
Appendix

1 Method

1.1 Sketching

In Pocket-based Sketching, we present an algorithm to obtain the molecule shape, which is of the
appropriate size and complementary to protein pockets. The algorithm uses a seed shape to intersect
with the pocket gradually.

To obtain the seed shape, we first randomly sample several molecules from ZINC, then use the
overlapping of their shapes as the seed shape. By using the overlapping strategy, we make the
sketched pseudo molecular shapes more native-molecule-like and not overly dependent on one
specific molecule. Algorithm 1 is the pseudo-code.

We set the volume threshold to 300Å
3
, the average volume of molecules. The step size is the same as

the voxel resolution, i.e., 0.5Å. We initially place the seed shape in a random position as long as the
seed shape and the pocket shape do not overlap.

1.2 Generating

Pilot Experiments of Tokenizing Methods We evaluate different molecule tokenizing methods
based on three principles (preserving functional groups, appropriate vocabulary size, and no circles
structures) and propose our approach in the context of pre-training. There are several popular
tokenizing methods for drug design: Atom-based [1, 2] shatters a molecule into atoms. Cut Single
Bond [3] cuts all single bonds in a molecule. Both RECAP [4] and BRICS [5] use chemical reaction
rules for preserving functional groups. The results in Table 1 show: (1) Atom-based and Cut Single
Bond can not preserve functional groups. Because they do not distinguish whether a chemical
bond belongs to a functional group, they ruin the molecular structures that are vital for determining
molecule properties. (2) Two chemical-reaction-aware methods behave differently. As RECAP has
more conservative rules, it produces a vocabulary at least one magnitude larger than its counterparts.

Because BRICS shows a better balance among these principles, we adapt it to serve our pre-trained
model. Furthermore, because over 60% of the out-of-vocabulary problem, an essential factor affecting
the pre-trained model quality [6], is caused by the combinations between rings and other structures
through single bonds, we add an extra rule to BRICS: cut all single bonds attached to a ring.

Details of Discretization To stabilize the training process, we discretize two continuous variables,
i.e., translation vector and rotation quaternion. Specifically, we map them into two discrete spaces.

For the translation vector, its discrete space is grids in 3D space (see Figure 1a). Briefly speaking, we
represent this continuous vector with the discrete index of the grid. We represent the i-th translation
bin as the coordinate of its centre tbini ∈ R3. The discretization of any continuous translation operator
t ∈ R3 can be computed by argmin

i
∥tbini , t∥2. The total number of grids is 21, 952.

Because the rotation axis and rotation angle can determine the rotation quaternion, the discrete
space of the quaternion contains two parts. As shown in Figure 1b, we first enumerate rotation axes
(x, y, z) in 3D space, then for each axis, we list the rotation angle every θ degrees. We represent
the i-th rotation bin (stands for rotating θi degrees around an axis (xi, yi, zi)) as a quaternion
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Algorithm 1 Pocket-based Sketching

Input: a function λ measuring the volume of a shape, a threshold t, a step size α
a pocket shape Sp located at Cp, a seed shape Ss located at Cs where λ (

⋂
(Sp, Ss)) = 0

Output: The sampled molecule shape Sd.
while True do

V ← λ (
⋂
(Sp, Ss))

if V ≥ t then
Sd ←

⋂
(Sp, Ss)

break
end if
Cs = αCp + (1− α)Cs

end while

Table 1: Comparison of different tokenizing methods. Coverage is the percentage of novel molecules
that the vocabulary can handle.

Method Coverage Vocabulary Size Case

Atom-based 100.0 49

Cut Single Bond 74.3 16,920

RECAP 40.1 289,188

BRICS 61.2 49,339

Ours 70.4 23,896

qbini = (xi, yi, zi, θi) ∈ R4. The discretization of any continuous rotation operator q ∈ R4 can be
computed by argmin

i
∥qbini , q∥2. The total number of bins is 8, 763. To be precise, we enumerate 363

axes and 24 angles (i.e., 15 degrees per angle).

Another reason for the discretization is to avoid the discontinuity of quaternions when optimiz-
ing them [7, 8]. Specifically, there are several approaches to parameterize the rotation operator:
quaternion [9], euler-angle [10], and SO(3) group (i.e., the rotation matrix) [11]. Quaternion and
euler-angle are sometimes ambiguous and discontinuous. For example, the rotation operator is peri-
odic, rotating 180◦ is equal to rotating −180◦ and rotating 179.9◦ is very close to rotating −179.9◦.
Without discretization, we will excessively penalize the model according to the mean-square-error
(i.e., [179.9 − (−179.9)]2 = 359.82). While in this paper, we convert a regression problem into a
classification one with discretization, thus avoiding the above issues. Instead of discretizing quater-
nions, AlphaFold [12] avoids such issues by regarding the quaternion as an intermediate variable and
not optimizing the quaternion directly. We leave adopting AlphaFold’s strategy for future work.

Greedy Algorithm for Connecting Fragments Algorithm 2 is responsible for converting the
separated fragments into a complete 3D molecule. To be specific, we first place all the fragments in
3D space according to the predictions of SHAPE2MOL. Then, for each time, we greedily chose the
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Figure 1: Discretization of translation vector and rotation quaternion. Both origins locate at the
centroid of the fragment.

two closest breakpoints from different fragments and connect the fragments through the breakpoints.
By repeating the process, the fragments get larger and larger. When there are not enough breakpoints
to connect, we return the largest fragment as the final molecule. For potential residual breakpoints,
we attach carbon atoms to them for molecular validity.

Algorithm 2 Greedy Algorithm for Connecting Fragments

Input: Fragment sequence S = [(Ci, Pi, Ri)]
ls
i=0, fragment vocabulary V .

Output: A whole molecule M formed by the fragments.
B ← {}
F ← {}
for i← 0 to ls do

(Ci, Pi, Ri)← S[i]
f ← query_vocabulary(V , Ci)
f ← rotate(translate(f , Pi), Ri) ▷ Place the fragment in 3D space
b← get_breakpoints(f ) ▷ Return all the breakpoints in current fragment
F ← F ∪ {f}
B ← B ∪ {b}

end for
while |B| ≥ 2 do

b1, b2 ← get_breakpoints(B) ▷ Chose two nearest breakpoints from different fragments
if b1 is None or b2 is None then

break
end if
f1 ← get_fragment(F , b1) ▷ Retrieve the corresponding fragment of the breakpoint
f2 ← get_fragment(F , b2)
Mpartial ← attach_fragments(f1, b1, f2, b2) ▷ Connect fragments through the breakpoints
B ← B \ {b1, b2}
F ← F \ {f1, f2}
F ← F ∪ {Mpartial}

end while
M ← get_largest_fragment(F ) ▷ Chose the largest fragment as the output molecule
if |B| ≠ 0 then

M ← attach_carbon(M , B) ▷ Handle the remaining breakpoints by attaching carbon atoms
end if
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1.3 More Details of SHAPE2MOL

Output of Shape Encoder The output of the shape encoder is the continuous representation of
each 3D patch, which contain the geometric information of input molecular shape. It will serve as the
context of the decoder to constrain the shape of generated molecules.

Input of Shape Decoder The input of the shape decoder at the time step t is the fragment category,
rotation quaternion, and translation vector from the output of the previous step t− 1. We use them to
tell the model how exactly a fragment is placed in 3D space so that the model can generate the next
fragment connected with it. The output of the shape encoder is fed into the decoder as the geometric
context, through the cross-attention module.

Hyperparameters of SHAPE2MOL Both encoder and decoder of SHAPE2MOL have 12 stacked
8-head Transformer layers, whose model size is 1024 and feedforward dimension is 4096. We use
ReLu as the activation function and set the position embedding learnable in the training process.

For the encoder, following liGAN, we set the resolution of the voxelized shape to 0.5Å and the side
length of the spanned cube to 14Å. The size of 3D patches is 4× 4× 4, which allows us to handle a
large number of voxels. Specifically, we reshape 21, 952 voxels into 343 3D patches in the paper.

The decoder has 3 different embeddings, denoting the fragment category, the discretized rotation, and
the discretized translation, respectively. Similarly, we also use 3 different output heads to predict the
category, rotation, and translation. The output heads share their weights with the embeddings. The
total number of model parameters is 650M.

2 Experiments

2.1 Metrics

• Uniqueness (Uniq) is the percentage of unique molecules among all generated results.

• Novelty (Nov) is the percentage of generated molecules with Tanimoto similarity [13] less
than 0.4 compared to its nearest neighbor in existing ligands [14].

• Diversity (Div) is the internal diversity of the generated molecules and calculated as
2

n(n−1)

∑
x ̸=x′ 1− sim(x, x

′
).

• Success rate (Succ) is the percentage of generated molecules that pass the predefined
thresholds for the desired properties. Specifically, we based on a widely used rule of
thumb [15] to set the thresholds as QED ≥ 0.25, SAscore ≥ 0.59 and Vinascore ≤ −8.18
kcal/mol, where QED is the index of drug-likeness [16] and SAscore is the index of synthetic
accessibility [17].

• Product (Prod) is the product of the four metrics above and serves as a comprehensive
evaluation.

• Median Vina Score (Median) is the median of Vinascore. Vinascore is the binding energy
evaluation using the global energy optimization algorithm in Vina [18], which can reflect
the binding affinity between proteins and molecules.

2.2 More Ablation Study of Generating

Model Variants As shown in Figure 3, we study two variants in the model design: discretization
and robust training. The discretization consistently improves the result, while the continuous variant
is worse. A possible reason is a non-linear relationship between quaternions and rotation angles. 1

We observe minor improvement for finer granularity and leave it for future exploration. We also
study the ability of handling shape noise caused by a possibly large pocket size. The model trained
with shape noise (i.e. robust training) shows better performance when test data are noisy, while the
performance under standard training drops clearly.

1For example, if a molecule rotates 90◦ along an axis, the mean squared error of quaternion is 1; when the
angle is 10◦, the error is 0.98.
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Figure 2: More cases from liGAN and DESERT.
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Figure 3: Comparison of discretization
and robust training.

Table 2: Comparison of difference decoding strategy.
Sampling Method Div Prod Median

Beam Search (Beam=10) 0.70 0.00 -5.87
Greedy Decoding 0.65 0.00 -5.83

Top K (K=10) 0.91 0.04 -5.99
Top P (P=0.95) 0.93 0.06 -6.01

+ post-processing 0.92 0.17 -7.34

Table 3: Combine protein chemical informa-
tion.

Method Prod Median

DESERT-POCKET 0.55 -9.32
+ chemical(Weak) 0.53 -9.19
+ chemical(Strong) 0.52 -9.03

Table 4: Comparison of difference seed
shape.

Seed Shape Succ Prod Median

None 82.0 0.74 -8.85
Sphere 75.5 0.68 -9.13

Molecules 61.0 0.55 -9.32

Decoding Strategy We replace the Nucleus sampling method, i.e., Top P sampling, in the decoding
strategy with Beam Search [19], Greedy Decoding [20], and Top K sampling [20] to study the
influence of different sampling methods on the performance of DESERT. As shown in Table 2, Beam
Search and Greedy Decoding are poor at providing diverse molecules, which suggests that the output
probability is concentrated. They can only get several fragments with high output probability. When
low probability fragments are obtained, the ranking mechanism in Beam Search drops them in the
subsequent decoding step. Due to their internal annealing mechanism, both Top K and Top P can
provide relatively diverse results.

Chemical Information Driven Design We also explore the potential of integrating chemical
information of proteins into drug design. Briefly speaking, based on hydrogen bond acceptor-donor
rules [21], we put the fragment with more hydrogen atoms into the pocket region with more oxygen,
nitrogen, and fluorine atoms. The results in Table 3 show that the strategy does not achieve better
performance when we increase the effect of chemical information on the output probability. The
reason might be not considering detailed chemical information, like the bond length. We leave a more
thoughtful method for combining the chemical information for future work.

Atom-based Pre-training We pre-train an atom-based SHAPE2MOL to analyze the contribution of
our fragment-based generation style. Specifically, we keep most pre-training processes the same but
replace our tokenizing method with the atom-based strategy (both mentioned in Section 1.2). As drug
molecules mainly consist of carbon atoms, the atom-based SHAPE2MOL ignores input shapes and
keeps outputting carbon atoms. The atom-based variant can not design any valid molecules, which
indicates the fragment-based style is crucial for our pre-training process.
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Invariance of SHAPE2MOL Following liGAN, when training SHAPE2MOL, we randomly rotate
and translate the molecules to make our model have rotation and translation invariance ability. We
compare the similarity of generated molecules based on different or the same molecular shapes (both
are randomly rotated and translated). The similarity rises from 0.092 to 0.508, which shows that with
the same molecular shape as input, the model produces similar molecules.

2.3 More Ablation Study of Sketching

Seed Shape Type We evaluate the influence of different seed shape in Table 4. We find that directly
using the pocket as the shape may contribute to suboptimal result in providing highly active molecules.
Through the sketching stage, we obtain more realistic and diverse molecular shapes. These shapes
benefit the molecular activity but result in more complex structures and lower synthetic accessibility
in generated molecules.

3 Discussion of Related Work

3.1 Shape-based Drug Design

Here we discuss the relationship between our method and existing shape-based drug design [22]
approaches. Some previous work designed new drugs based on the shape of a known ligand.
Traditional approaches work in a retrieval way – finding molecules whose shape is most similar to
a known one [23, 24]. Modern deep learning models can decode a molecule from its shape [1, 25].
Such ligand-based generation can not generalize to unseen pockets. Luo et al. [2] directly generates
molecules from the pocket shape, which is mostly close to our work. However, our model works in
a fragment-based fashion, while theirs works in an atomic way. What makes our model especially
different is that we utilize the power of the pre-training model to make pocket-based drug design
more promising.

3.2 Tokenization and Linearization

Here we discuss how the tokenization and linearization procedures relate to fragment-based drug
design (FBDD) [26, 27].

Fragment-Based Drug Design Briefly, there are two approaches in FBDD: growing the fragment
synthetically to a proximal binding site or by linking two fragments together [27]. Our method can be
classified as the previous type since the linearization generates a molecule in a one-by-one fashion.

Tokenization The procedure is carefully designed for deep generative models to avoid loops and
preserve functionalities, which is in spirit to the principle of [3]. Some FBDD work, such as [28]
works in a discriminative approach. Thus there are not many constraints when cutting the molecules.
Podda et al. [29] uses the SMILES-fragment rather than a real molecule-fragment. Thus it can not
utilize rich structured features.

Linearization The procedure aims at traversing (or generating) a structured object in a left-to-
right approach [30], which is tractable and scalable. It is borrowed from the area of computational
linguistics, more specifically, syntactic parsing and structured generation [31, 32]. For micro-
molecules, linearization (such as SMILES [33]) has been adopted for several decades. There is a line
of research work for SMILES-based generation [34, 35, 36]. Similarly, in the area of macro-molecule,
Huang et al. [37] designs a linear structure for estimating the likelihood of the structure of RNA.

Comparison Compared with traditional linearized sequences such as SMILES [33], our method
utilizes structural information to segment the molecules to preserve their functionality. Compared
with topological generation based on a graph [3, 38, 39], our method is more scalable to big data
since generating the variable graph topology is not friendly to large-batch training in neural networks.
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4 More Cases

We show more cases from liGAN and DESERT in Figure 2. Similarly, liGAN struggles to produce
realistic molecular structures, while DESERT generates better results.
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