollary 2l Hence YY7 is (po,e; Ry, 5e2)-approximately optimal for (SDP;) with
probability 1—O(a? /n3m). O
Remark. The above theorem holds even if the optimal value of (SDP,) is nonzero. In the special
case that the optimal value is zero, then by Lemma 3| we have that
IAQYYT)=b|| < max{ep, n'/* () +epRy )%},

where &) = pa, £} = /2Ry, £, = 5¢ are the optimality constants from Theorem [10}

Let (SDP;s) denote the instance of problem in which we use the unperturbed constraints A.
We next show that Y'Y T is also approximately optimal for (SDPy).

Corollary 4. Consider the setup of Theorem With probability at least 1—0(c? /n®>m)?, the
matrix YYT is (e]], €/, €4)-approximately optimal for (SDP,s), where £}, €Y, e = O(0).

Proof. We know that the matrix X := YY7T is (), &/, £5)-approximately optimal for with
high probability. There are two cases. The first case is that ||.A(X)—b|| < &(, which implies that

I AX) bl < [AX)=b]l + [(A-A)X]|| < & + ]| X]| < O(0).

This means that ef = O(o). Consider the variables:

Ai=2(A(X)=-b), S:=A"(N),

Ai=2(A(X)-b), S§:=A*(N).

The second case is that | SX|| < &1, .S = —ea1,. Note that

A=Al < 2 A=A X] < O(0),

[S=SII < [[A" A=) + [[(A"=A")Al < O(0).

From (23) and (24) we get that ||SX|| <O(o) and S = —O(0)I,,. So the optimality conditions of
(SDPy,) hold with ), €/, e = O(o). O
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