
A Computing AFAC points

In this appendix we prove Theorem 4, which states that AFAC points can be computed in polynomial
time.

We focus on the constrained optimization problem (Pcon) throughout this appendix. We will later
need the following lemma, which gives a simple bound on the magnitude of the Lagrange multipliers
of (Pcon).
Lemma 4. Let (y, λ) be such that ∥∇yL(y, λ)∥ ≤ ε1. If ϱ-LICQ holds at y, then ∥λ∥ ≤
ϱ−1(ε1+∥∇f(y)∥).

Proof. Let J := ∇h(y). Since ∇L(y, λ) = ∇f(y)+JTλ, and J is full rank, then
λ = (J†)T (∇L(y, λ)−∇f(y)), where J† is the pseudo-inverse of J . Hence ∥λ∥ ≤
ϱ−1(ε1+∥∇f(y)∥).

A.1 The algorithm

Cartis et al. [14] proposed a method for computing q-th order critical points for q ∈ {1, 2, 3}.
However, they use a nonstandard notion of criticality which is not easy to translate into our setting.
We present here a slight modification of this algorithm that accommodates more general criticality
conditions.

Consider the least squares functions

ν(y) := ∥h(y)∥2, µ(t, y) := (f(y)−t)2 + ∥h(y)∥2.
We denote µt = µ(t, ·) the function obtained by fixing the value of t. Algorithm 1 below is a variant
of the method from [14]. It consists of two phases. The first phase attempts to find an approximately
feasible solution through the unconstrained problem miny ν(y). If successful, the second phase
minimizes f while preserving feasibility. To do so, it solves a sequence of problems miny µ(tk, y),
where the values {tk}k≥0 are decreasing.

Algorithm 1 Constrained optimization algorithm based on [14]

Input: Initial point y0∈Rn, tolerances ϵ0∈R+, ϵ∈Rq+, constant δ∈(0, 1).
Output: A point y ∈ Rn and a number t ≤ f(y).

PHASE I
y1 := localminy ν(y) starting with y0
t0 := f(y1)
if ν(y1) > (δϵ0)

2 then return (y1, t0)

PHASE II
t1 := f(y1)− (ϵ20−ν(y1))1/2
for k = 2, 3, 4, . . . do

yk := localminy µ(tk−1, y) starting with yk−1

if µ(tk−1, yk) < (δϵ0)
2 then ▷ case (a)

tk := f(yk)− (ϵ20−ν(yk))1/2
if χ(µtk , yk) ≤ ϵ then return (yk, tk)

if µ(tk−1, yk) ≥ (δϵ0)
2 & f(yk) < tk−1 then ▷ case (b)

tk := 2f(yk)− tk−1

if χ(µtk , yk) ≤ ϵ then return (yk, tk)

if µ(tk−1, yk) ≥ (δϵ0)
2 & f(yk) ≥ tk−1 then ▷ case (c)

return (yk, tk), with tk := tk−1

Algorithm 1 relies on an inner method for solving the unconstrained problem miny ψ(y), where ψ is
either ν or µt=µ(t, ·). Given ϵ=(ϵ1, . . . , ϵq)∈Rq+, the inner method looks for a point y such that
χ(ψ, y) ≤ ϵ, for some criticality measure χ = (χ1, . . . , χq). We assume that the j-th component
χj(ψ, y) only involves derivatives {∇dψ(y)}d≤j up to order j. For instance, the AC-criticality
condition from (1) corresponds to the case

χAC(ψ, y) :=
(
∥∇ψ(y)∥, −min eig(∇2ψ(y))

)
. (10)
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Given an initial point y0 and tolerances ϵ∈Rq+, the inner method produces iterates {yi}Ni=1. We
assume that the final point yN achieves these tolerances and that the objective function decreases
proportionately to N :

χ(ψ, yN ) ≤ ϵ and ψ(y0)− ψ(yN ) ≥ N κψ p(ϵ), (11)

for some κψ>0 and some function p. Hence, the number of iterations N is proportional to p(ϵ)−1.

The next theorem provides guarantees for Algorithm 1. Our proof closely follows that of [14, Thm.4.5]
but has the advantage that it applies to a general class of criticality measures, as opposed to [14],
which relies on a particular nonstandard measure of criticality. However our complexity is larger than
in [14] by a factor of ϵ−1

0 .
Theorem 8. Assume that:

• The inner method satisfies (11) for the function ν with constant κν .

• The inner method satisfies (11) for the function µt, and the constant κµ is independent of t.

• There exists β>ϵ0 and flow∈R such that f(y)≥flow for all y ∈ Mβ , where Mβ := {y :
∥h(y)∥≤β}.

Then the total number of inner iterations made in Algorithm 1 is at most

p(ϵ)−1
(
κ−1
ν ν(y0) + ϵ0 κ

−1
µ (1−δ)−1 (f(y1)−flow+β)

)
, (12)

and the algorithm returns a pair (y, t) such that:

either t < f(y), ∥h(y)∥ ≤ ϵ0, χ(µt, y) ≤ ϵ, (13a)
or t = f(y), ∥h(y)∥ > δϵ0, χ1(ν, y) ≤ ϵ1. (13b)

A.2 Proof of Theorem 8

Let K be the number of outer iterations of Algorithm 1. Consider the sets of indices:

A := {1} ∪ {k : 2≤k≤K and case (a) is applied},
B := {k : 2≤k≤K and case (b) is applied}.

The following lemma gives a few properties of Algorithm 1. Its proof is identical to [14, Lem.3.1].
Lemma 5. If the algorithm reaches Phase II, then:

ν(yk) ≤ µ(tk, yk) ≤ ϵ20, 0 ≤ f(yk)− tk ≤ ϵ0, for k ≥ 1, (14)

µ(tk, yk) = ϵ20, tk−1 − tk ≥ (1−δ)ϵ0, for k ∈ A, (15)
µ(tk, yk) = µ(tk−1, yk), tk−1 > tk, for k ∈ B, (16)

µ(tk, yk) ≥ (δϵ0)
2, χ(µtk , yk) ≤ ϵ, for k = K. (17)

Let (y, t) be the output of Algorithm 1, and let us show (13). Assume first that the algorithm
terminates in Phase I. Then y is a local minimum of ν, ν(y)> (δϵ0)

2, and t= f(y). Hence (13b)
holds. Assume now that the algorithm terminates in Phase II. By (14) and (17), we have

t ≤ f(y), (δϵ0)
2 ≤ µt(y)≤ϵ20, χ(µt, y) ≤ ϵ.

If f(y)<t then ∥h(y)∥≤
√
µt(y)≤ ϵ0, so (13a) holds. Consider now the case that f(y)= t. Note

that µt(y)=ν(y), ∇µt(y)=∇ν(y). Then χ1(µt, y)=χ1(ν, y), as they only involve derivatives up
to order 1. Since ∥h(y)∥=

√
µt(y)≥δϵ0, then (13b) holds.

We proceed to show that the number of inner iterations is bounded by (12). Each outer iteration k of
Algorithm 1 calls the inner method once. Let Nk be the number of inner iterations made in this call.
The total number of inner iterations is

∑K
k=1Nk.

We first analyze Phase I. The inner method is applied to the problem miny ν(y), starting with y0 and
terminating with y1. By (11), we have

ν(y0) ≥ ν(y0)− ν(y1) ≥ N1 κν p(ϵ).
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It follows that N1 ≤ ν(y0)/κνp(ϵ).

We proceed to Phase II. For each a ∈ A, let n(a) be the next integer that lies in A. For the largest
a ∈ A we define n(a) := K, where K is the final iteration. We can group the indices k ≥ 2 as
follows:

{2, 3, . . . ,K} =
⋃
a∈A

Ka, Ka := {a+1, a+2, . . . , n(a)}.

We will show that for any a ∈ A we have that

N(Ka) :=
∑
k∈Ka

Nk ≤ ϵ20/κµp(ϵ). (18)

Consider an iteration k ∈ Ka. The inner method is applied to miny µ(tk−1, y), starting with yk−1

and terminating with yk. By (11), we have

µ(tk−1, yk−1)− µ(tk−1, yk) ≥ Nk κµ p(ϵ).

Observe that Ka \ {n(a)} ⊂ B. By (16), we have

µ(tk−1, yk) = µ(tk, yk) for k ∈ Ka \ {n(a)}.

Also note that µ(ta, ya) = ϵ20 by (15). Therefore,

ϵ20 ≥ µ(ta, ya)− µ(tn(a)−1, yn(a))

=
∑
k∈Ka

µ(tk−1, yk−1)− µ(tk−1, yk) ≥
∑
k∈Ka

Nkκµp(ϵ).

By rearranging the above inequality we get (18).

Let us now upper bound the cardinality ofA. By (15) and (16) we have that tk−1−tk is at least (1−δ)ϵ0
for k ∈ A, and is positive for k ∈ B. Also note that t0 = f(y1) and tK ≥ f(yK)−ϵ0 ≥ flow−β
by (14). Then

f(y1)−flow+β ≥ t0−tK =

K∑
k=1

(tk−1−tk) ≥
∑
k∈A

(tk−1−tk) ≥ |A| (1−δ)ϵ0,

and hence |A| ≤ (f(y1)−flow+β)/(1−δ)ϵ0.

Combining everything, we derive

K∑
k=1

Nk ≤ N1 + |A| ·max
a∈A

N(Ka) ≤ ν(y0)

κνp(ϵ)
+
f(y1)−flow+β

(1−δ)ϵ0
· ϵ20
κµ p(ϵ)

,

which is equal to (12).

A.3 Proof of Theorem 4

We finally show that AFAC points can be computed in polynomial time. Let ε0, ε1, ε2, γ, Rλ be as in
the statement of Theorem 4. We consider Algorithm 1 with parameters

δ := 1/2, q := 2, ϵ := (ϵ1, ϵ2),

ϵ0 := ε0, ϵ1 := R−1
λ ε0 ε1, ϵ2 := 1

2R
−1
λ ε0 ε2.

For the inner method we use the ARC algorithm from Theorem 3, using the criticality measure (10).
Algorithm 1 returns a pair (y, t). The associated multiplier is λ := (f(y)−t)−1 h(y) ∈ Rm, which is
defined only if f(y) ̸= t.

In order to apply Theorem 8, we have to check that the functions ν and µt = µ(t, ·) are smooth
enough so that the inner algorithm satisfies (11).
Lemma 6 ( [14, Lem.4.1]). Assume that {∇jf}qj=0, {∇jh}qj=0 are uniformly bounded and Lipschitz
continuous on a set D ⊂ Rn. Then
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(i) {∇jν}qj=0 are uniformly bounded and Lipschitz continuous on D.

(ii) {∇jµt}qj=0 are uniformly bounded and Lipschitz continuous on D ∩ Bt, with Bt := {y :

|f(y)−t|≤1}, and the constants are independent of t.

The above lemma shows that ν is smooth on Mβ and µt is smooth on Mβ ∩ Bt, with Bt := {y :
|f(y)−t|≤1}. Note that all points yk produced by Algorithm 1 lie in Mβ ∩Bt because of (14). Since
ν, µt are sufficiently smooth, we can apply Theorem 3 (see also [15]). We conclude that the inner
method satisfies (11) with

p(ϵ) = min{ϵ21, ϵ32} = Ω(min{ε20 ε21, ε30 ε32}).
Hence, by Theorem 8, the total number of inner iterations is O(p(ϵ)−1) =
O(max{ε−2

0 ε−2
1 , ε−3

0 ε−3
2 }). Since each inner iteration requires O(1) function evaluations

(see Theorem 3), then the total number of function evaluations has the same order of magnitude.

Let us see that the conditions (2) hold. Let (y, t) be the output of Algorithm 1. By Theorem 8, this
pair satisfies either (13a) or (13b). Let us see that (13b) cannot occur. Assume that

∥h(y)∥ > ϵ0/2, ∥∇ν(y)∥ ≤ ϵ1.

Observe that ∥h(y)∥≤ϵ0≤β by (14), and hence ϱ-LICQ holds at y. Then
ϱ ϵ0 < 2 ϱ∥h(y)∥ ≤ 2 ∥h(y)T∇h(y)∥ = ∥∇ν(y)∥ ≤ ϵ1.

Also note that
R−1
λ ≤ 1

2ϱ(1+Lf )
−1 ≤ 1

2ϱ,

ϵ1/ϵ0 = R−1
λ ε1 ≤ 1

2ϱ ε1 ≤ 1
2ϱ.

The last two equations give a contradiction.

Then the output (y, t) satisfies (13a). Hence, t < f(y) and
∥h(y)∥ ≤ ϵ0, ∥∇µt(y)∥ ≤ ϵ1, ∇2µt(y) ⪰ −ϵ2In.

Let α := (f(y)−t)−1, so that λ = αh(y). It can be checked that α2µt(y) = ∥(1, λ)∥2. Note that
µt(y) ≥ (ϵ0/2)

2 by (17), and hence

α = µt(y)
−1/2 ∥(1, λ)∥ ≤ 2 ε−1

0 ∥(1, λ)∥.
The Lagrangian function L(y, λ)=f(y)+λ·h(x) is closely related to µt(y). A simple calculation
gives that

∇L(y, λ) = α · 1
2∇µt(y),

∇2L(y, λ) = α
(
1
2∇

2µt(y)−J̃ T J̃
)
,

(19)

where J̃ :=
(

∇f(y)
∇h(y)

)
is the augmented Jacobian.

We proceed to verify (2a). We already have that ∥h(y)∥ ≤ ε0. Note that
∥∇L(y, λ)∥ = 1

2 α ∥∇µt(y)∥ ≤ ε−1
0 ∥(1, λ)∥ ϵ1 = R−1

λ ∥(1, λ)∥ ε1. (20)

We claim that ∥(1, λ)∥≤Rλ. By Lemma 4 and R−1
λ ≤ϱ/2, ε1≤1, we have

∥λ∥ ≤ ϱ−1 (R−1
λ ε1∥(1, λ)∥+ ∥∇f(y)∥) ≤ 1

2 (1+∥λ∥) + ϱ−1Lf .

It follows that ∥λ∥ ≤ 1+2ϱ−1Lf = Rλ−1 and hence ∥(1, λ)∥ ≤ Rλ, as we claimed. Then
∥∇L(y, λ)∥ ≤ ε1 by (20).

We now verify (2b). Let u∈Rn of unit norm such that ∥Ju∥≤γ, where J :=∇h(y). We need to
show that uT∇2L(y, λ)u ≥ −ε2. By (19), we have

uT∇2L(y, λ)u = α ( 12u
T∇2µt(y)u− ∥J̃u∥2). (21)

Note that uT∇2µt(y)u ≥ −ϵ2 = − 1
2R

−1
λ ε0ε2. We bound ∥J̃u∥ next:

J̃ =

(
∇f(y)
∇h(y)

)
=

(
∇L(y, λ)

0

)
+

(
−λTJ
J

)
,

∥J̃u∥ ≤ ∥∇L(y, λ)∥+ ∥(1, λ)∥ ∥Ju∥ ≤ ε1 + γ ∥(1, λ)∥ ≤ 1
2 (R

−1
λ ε0 ε2)

1/2,

where we used that ε1 and γRλ are at most 1
4 (R

−1
λ ε0ε2)

1/2 by (3). Hence

α ( 12u
T∇2µt(y)u− ∥J̃u∥2) ≥ −(2ε−1

0 ∥(1, λ)∥) · ( 12R
−1
λ ε0 ε2) ≥ −ε2.

Together with (21), we get that uT∇2L(y, λ)u ≥ −ε2.
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B Proofs from Section 4

Proof of Lemma 3. Let L(X) := f(X)− S̄ •X , with S̄ := S(X̄). This is a convex function with
∇L(X̄) = 0, so X̄ is its global minimum. Note that

f(X) = L(X) + S̄ •X ≥ L(X)− (ε2In) •X ≥ L(X)− ε2∥X∥
√
n,

L(X̄) = f(X̄)− S̄ • X̄ ≥ f(X̄)− ∥S̄X̄∥∗ ≥ f(X̄)− ε1
√
n.

Since L(X) ≥ L(X̄), the result follows from the above equations.

The next lemma is an analogue of Lemma 2.

Lemma 7. Let Y be an (ε1, ε2)-AC point of (BMls). If σp(Y ) ≤ √
ε2/RA, then Y Y T is ε′-

approximately optimal for (SDPls), with ε′ := (0, RY ε1, 5ε2).

Proof. Let Y satisfy (9), and let us show that Y Y T satisfies (8). The first-order condition is easy to
check. We proceed to show that uTS(X)u≥−ε′2 for any unit vector u∈Rn. Let z∈Rp be a unit
vector such that ∥Y z∥ = σp(Y ). The matrix U :=uzT satisfies ∥U∥=1 and ∥UY T ∥ ≤ ∥u∥∥Y z∥ =
σp(Y ). Then ∥A(UY T )∥ ≤ √

ε2 and by (9b) we have

uTS(X)u = S(Y Y T ) • UUT ≥ −ε2−4∥A(UY T)∥2 ≥ −5ε2.

Proof of Proposition 2. As A ∈ Aε, there is a spurious ε-AC point Y . By Lemma 7, we must have
σp(Y )>

√
ε2/RA. Note that ∥S(Y Y T )Y ∥≤ ε1. Together with (6), we conclude that S(Y Y T ) ∈

tubeδ(Snn−p). Let λ := 2(A(Y Y T )−b). Note that ∥λ∥ > 2ε0 and

∥λ∥ = 2 ∥A(Y Y T )− b∥ ≤ 2(∥A∥∥Y ∥2 + ∥b∥) ≤ Rλ.

Then λ ∈ Dλ and A∗(λ) = S(Y Y T ) ∈ tubeδ(Snn−p).

Proof of Theorem 7. The result in Proposition 2 can be expressed as:

Aε ⊂ {A ∈ (Sn)m : 0 ∈ tubeδ(Snn−p)+A∗(Dλ)},

which is closer to the formula in Proposition 1. Consider an ϵ-net N of Dλ, where ϵ := δ/RA. It
suffices to take (3Rλ/ϵ)

m = (3κ/δ)m points for the ϵ-net. A reasoning similar to (7) gives

Aε ⊂ {A ∈ (Sn)m : 0 ∈ tube2δ(Snn−p) +A∗(N ))}

=
⋃
ℓ∈N

{A ∈ (Sn)m : A∗(ℓ) ∈ tube2δ(Snn−p))}.

Let ℓ ∈ N , and consider the linear map

ϕℓ : (Sn)m → Sn, A 7→ A∗(ℓ).

This is a surjective map. Moreover, the scaled map 1
∥ℓ∥ ϕℓ gives an isometry (kerϕℓ)

⊥ ∼= Sn. It
follows that

ϕℓ(A) ∈ tube2δ(Snn−p) ⇐⇒ A ∈ tube2δ/∥ℓ∥
(
ϕ−1
ℓ (Snn−p)

)
.

Since ∥ℓ∥ ≥ 2ε0, we conclude that

Aε ⊂
⋃
ℓ∈N

tubeδ/ε0(Vℓ), with Vℓ := ϕ−1
ℓ (Snn−p).

The final part of the proof is similar to the one in Theorem 5. The variety Vℓ is a cylinder over Snn−p,
so it has the same codimension τ(p) and degree n−p+1 as Snn−p, The ambient space is (Sn)m, of
dimension τ(n)m. Using the union bound and Theorem 6, we get

Pr[A ∈ Aε] < #N · Pr[A ∈ tubeδ/ε0(Vℓ)] < (3κ/δ)
m · 4e

(
2n3mδ/σε0

)τ(p)
.
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C Explicit complexity estimates

In this section we provide explicit complexity estimates for Theorems 1 and 2. We first introduce some
notation. Consider constants α ≥ β > 0 and sets Mα ⊃ Mβ , where Mt := {Y : ∥A(Y Y T )−b∥ ≤
t}. We assume that β is small enough so that ϱ-LICQ holds globally on Mβ . On the other hand,
α > 0 is sufficiently large so that a point Y0 ∈ Mα is always known. We further assume that Mα

is compact. This is satisfied, for instance, when the feasible set of (SDP) is compact and satisfies
Slater’s condition, as shown next.
Lemma 8. Assume that the set {X : A(X)=b,X⪰0} is compact and satisfies Slater’s condition
(i.e., ∃X : A(X)=b,X≻0). Then Mt is compact for any t ≥ 0.

Proof. Consider the SDP max{I •X : A(X)=b,X⪰0} and its dual min{bTλ : A∗(λ)⪰I}. Let
R2

0 be the primal optimal value, which is finite by compactness. Strong duality holds by Slater’s
condition. So the dual optimum is attained at some λ̄, and A∗(λ̄) ⪰ I , bT λ̄ = R2

0. Given Y ∈ Mt,

∥Y ∥2 = I • Y Y T ≤ A∗(λ̄) • Y Y T = λ̄ · A(Y Y T ) = λ̄ · b+ λ̄ · (A(Y Y T )−b) ≤ R2
0 + t∥λ̄∥.

We conclude that Mt is contained in a ball of radius (R2
0 + t∥λ̄∥)1/2.

Notice that a suitable value α can be obtained from an arbitrary point Y0 ∈ Rn×p. On the other hand,
β should be Ω(ϱmin), where ϱmin is the smallest LICQ constant among all feasible points Y ∈ M0.

C.1 Solving (SDP)

Assume that an approximately feasible solution Y0 is known. Consider the following setting:

• p satisfies τ(p) ≥ (1+η)m+η t for some given constants η, t∈R+.
• A, b are fixed and C is uniformly distributed on a ball Bσ(C̄).
• ∃β ∈ R+ such that: Mβ is compact, a point Y0 ∈ Mβ is known, and ϱ-LICQ holds on Mβ .
• RY , Lf ∈ R+ are constants that bound ∥Y ∥ and ∥CY ∥, for Y ∈ Mβ .
• (BM) is solved with the method from Theorem 4 initialized at Y0.

The next theorem shows that the Burer-Monteiro method solves (SDP) in polynomial time with high
probability.
Theorem 9. Let ρ∈(0, 1] arbitrary, and let

ε0 := γ := ϵ, ε1 := ϵ2, ε2 := 16R3
λ ϵ,

with ϵ := K−1 ρ (σ/4n3)1+1/η,

where Rλ and K are the problem dependent constants

Rλ := 2 + 2ϱ−1Lf , K := ∥A∥ (3κ)1/η, κ := Rλ∥A∥.

The algorithm from Theorem 4 returns a pair (Y, λ) after O(ϵ−6) function evaluations. With probabil-
ity at least 1−O(σ/n3)t, the pair (Y Y T , λ) is (ϵ, ϵ2RY , 16R3

λϵ)-approximately optimal for (SDP).

Proof. The smoothness assumptions in Theorem 4 are satisfied since Mβ is compact. Then (Y, λ) is
an (ε, γ)-AFAC pair with ∥λ∥≤Rλ. Note that

δ := ε1∥A∥/γ = ϵ ∥A∥ ≤ (1/3κ)1/η (σ/2en3)1+1/η

is as in Corollary 1. Hence (Y Y T , λ) is (ε0, ε1RY , ε2)-approximately optimal for (SDP) with
probability 1−O(σ/n3)t.

The above theorem shows that Y Y T obtained is approximately optimal for the perturbed prob-
lem (SDP) with high probability. Let (SDP) denote the SDP problem in which we use the unperturbed
cost matrix C̄. We can also show that Y Y T is also approximately optimal for (SDP).
Corollary 3. Consider the setup of Theorem 9. With probability at least 1−O(σ/n3)t, the pair
(Y Y T , λ) is (ε′′0 , ε

′′
1 , ε

′′
2)-approximately optimal for (SDP), where ε′′0 , ε

′′
1 , ε

′′
2 = O(σ).

19



Proof. Let X := Y Y T . We know that (X,λ) is (ε′0, ε
′
1, ε

′
2)-approximately optimal for (SDP) with

high probability. Let S := C−A∗(λ), S̄ := C̄−A∗(λ) be the slack matrices for (SDP) and (SDP).
Observe that

∥A(X)−b∥ ≤ ε′0 ≤ O(σ), (22)

∥S̄X∥ ≤ ∥SX∥+ ∥(S̄−S)X∥ ≤ ε′1 + σ∥X∥ ≤ O(σ), (23)

S̄ ⪰ S − ∥S̄−S∥In ⪰ −(ε′2+σ)In ⪰ −O(σ)In. (24)

So the optimality conditions of (SDP) hold with ε′′0 , ε
′′
1 , ε

′′
2 = O(σ).

C.2 Solving (SDPls)

Consider the following setting:

• p satisfies τ(p) ≥ (1+η)m+η t for some given constants η, t∈R+.
• b is fixed and A is uniformly distributed on a ball Bσ(Ā).
• ∃α ∈ R+ and a matrix Y0 such that Mα is compact and Y0 ∈ Mα

• RY ∈ R+ is a constant that bounds ∥Y ∥, for Y ∈ Mα.
• (BMls) is solved with the method from Theorem 3 initialized at Y0.

Theorem 10. Let ρ∈(0, 1] arbitrary, and let

ε1 := ϵ3/2, ε2 := ϵ, ϵ := K−1
(
ρ σ2/2n3m

)1+1/η
,

where K := RA (3κ)1/η , expressed in terms of
κ := 2(RAR

2
Y +∥b∥)RA, RA := ∥Ā∥+σ.

The algorithm from Theorem 3 returns a point Y after O(ϵ−3) function evaluations. With probability
at least 1−O(σ2/n3m)t, we have that Y Y T is (ρ σ, ϵ3/2RY , 5ϵ)-approximately optimal for (SDPls).

Proof. The smoothness assumptions in Theorem 3 are satisfied since Mα is compact. Therefore Y is
an (ε1, ε2)-AC point. Note that

δ := ε1RA/
√
ε2 = ϵRA = (1/3κ)1/η(ρ σ2/2n3m)1+1/η

is as in Corollary 2. Hence Y Y T is (ρ σ, ε1RY , 5ε2)-approximately optimal for (SDPls) with
probability 1−O(σ2/n3m)t.

Remark. The above theorem holds even if the optimal value of (SDPls) is nonzero. In the special
case that the optimal value is zero, then by Lemma 3 we have that

∥A(Y Y T )−b∥ ≤ max{ε′0, n1/4(ε′1+ε
′
2RY )

1/2},
where ε′0 = ρ σ, ε′1 = ϵ3/2RY , ε′2 = 5ϵ are the optimality constants from Theorem 10.

Let (SDPls) denote the instance of problem (SDPls) in which we use the unperturbed constraints Ā.
We next show that Y Y T is also approximately optimal for (SDPls).
Corollary 4. Consider the setup of Theorem 10. With probability at least 1−O(σ2/n3m)t, the
matrix Y Y T is (ε′′0 , ε

′′
1 , ε

′′
2)-approximately optimal for (SDPls), where ε′′0 , ε

′′
1 , ε

′′
2 = O(σ).

Proof. We know that the matrix X := Y Y T is (ε′0, ε
′
1, ε

′
2)-approximately optimal for (SDP) with

high probability. There are two cases. The first case is that ∥A(X)−b∥ ≤ ε′0, which implies that
∥Ā(X)−b∥ ≤ ∥A(X)−b∥+ ∥(Ā−A)X∥ ≤ ε′0 + σ∥X∥ ≤ O(σ).

This means that ε′′0 = O(σ). Consider the variables:
λ := 2(A(X)−b), S := A∗(λ),

λ̄ := 2(Ā(X)−b), S̄ := Ā∗(λ̄).

The second case is that ∥SX∥ ≤ ε1, S ⪰ −ε2In. Note that
∥λ̄−λ∥ ≤ 2 ∥Ā−A∥ ∥X∥ ≤ O(σ),

∥S̄−S∥ ≤ ∥Ā∗(λ̄−λ)∥+ ∥(Ā∗−A∗)λ∥ ≤ O(σ).

From (23) and (24) we get that ∥S̄X∥≤O(σ) and S̄⪰−O(σ)In. So the optimality conditions of
(SDPls) hold with ε′′0 , ε

′′
1 , ε

′′
2 = O(σ).
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