
A Roadmap

In Appendix C we establish the main consequences of the R2WDC that are then used to prove
Theorem 4.4. Then in Appendix D, we prove Lemma 5.2 showing that a Gaussian generative network
satisfies the R2WDC with high probability. In Appendix E we analyze the perturbation of the gradient
and objective function due to the noise term ⌘, and provide the proof of Lemma 5.3. Extension of the
recovery guarantees for Phase Retrieval, Denosing, and Spiked Matrix Recovery are discussed in
Appendices F.1, F.2, F.3 respectively. Finally, in Appendix G we give an example of a network with
contractive layers, satisfying the assumptions of our main theorems, and in Appendix H we verify the
prediction of our theory with synthetic experiments.

B Notation

For any vector x we denote with kxk its Euclidean norm and for any matrix A we denote with kAk its
spectral norm and with kAkF its Frobenius norm. The euclidean inner product between two vectors
a and b is ha, bi. For a set S we will write |S| for its cardinality and S

c for its complement. Let
B(x, r) be the Euclidean ball of radius r centered at x, and Sk�1 be the unit sphere in Rk. We will
use a = b + O1(�) when ka � bk  �, where the norm is understood to be the absolute value for
scalars, the Euclidean norm for vectors and the spectral norm for matrices.

C Consequences of the R2WDC

Following [18], we define the function g : [0,⇡]! R which describes how the operator x 7!W+,x

distorts angles:

g(✓) := cos�1
� (⇡ � ✓) cos ✓ + sin ✓

⇡

�
. (18)

For two nonzero vectors x, y we let ✓̄0 = \(x, y) and define inductively ✓̄i := g(✓̄i�1). Then we set

h̃x,y :=
1

2d

"
� d�1Y

i=0

⇡ � ✓̄i

⇡

�
y +

d�1X

i=1

sin ✓̄i
⇡

� d�1Y

j=i+1

⇡ � ✓̄j

⇡

�
kykx̂

#
. (19)

Proposition C.1. Fix ✏ > 0 such that max(2d✏, 10✏) < 1 . Let G be a generative network as in (2)
satisfying the R2WDC with constant ✏. Then for any x 2 Rk

and j 2 [d]

kxk2
⇣1
2
� ✏

⌘j
 kGj(x)k2, 

⇣1
2
+ ✏

⌘j
kxk2 (20a)

kG(x)k2  1 + 4✏d

2d
kxk2. (20b)

Moreover, for any x 6= 0, y 6= 0, j 2 [d], the angle ✓j = \(Gj(x), Gj(y)) is well-defined and

|✓j � g(✓j�1)|  4
p
✏ (21a)

hG(x), G(y)i � 1

4⇡

1

2d
kxkkyk (21b)

|hG(x), G(y)i � hx, h̃x,yi|  24
d
3p

✏

2d
kxkkyk (21c)

where g is given in (18) and h̃ in (19).

The next result is used to prove concentration of the gradient of the objective function around its
expectation.
Proposition C.2. Fix 0 < ✏ < d

�4
/(16⇡)2 and d � 2. Suppose that G as in (2) satisfies the R2WDC

with constant ✏. Let x 2 Rk
be a point where G(x) is differentiable, and y 2 Rk \ {0}, then

k⇤d,xk2 
1 + 4✏d

2d
 13

12

1

2d
(22)

k⇤t
d,x⇤d,x �

1

2d
Ikk 

4✏d

2d
(23)

k⇤t
d,x⇤d,yy � h̃x,yk  24

d
3p

✏

2d
kyk (24)
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The next proposition uses the R2WDC to bound the local Lipschitz constant of the ReLU-networks
{Gj}j2[d].

Proposition C.3. Suppose that x 2 B(x, d
p
✏kyk) and G satisfies the R2WDC with ✏ < 1/(200)4/d6.

Then for every i 2 [d], it holds that

kGi(x)�Gi(y)k 
1.2

2i/2
kx� yk (25)

The next proposition is used to show that when x is close to y, the gradient of the objective function
points in a direction that decreases the distance between of x and y.
Proposition C.4. Suppose x 2 B(y, d

p
✏kyk) is a differentiable point for G, and the R2WDC holds

with ✏ < 1/(200)4/d6. Then it holds that

⇤T
x (⇤xx� ⇤yy) =

1

2d
(x� y) +

1

2d
1

16
kx� ykO1(1) (26)

We can now prove Theorem 4.4.

Proof of Theorem 4.4. The proof of Theorem 3.1 in [21] only uses the inequality (20a)-(26), which
are proved for a network satisfying the WDC. The previous propositions have shown that such
inequalities hold under the weaker R2WDC. Therefore from the proof of Theorem 3.1 in [21]
combined with the Propositions C.1-C.4, we obtain automatically the proof of Theorem 4.4.

C.1 Supplemental Results for Section C

Proof of Proposition C.1

Proof. For x, y 2 Rk and j 2 [d], below we write xj := Gj(x) and yj := Gj(y).

- Proof of (20a)
Notice that by (9) for x 2 Rk

⇣1
2
� ✏

⌘
kxj�1k2  kxjk2 

⇣1
2
+ ✏

⌘
kxj�1k2,

which proceeding by induction gives (20a).

- Proof of (20b)
Next observe that since log(1 + z)  z, ez  1 + 2z for z < 1 and 2d✏  1, from (20a) we have

kGd(x)k2 
(1 + 2✏)d

2d
kxk2  1

2d
e
d log(1+2✏)kxk  1 + 4✏d

2d
kxk,

which corresponds to (20b).

- Proof of (21a)
Assume that x, y 2 Rk \ {0}. Then, the assumption 2d✏  1 and the lower bound in (20a) imply that
✓j are well-defined for all j 2 [d]. To prove then (21a) notice that it is sufficient to prove that for any
j 2 [d] it holds that

��� cos ✓j �
(⇡ � ✓j�1) cos ✓j�1 + sin ✓j�1

⇡

���  5✏

By homogeneity of the ReLU activation function, we can assume without loss of generality that
kxj�1k = kyj�1k = 1. Let

�1 := hxj�1,
�
W

T
j,+,xWj,+,y �Qxj�1,yj�1

�
yj�1i

�2 := hxj�1,
�
W

T
j,+,xWj,+,x � Ik/2

�
yj�1i

�3 := hyj�1,
�
W

T
j,+,yWj,+,y � Ik/2

�
yj�1i
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and notice that by the R2WDC we have max(|�1|, |�2|, |�3|)  ✏. Thus,

cos ✓j =
hxj , yji
kxjkkyjk

=
hxj�1,W

T
j,+,xWj,+,yyj�1iq

hxj�1,W
T
j,+,xWj,+,xxj�1ihyj�1,W

T
j,+,yWj,+,yyj�1i

= 2
hxj�1, Qxj�1,yj�1yj�1i+ �1p

(1 + 2�2)(1 + 2�3)
.

Finally, notice that 2hxj�1, Qxj�1,yj�1yj�1i = [(⇡ � ✓j�1) cos ✓j�1 + sin ✓j�1]/⇡ so

| cos ✓j � 2hxj�1, Qxj�1,yj�1yj�1i|  2|hxj�1, Qxj�1,yj�1yj�1i|

�����1�
1p

(1 + 2�2)(1 + 2�3)

�����

+
2|�1|p

(1 + 2�2)(1 + 2�3)


���1�

1

(1� 2✏)

���+
2✏

(1� 2✏)

 5✏

where the second inequality follows from |2hxj�1, Qxj�1,yj�1yj�1i|  1 and max(|�1|, |�2|, |�3|) 
✏, and the third inequality from 10✏ < 1.

- Proof of (21b)
By (20a) and ✏  1/2, it follows that kxdkkydk � (1�2✏)d

2d kxkkyk 1�2d✏
2d . Moreover, let � := 4

p
✏,

then by (21a) we have that ✓j = g(✓j�1) + O1(�). Thus, ✓d = g(g(· · · g(g(✓0) + O1(�)) +
O1(�) · · · ) +O1(�))) +O1(�) and for ✓̄ = g

�d(✓0), so that, using g
0(✓)  1 for all ✓, we have

|✓d � ✓̄d|  d�. (27)

Then by (27), ✓̄d  cos�1(1/⇡) for d � 2, and 16⇡d
p
✏ < 1, follows that cos ✓d � 3/(4⇡).

Finally, if 2d✏  2/3, we can then conclude that

hG(x), G(y)i � cos(✓d)kxdkkydk �
1

4⇡

1

2d
kxkkyk.

- Proof of (21c)
The following result on a recurrence relation will be used in the subsequent analysis

�d = sd�d�1 + rd, �0 = y =) �d =
⇣ dY

i=1

si

⌘
y +

dX

i=1

⇣
ri

dY

j=i+1

sj

⌘
(28)

Define �d := hxd, ydi, then

�d = hxd�1,W
T
d�1,+,xWd�1,+,xyd�1i

= hxd�1, Qxd�1,yd�1yd�1i+O1(✏)kyd�1kkxd�1k,

=
⇡ � ✓d�1

2⇡
�d�1 +

sin ✓d�1

2⇡
kxd�1kkyd�1k+O1(✏)kyd�1kkxd�1k,

=
⇡ � ✓d�1

2⇡
�d�1 +

sin ✓d�1

2⇡

kxkkyk
2d�1

+
✏

2d

⇣4✏d
⇡

+ 2(1 + 4✏d)
⌘
kykkxkO1(1),

=
⇡ � ✓d�1

2⇡
�d�1 +

sin ✓d�1

2⇡

kxkkyk
2d�1

+ 11d✏
kykkxk

2d
O1(1),

Where the second equality follows from the R2WDC , the third from the definition of Qp,q . The rest
of the proof proceeds as in the proof of Lemma 8 in [18].
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Proof of Proposition C.2

Proof.

- Proof of (23).
Let x 2 Rk be a point where G is differentiable, and notice that for small enough z, by local linearity
of G, we have G(x+ z) = ⇤xz. Then the R2WDC gives for j 2 [d]

��h
�
W

T
j,+,xWj,+,y � Ik/2

�
⇤j�1,xz,⇤j�1,xzi

��  ✏k⇤j�1,xk2kzk2

for all z, which in turn implies

k⇤T
j,x⇤j,x �

1

2
⇤T
j�1,x⇤j�1,xk  ✏k⇤T

j�1,x⇤j�1,xk. (30)

Let now Md := ⇤T
d,x⇤d,x with M0 = Ik, then

Md =
1

2
Md�1 + kMd�1kO1(✏). (31)

We then obtain

kMdk 
⇣1
2
+ ✏

⌘
kMd�1k 

(1 + 2✏)d

2d
kM0k 

1 + 4✏d

2d
,

where the second inequality, and the third inequality uses 2d✏  1 and the same reasoning as in the
proof of (20b). From (22) and (31) we obtain the following recurrence relation

Md =
1

2
Md�1 +O1

⇣
✏
1 + 4✏(d� 1)

2d�1

⌘
,

which, using (28) and 4✏d  1, gives

Md =
1

2
Ik +

dX

i=1

O1

⇣
✏
1 + 4✏(i� 1)

2i�1

⌘ 1

2d�i

=
1

2
Ik +

4✏d

2d
O1(1)

- Proof of (24).
Notice again that if x 2 Rk is a differentiable point for G, the R2WDC gives for any j 2 [d]

k⇤T
j,x⇤j,yy � ⇤T

j�1,xQxj�1,yj�1⇤j�1,yyk  ✏k⇤j�1,xkkGj�1(y)k. (32)

We then let �d := ⇤T
d,x⇤d,yy and observe that

�d = ⇤T
d�1,xQxd�1,yd�1⇤d�1,yy + k⇤d�1,xkkGd�1(y)kO1(✏)

=
⇡ � ✓d�1

2⇡
�d�1 +

sin ✓d�1

2⇡

kyd�1k
kxd�1k

⇤T
d�1,x⇤d�1,xx+ ✏

⇣1 + 4✏d

2d�1

⌘
kyk

where the first equality is from (32), and the second uses the definition of Qx,y , (20b) and (22). The
rest of the proof follows as in the proof of Equation (7) in Lemma 8 in [18].

Proof of Proposition C.3

Lemma C.5. Suppose G satisfies the R2WDC with constant ✏. Then for any x, y 2 Rk \ {0} and

i 2 [d], it holds that

kGi(x)�Gi(y)k 
 r

1

2
+ ✏+

p
2(2✏+ ✓i�1)

!
kGi�1(x)�Gj�1(y)k

where ✓i�1 = \(Gi(x), Gi(y)).
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Proof of Lemma C.5. We have

kGj(x)�Gj(y)k  k(Wj)+,xj�1(xj�1 � yj�1)k+ k
�
Wj,+,x �Wj,+,y

�
yj�1k. (33)

We begin analyzing the first term, noticing that by the R2WDC

kWj,+,x(xj�1 � yj�1)k2 = (xj�1 � yj�1)
T (WT

j,+,xWj,+,x �
1

2
In1)(xj�1 � yj�1) +

1

2
kxj�1 � yj�1k2


⇣1
2
+ ✏

⌘
kxj�1 � yj�1k2 (34)

We next analyze the second term. Let Wj,i 2 R1⇥nj�1 be the i-th row of Wj then

k
�
Wj,+,x �Wj,+,y

�
yj�1k2 =

nX

i=1

�
Wj,ixj�1>0 � Wj,iyj�1>0

�2
(Wj,i yj�1)

2


nX

i=1

�
Wj,ix>0 � Wj,iy>0

�
(Wj,i(xj�1 � yj�1)

=
nX

i=1

Wj,ix>0 Wj,iy0Wj,i(xj�1 � yj�1)

+
nX

i=1

Wj,ix0 Wj,iy>0Wj,i(xj�1 � yj�1)

= (xj�1 � yj�1)
T (Wj)

T
+,xj�1

⇣
(Wj)+,xj�1 � (Wj)+,yj�1

⌘
(xj�1 � yj�1)

+ (xj�1 � yj�1)
T (Wj)

T
+,yj�1

⇣
(Wj)+,yj�1 � (Wj)+,xj�1

⌘
(xj�1 � yj�1).

(35)

Observe now that by the R2WDC we have

|(xj�1 � yj�1)
T (Wj)

T
+,yj�1

⇣
(Wj)+,yj�1 � (Wj)+,xj�1

⌘
(xj�1 � yj�1)|

 |(xj�1 � yj�1)
T
⇣
(Wj)

T
+,yj�1

(Wj)+,yj�1 � Ik/2
⌘
(xj�1 � yj�1)|

+ |(xj�1 � yj�1)
T
⇣
(Wj)

T
+,yj�1

(Wj)+,xj�1 �Qxj�1,yj�1

⌘
(xj�1 � yj�1)|

+ |(xj�1 � yj�1)
T
⇣
Ini�1/2�Qxj�1,yj�1

⌘
(xj�1 � yj�1)|

 (2✏+ ✓j�1)kxj�1 � yj�1k2,

which together with (35) gives

k
�
Wj,+,x �Wj,+,y

�
yj�1k2  2(2✏+ ✓j�1)kxj�1 � yj�1k2. (36)

We conclude using (34) and (36) in (33).

Proof of Proposition C.4

We next prove the convexity-like property in Proposition C.4.

Proof of Proposition C.4. We begin observing that by (27) we have |✓i � ✓̄i|  4i
p
✏  4d

p
✏.

Furthermore, since x 2 B(y, d
p
✏kyk) it follows that

✓̄i  ✓̄0  2d
p
✏.

Thus by the assumption on ✏, we have

p
2
p
✓i + 2✏ 

p
2
q
✓̄i + 4d

p
✏+ 2✏ 

p
2
q
2d
p
✏+ 4d

p
✏+ 2✏  1

30
p
2d

(37)
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Let now �d := ⇤T
d,x(⇤d,xx� ⇤d,yy). Then notice that

�d = ⇤T
d�1,xW

T
d,+,x(Wd,+,x⇤d�1,xx�Wd,+,y⇤d�1,yy)

= ⇤T
d�1,xW

T
d,+,xWd,+,x(⇤d�1,xx� ⇤d�1,yy) + ⇤

T
d,x(Wd,+,x �Wd,+,y)⇤d�1,yy

=
1

2
�d�1 + ✏k⇤d�1,xkk⇤d�1,xx� ⇤d�1,yykO1(1) + k⇤d,xkk(Wd,+,x �Wd,+,y)⇤d�1,yykO1(1)

=
1

2
�d�1 +

⇣
✏+

r
1

2
+ ✏

p
2(2✏+ ✓d�1)

⌘
k⇤d�1kk⇤d�1,xx� ⇤d�1,yykO1(1)

=
1

2
�d�1 +

⇣
✏+

r
1

2
+ ✏

p
2(2✏+ ✓d�1)

⌘1.2
p
1 + 4✏d

2d�1
kx� ykO1(1)

=
1

2
�d�1 + 2

⇣ 1

2004d6
+

1

30
p
2d

⌘kx� yk
2d�1

O1(1) (38)

where the third equality follows from the R2WDC, the fourth the R2WDC and (36), the fifth from
(22) and Proposition C.3, and sixth from (37) and the assumption on ✏. Finally, from (38) and (28)
we obtain

�d =
1

2d
kx� yk+ 1

16

kx� yk
2d

O1(1)

D Proof of Lemma 5.2

In this section, we prove that a generative network G with random weights satisfies the R2WDC with
high-probability (Lemma 5.2). Our proof is inspired by the proof of Proposition 3 in [17].

Notice that because of the piecewise-linear nature of the ReLU activation function, the output of a
ReLU network is a subset of a union of affine subspaces. The following lemma from [22] provides an
upper bound on the number of such subspaces.
Lemma D.1 (Lemma 7 in [22]). Consider a generative network G as in (2) and assume that ni � k

for i 2 [d]. Then for i 2 [d], range(Gi) is contained in a union of affine subspaces. Precisely,

range(Gi) ✓ [j2[ i]Si,j where  i 
iY

j=1

⇣
enj

k

⌘k
.

Here each Si,j is some k-dimensional affine subspace (which depends on {W`}`2[i]) in Rni .

We next give the main result upon which the proof of Proposition 5.2 rests.
Proposition D.2. Fix 0 < ✏ < 1 and ` < n. Let W 2 Rm⇥n

have i.i.d. N (0, 1/m). Let R,S be

`-dimensional subspaces of Rn
, and T be an `

0
-dimensional subspaces of Rn

with l
0 � l. Then if

m � C✏`
0
, we have that

|hWT
+,rW+,su, vi � hQr,su, vi|  ✏kuk2kvk2 8 u, v 2 T, 8r 2 R, 8s 2 S, (39)

with probability exceeding

1� �

⇣
em

`

⌘2`
exp(�c✏m)

Furthermore, let U =
SN1

i=1 Ui, V =
SN2

j=1 Vj V =
SN2

j=1 Vj , R =
SN3

p=1 Rp, and S =
SN4

q=1 Sq be

union of subspaces of Rn
of dimension at most `. Then if m � 2C✏`

0

|hWT
+,rW+,su, vi � hQr,su, vi|  ✏kuk2kvk2 8 u 2 U, v 2 V, 8r 2 R, 8s 2 S, (40)

with probability exceeding

1� �N1N2N3N4

⇣
em

`

⌘2`
exp(�c✏m).

Here c✏ depends polynomially on ✏, C✏ depends polynomially on ✏
�1

, and � is a positive universal

constant.
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With the above two results, we are in a position to prove Lemma 5.2.

Proof of Lemma 5.2. We begin establishing the proposition in the d = 2 case.

If n1 � 2C✏k by the second part of Proposition D.2 with U, V,R, S = Rk, W1 satisfies (9) with
probability at least

1� �

⇣
en1

k

⌘2k
exp(�c✏n1).

We next consider the bound (9) for j = 2. Fix W1 and observe that, by Lemma D.1, range(G1)
is contained in the union of at most  1 number of k-dimensional affine subspaces of Rn1 and
{G1(x1)�G1(x2) : x1, x2 2 Rk} is contained in the union of at most 2

1 number of 2k-dimensional
affine subspaces of Rn1 . Since then an `-dimensional affine subspace is also contained in an `+ 1
subspace. We have that range(G1) ⇢ R1 where R1 is the union of at most  1 number of k + 1-
dimensional subspaces and {G1(x1) � G1(x2) : x1, x2 2 Rk} ⇢ U1 where U1 is the union of at
most  2

1 number of 2k + 1-dimensional subspaces.

By applying the second part of Proposition D.2 to the sets U1,U1,R1 and R1, we have that for fixed
W1,
���h
⇣
(W2)

T
+,G1(x)

(W2)+,G1(y) �QG1(x),G1(y)

⌘�
G1(x1)�G1(x2)

�
, G1(x3)�G1(x4)i

���

 ✏kG1(x1)�G1(x2)k2kG1(x3)�G1(x4)k2 (41)

with probability at least

1� � 6
1

⇣
e n2

k + 1

⌘2k+2
e
�c✏n2 � 1� �

⇣
e n2

k + 1

⌘4k
e
�c✏n2/2

provided that n2 � 12c�1
✏ log 1 and n2 � 2C✏(2k + 1). In particular the above holds provided that

n2 � eC✏k log(en1/k) where eC✏ depends polynomially on ✏
�1.

Integrating over the probability space of W1, independence of W2 and W1 implies that (41) holds for
random W1 with the same probability bound. This allows us to conclude that a two-layer random
generative network G satisfies the R2WDC with probability at least

1� �

⇣
en1

k

⌘2k
e
�c✏n1 � �

⇣
e n2

k + 1

⌘4k
e
�c✏n2/2.

The proof of the d � 2 case follows similarly. In particular, to establish (9) for Wi notice that
range(Gi�1) is contained in the union of at most  i�1 number k + 1 subspaces, and {Gi�1(x1)�
Gi�1(x2) : x1, x2 2 Rk} in the union of at most  2

i�1 number of 2k + 1-dimensional subspaces.
Applying Proposition D.2 to these subspaces we have that for fixed {Wj}j2[i�1]

���h
⇣
(Wi)

T
+,Gi�1(x)

(Wi)+,Gi�1(y)�QGi�1(x),Gi�1(y)

⌘�
Gi�1(x1)�Gi�1(x2)

�
, Gi�1(x3)�Gi�1(x4)i

���

 ✏kGi�1(x1)�Gi�1(x2)k2kGi�1(x3)�Gi�1(x4)k2 (42)

with probability at least

1� �

⇣
e ni

k + 1

⌘4k
e
�c✏ni/2

provided that

ni � eC✏ · k ·
i�1Y

j=1

e nj

k
.

Integrating over the probability space of {Wj}j2[i�1]) indpendence of Wi and (W1, . . . ,Wi�1) gives
that (42) holds with the same probability bound.

We will devote the following section to the proof of Proposition D.2.
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D.1 Proof of Proposition D.2

We begin by proving a weaker form of Proposition D.2, that characterizes the concentration of
W

T
+,rW+,s around its mean for fixed r, s and when acting on `-dimensional subspaces.

Lemma D.3. Fix 0 < ✏ < 1 and k < n. Let W 2 Rm⇥n
have i.i.d. N (0, 1/m) entries and fix

r, s 2 Rn
. Let T be a `-dimensional subspace of Rn

. Then if m � C̃1`, we have that with probability

exceeding 1� 2 exp(�c̃1 m),

|hWT
+,rW+,su, ui � hQr,su, ui|  ✏kuk22 8 u 2 T (43)

and

|hWT
+,rW+,su, vi � hQr,su, vi|  3✏kuk2kvk2 8 u, v 2 T, (44)

Furthermore, let U =
SN1

i=1 Ui and V =
SN2

j=1 Vj where Ui and Vj are subspaces of Rn
of dimension

at most ` for all i 2 [N1] and j 2 [N2]. Then if m � 2C̃1`

|hWT
+,rW+,su, vi � hQr,su, vi|  3✏kuk2kvk2 8 u 2 U, 8 v 2 V, (45)

with probability exceeding 1� 2N1N2 exp(�c̃1m). Here c̃1 depends polynomially on ✏ and C̃1 =
⌦(✏�1 log ✏�1).

Proof. The proof follows the one in Proposition 4 of [17] with minor variations. Set ⌃r,s :=
W

T
+,rW+,s�Qr,s, and notice that for fixed u 2 Rn�1, h⌃r,su, ui =

Pm
i=1 Yi where Yi = Xi�E[Xi],

Xi = hwi,ri>0 hwi,si>0hwi, ui2 and each wi ⇠ N (0, In/m). We then notice that the Yi are sub-
exponential random variables and by standard ✏-net argument we can show that (43) holds with
high-probability. Proposition 5 in [17] can then be adapted to this case as well and used to derive (44)
from (43). Finally (45) follows by a union bound over all subspaces of the form span(Ui, Vj).

We next observe that the rows of a sufficiently tall random matrix W tessellate the unit sphere in
regions of small diameter.
Lemma D.4. Fix 0 < ✏ < 1. Let W 2 Rm⇥n

have i.i.d. N (0, 1/m) entries with rows {w`}m`=1. Let

Z be a `-dimensional subspace of Rn
. Define EZ,W to be the event that there exists a set Z0 ⇢ Z

with the following properties:

i) each z0 2 Z0 satisfies hw`, z0i 6= 0 for all ` 2 [m],

ii) |Z0|  ( em` )`, and

iii) for all z 2 Z such that kzk2 = 1, there exists z0 2 Z0 such that kz � z0k2  ✏.

If m � C̃2`, then P(EZ,W ) � 1� C2 exp(�c2✏m). Here C2 and c2 are positive absolute constants

and C̃2 depends polynomially on ✏
�1

.

Proof. The proof of this lemma follows the one in Lemma 24 in [17]. The upper bound |Z0|  ( em` )`

is due to Lemma D.6 in Appendix D.2.

We are now ready to present the proof of Proposition D.2.

Proof of Proposition D.2. Let ER,W be the event defined in Lemma D.4 corresponding to the matrix
W and subspace R. On the event ER,W there exists a finite set R0 ⇢ R satisfying properties i) - iii)
of Lemma D.4. Similarly, we can define the event ES,W for the matrix W and subspace S, and the
finite set S0 ⇢ S satisfying properties i) - iii).

We can then define the event ER,S := ER,W \ ES,W so that if m � C̃2`
0 by Lemma D.4 we have

P(ER,S) � 1� 2C2 exp(�c2✏m).

For fixed r0 2 R0 and s0 2 S0, Lemma D.3 gives that if m � 2C̃1` with probability at least
1� 2 exp(�c̃1m)

|hWT
+,r0W+,s0u, vi � hQr0,v0u, vi|  3✏kuk2kvk2 8u, v 2 T.
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Next, let E0 be the event that

|hWT
+,r0W+,s0u, vi � hQr0,v0u, vi|  3✏kuk2kvk2 8u, v 2 T, r0 2 R0, s0 2 S0.

Then, on ER,S , a union bound gives

P(E0) � 1� 2|R0||S0| exp(�c̃1m/2) � 1� 2
⇣
em

`

⌘2`
exp(�c̃1m/2).

We will next work on the event E0 \ ER,S . Fix nonzero r 2 R and s 2 S, and define the set of
indices

⌦r,s := {j 2 [m] : hwj , ri = 0 or hwj , si = 0}
Observe then that by the definition of W+,r and ⌦r,s the following holds

W
T
+,rW+,s =

mX

j=1

hwj ,ri>0 hwj ,si>0wjw
T
j

=
X

j2⌦r,s

hwj ,ri>0 hwj ,si>0wjw
T
j +

X

j2⌦c
r,s

hwj ,ri>0 hwj ,si>0wjw
T
j

=
X

j2⌦c
r,s

hwj ,ri>0 hwj ,si>0wjw
T
j

On the event ER,S , there exist therefore r0 2 R0 and s0 2 S0 such that for all j 2 ⌦c
r,s it holds that

sgn(hwj , ri) = sgn(hwj , r0i) and sgn(hwj , si) = sgn(hwj , s0i).
In particular, we can write

W
T
+,rW+,s =

X

j2⌦c
r,s

hwj ,ri>0 hwj ,si>0wjw
T
j

= W
T
+,r0W+,s0 �

X

j2⌦r,s

hwj ,r0i>0 hwj ,s0i>0wjw
T
j

=: WT
+,r0W+,s0 �fWT

+,r0
fW+,s0

The next lemma shows that the residual fWT
+,r0

fW+,s0 has small norm when acting on T .

Lemma D.5. Fix 0 < ✏ < 1 and ` < m. Suppose that W 2 Rm⇥n
has i.i.d. N (0, 1/m) entries. Let

T ⇢ Rn
be an `-dimensional subspace and R0 and S0 be subsets of Rn

. Let E1 be the event the

following inequality holds for all set of indexes ⌦ ⇢ [m] with cardinality |⌦|  2`:

|hfWT
+,r0

fW+,s0u, vi|  ✏kuk2kvk2 8u, v 2 T, r0 2 R0, s0 2 S0

where

fWT
+,r0

fW+,s0 :=
X

j2⌦
hwj ,r0i>0 hwj ,s0i>0wjw

T
j .

There exists a �✏ > 0 such that if m � 9✏�1
` an 2`  �✏m, then P(E1) � 1� 2m exp(�✏m/36).

We now consider the event E := E1 \ E0 \ ER,S where E1 is the event defined in the previous
lemma. On E for all r 2 R, s 2 S and u, v 2 T ,

|hWT
+,rW+,su, vi � hQr,su, vi| =

���hWT
+,r0W+,s0u, vi � hfWT

+,r0
fW+,s0u, vi � hQr,su, vi

���


���hWT

+,r0W+,s0u, vi � hQr0,s0u, vi
���

+
���hQr0,s0u, vi � hQr0,s0u, vi

���

+
���hfWT

+,r0
fW+,s0u, vi

���

 3✏kuk2kvk2 +
60

⇡
✏kuk2kvk2 + ✏kuk2kvk2

 24✏kuk2kvk2, (46)
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where the first equality used the event ER,S and the definition of fWT
+,r0

fW+,s0 . The second inequality
used instead the event E1 \ E0 and the Lipschitz continuity of Qr,s (Lemma D.7).

In conclusion, there exist C✏ and c✏ such that if m � C✏`
0 then

P(E1 \ E0 \ ER,S) � 1� 2m exp(�✏m/36)� 2
⇣
em

`

⌘2`
exp(�c̃1m/2)� 2C2 exp(�c2✏m)

� 1� �

⇣
em

`

⌘2`
exp(�c✏m)

Here C✏ depends polynomially on ✏
�1 and c✏ depends polynomially on ✏, and � is positive absolute

constant.

Notice that (46) gives a bound in terms of 24✏kuk2kvk2. To obtain a bound as in (39) simply rescale
✏ by 1/24 in the discussion above, and modify c✏ and C✏ accordingly.

To extend (39) to the union of subspaces, we consider the subspace Ti,j = span(Ui, Vj) with
dimension at most 2`0. Then use (39) with subspaces Ti,j , Rp and Sq , and take a union bound.

D.2 Supplemental Results for Section D

We begin this section by providing an upper bound on the number of activation patterns of a ReLU
layer. This result is used in the proof of Lemma D.4.
Lemma D.6. Let S be an `-dimensional subspace of Rn

and m � `. Let W 2 Rm⇥n
have i.i.d

N (0, 1/m) entries. Then with probability 1,

|{diag(Ws > 0)W |s 2 S}| 
⇣
em

`

⌘`

Proof. Observe that by rotational invariance of the Gaussian distribution we may take, without loss
of generality, S to be the span of the first ` standard basis vector, i.e. S = span(e1, . . . , e`). We can
then also take W 2 Rm⇥` and S = R`.

Let {wj}mj=1 be the rows of the matrix W . Notice that for fixed W , |{diag(Ws > 0)W |s 2 S}|
equals the number of binary vectors ( hwj ,vi>0)j2[n] for v 2 S`�1. Each ( hwj ,vi>0)j2[n] uniquely
identifies a region of the partitioning of Rl induced by the set of hyperplanes H := {x : hwj , xi = 0}.
From the theory of hyperplane arrangements [29] we know that m � ` hyperplanes in R` partition
the space in at most

P`
j=0

�m
j

�
. Thus, with probability 1 we have

|{diag(Ws > 0)W |s 2 S}| 
X̀

j=0

✓
m

j

◆


X̀

j=0

m
j

j!

X̀

j=0

`
j

j!

⇣
m

`

⌘j

⇣
m

`

⌘` 1X

j=0

`
j

j!
=
⇣
em

`

⌘`

Next we prove Lemma D.5, providing an upper bound for the random matrix fWTfW when acting on
low-dimensional subspaces.

Proof of Lemma D.5. Notice that for any ⌦ ⇢ [m], u, v 2 T , r0 2 R0 and s0 2 S0, it holds that

|hfWT
+,r0

fW+,s0u, vi| = |hdiag(W⌦r0 > 0)� diag(W⌦s0 > 0)W⌦u,W⌦vi|
 kdiag(W⌦r0 > 0)� diag(W⌦s0 > 0)kkW⌦vkkW⌦uk
 kW⌦vkkW⌦uk.

Therefore, it is sufficient to show that

kW⌦uk 
p
✏kuk 8u 2 T 8⌦ ⇢ [m] satisfying |⌦|  2`  �✏m.

The rest of the proof follows, mutatis mutandis, as in Lemma 26 of [17].
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We will next show that Qx,y is a Lipschitz function of its arguments.

Lemma D.7. Fix 0 < ✏ < 1 and x, x̃, y, ỹ 2 Sn�1
. If kx̃� xk  ✏ and kỹ � yk  ✏, then

kQx̃,ỹ �Qx̃,ỹk 
⇣ 2
⇡
+ 2
p
79
⌘
✏

Proof. Recall the following facts:

kx� yk � 2 sin(\(x, y)/2), 8x, y 2 Sn�1 (47)

|\(x1, x2)| � |\(x1, y)� \(x2, y)|, 8x1, x2, y 2 Sn�1 (48)
sin(✓/2) � ✓/4, 8✓ 2 [0,⇡] (49)

Let ✓x̃,x = \(x̃, x) and ✓ỹ,y = \(ỹ, y), then

kQx,y �Qx̃,ỹk 
|✓x,y � ✓x̃,ỹ|

2⇡
+
���
sin ✓x,y
2⇡

Mx$y �
sin ✓x̃,ỹ
2⇡

Mx̃$ỹ

���.

By (48) it holds that

|✓x,y � ✓x̃,ỹ|  |✓x,y � ✓x̃,y|+ |✓x̃,y � ✓x̃,ỹ|  |✓x̃,x|+ |✓ỹ,y|,

while from (47) and (49) it follows that

|✓x̃,x|  4 sin(✓x̃,x/2)  2✏,

|✓ỹ,y|  4 sin(✓ỹ,y/2)  2✏.

Thus |✓x,y � ✓x̃,ỹ|  4✏. Lemma B.3 in [10] then proves that
���
sin ✓x,y
2⇡

Mx$y �
sin ✓x̃,ỹ
2⇡

Mx̃$ỹ

���  2
p
79✏,

which concludes the proof.

E Proof of Lemma 5.3

In this section we prove Lemma 5.3 which is used to bound the perturbation of the objective function
fcs and its gradient due to the presence of the noise term ⌘.

Proof of Lemma 5.3. Fix x, z 2 Sk�1 and notice that by the properties of the Gaussian distribution,
for t � 0 it holds that

PA

⇥
hz,⇤T

xA
T
⌘i � k⇤xzkp

m
k⌘kt

⇤
= Py⇠N (0,1)

hk⇤xzkp
m
k⌘ky � k⇤xzkp

m
k⌘kt

i
 e

� t2

2 .

If z = x use (20b), while if z 6= x and G differentiable at x use (22), to obtain that

PA

h
hz,⇤T

xA
T
⌘i �

r
13

12

k⌘k
2d/2

tp
m

i
 e

� t2

2

Let N1/2 be a 1
2 -net over Sk�1 such that |N1/2|  5k (see for example [38]). Recall that by Lemma

D.1 the number of different matrices ⇤x is bounded by  d. Thus, a union bound gives

P
h
hz,⇤T

xA
T
⌘i �

r
13

12

k⌘k
2d/2

tp
m
, 8x, z 2 Sk�1

i
 |N 1

2
| d P

h
hz,⇤T

xA
T
⌘i �

r
13

12

k⌘k
2d/2

tp
m

i

 exp(� t

2

2

+ log 5 + log d)

Choosing t = 2
q
k log(5

Qd
i=1

e ni
k ) we obtain the theses.
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F Extensions

F.1 Compressive Phase Retrieval with a Generative Prior

Consider a generative network G : Rk ! Rn as in (2). The compressive phase retrieval problem
with a generative network prior can be formulated as follows.

COMPRESSIVE PHASE RETRIEVAL WITH A DEEP GENERATIVE PRIOR
Let: G : Rk ! Rn generative network, A 2 Rm⇥n measurement matrix.
Let: y? = G(x?) for some unknown x? 2 Rk.

Given: G and A.
Given: Measurements b = |Ay?|+ ⌘ 2 Rm with m⌧ n and ⌘ 2 Rm noise.

Estimate: y?.

To estimate y?, [16] proposes to find the latent code x̂ that minimizes the reconstruction error

x̃ = arg min
x2Rx

fpr(x) :=
1

2
kb� |AG(x)|k22, (50)

y? ⇡ G(x̃).

In [17] it is shown that Algorithm 1 with inputs fpr, small enough step size and arbitrary initial
condition estimates y? up to the noise level in polynomial time, provided that the number of phaseless
measurements is up-to log-factors m � k · poly(d) and the generative network is logarithmically
expansive. The proof uses the WDC and an isometry condition akin to the RRIC. As before, the
RWDC can be replaced by the R2WDC and obtain the same convergence guarantees. Moreover,
as in the case of compressed sensing, the logarithmic factor in the number of measurements can be
improved using Lemma D.1.

F.2 Denoising with a Generative Prior

Consider a generative network G : Rk ! Rn as in (2). The denoising problem with a generative
network prior can be formulated as follows.

DENOISING WITH A DEEP GENERATIVE PRIOR
Let: G : Rk ! Rn generative network.
Let: y? = G(x?) for some unknown x? 2 Rk.

Given: G.
Given: Noisy signal b = y? + ⌘ 2 Rm with ⌘ ⇠ N (0,�2 In) noise.

Estimate: y?.

To estimate y?, [20] proposes to find the latent code x̂ that minimizes the reconstruction error

x̃ = arg min
x2Rx

fden(x) :=
1

2
kb�G(x)k22, (51)

y? ⇡ G(x̃).

In [20] recovery guarantees based on this minimization problem are given for an expansive generative
network G. Specifically, it is shown that Algorithm 1 with input fden, small enough step size ↵ and
arbitrary initial point x0, reconstructs the signal y? up to an O(k/n) error. The random network G

is assumed to be logarithmically expansive in order to satisfy the WDC with high-probability, but
inspecting the proof it can be seen that the R2WDC is enough. Using Lemma 5.2 we can extend the
result of [20] to the case of a generative network satisfying Assumptions B.
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F.3 Spiked Matrix Recovery with a Generative Prior

Consider a generative network G : Rk ! Rn as in (2). The spiked Wishart matrix recovery with a
generative prior is formulated as follows.

SPIKED WISHART MATRIX RECOVERY
WITH A DEEP GENERATIVE PRIOR

Let: G : Rk ! Rn generative network.
Let: y? = G(x?) for some unknown x? 2 Rk.

Given: G.
Given: Noisy matrix B = u y?

T + �Z 2 RN⇥n, with u ⇠ N (0, IN )
and Z with i.i.d. N (0, 1) entries.

Estimate: y?.

Similarly, the spiked Wigner matrix recovery with a generative prior is formulated as follows.

SPIKED WIGNER MATRIX RECOVERY
WITH A DEEP GENERATIVE PRIOR

Let: G : Rk ! Rn generative network.
Let: y? = G(x?) for some unknown x? 2 Rk.

Given: G.
Given: Noisy matrix B = y? y?

T + �H 2 Rn⇥n,
with H from a Gaussian Orthogonal Ensemble.

Estimate: y?.

To estimate y?, [8] proposes to find the latent code x̂ that minimizes the reconstruction error

x̃ = arg min
x2Rx

fspiked(x) :=
1

2
kM �G(x)G(x)T k2F ,

y? ⇡ G(x̃),

where

• in the spiked Wishart model M = B
T
B/N � �

2
In;

• in the spiked Wigner model M = B.

As shown in [9] Algorithm 1 with inputs fspiked, appropriate ↵ and arbitrary initial point x0, estimates
in polynomial time the signal y? with rate-optimal dependence on the noise level or sample complexity.
In particular, this shows that the absence of a computational-statistical gap in spiked matrix recovery
with an expansive (random) generative network prior. The proof uses the fact that for G satisfying
the WDC the bounds in Proposition C.1, C.2, C.3 and C.4 hold. Since these bounds hold under the
weaker R2WDC we can directly extend the results in [9] to non-expansive generative networks G
satisfying Assumptions B.

G An example of a contractive generative network

In this section we give an example of a generative network as in (2) satisfying the conditions (12)
and (17), and with contractive layers.

Let d � 2 and C̄✏ := max( eC✏, 16c�1
✏ /log(2)). Then consider a d-layer generative network G such

that for i 2 [d]
ni := C̄✏ · k · d(2d� i) · ↵,
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where ↵ · C̄✏ 2 N and

↵ � max

⇢
2 log

�
C̄✏ · k

�

d2
, log

�
e
2
C̄✏

��
. (52)

We now demonstrate that ni satisfies (12). Notice that

log
⇣ i�1Y

j=1

enj

k

⌘
=

i�1X

j=1

log
�
↵ · C̄✏ · d(2d� j) · e

�

 (d� 1) log
�
↵ · C̄✏ · 2d2 · e

�

= (d� 1)
⇥
log(eC̄✏) + 2 log(d)

⇤
+ (d� 1) log(2↵)

 (d� 1)d
⇥
log(eC̄✏) + 1

⇤
+ (d� 1)↵

 (d� 1)d↵+ (d� 1)↵

= (d2 � 1)↵

where in the second inequality we have used 2 log(x)  x and log(2x)  x for x > 0 and in the
third (52). Next since d(2d� i) � (d2 � 1) for every i 2 [d], ni satisfies (12) for every i 2 [d].

We now show that ni satisfies (17). We have

log(ni) = log(C̄✏ · k · d(2d� i) · ↵)
= log(d(2d� i)↵) + log(C̄✏k)

 d(2d� i)↵

2
+ log(C̄✏k)

 d(2d� i)↵

2
+

d
2
↵

2
 d(2d� i)↵,

where in the first inequality we have used 2 log(x)  x for x > 0, in the second inequality (52) and
in the third 2d2  d(2d� i) for every i 2 [d]. We therefore have

log(ni) ·
16 · k · c�1

✏

log(2)
 d(2d� i) · ↵ · 16 · k · c�1

✏

log(2)
 d(2d� i) · ↵ · C̄✏ · k = ni.

H Experiments

In this section, we verify the prediction of our theory (Theorem 5.4) on synthetic data. We consider
the compressed sensing problem with generative prior formulated in Se ction 3 and show that a
practical implementation of Algorithm 1 can estimates the sought signal in the case of generative
networks with contractive layers.

At each step Algorithm 1 requires the computation of the subgradient of fcs at a point x̃. This could be
achieved for example by computingrfcs(x̃+ �) where � is sufficiently small and fcs is differentiable
at fcs(x̃+ �). As already shown in [21], in practice, one can replace Algorithm 1 with Algorithm 2
below. In the Algorithm 2, v0x̃t

corresponds to the gradient of fcs at a point of differentiability. At a
point of non-differentiability v

0
x̃t

corresponds to the output of autograd applied to fcs as implemented
by the current deep learning libraries. Notice that the set of non-differentiability of fcs has measure
zero and it is extremely unlikely that the iterates of the subgradient descent will hit this set. Hence, in
practice Algorithm 1 and Algorithm 2 are equivalent.

We then the performance of Algorithm 2 when solving compressed sensing with generative networks
G with two and three layers. The entries of the weights Wi of G are drawn from N (0, I/ni), while
the entries of the measurements matrix A are drawn from N (0, I/m). In all the experiments we run
Algorithm 2 for 10,000 iterations, or until the norm of the v

0
x̃t

is below 10�10, whichever comes
first. We fix the learning rate ⌫ to 0.7 and randomly initialize x0. The target x? is chosen so that
y? = G(x?) has unit norm.

In the first experiment, we consider the noiseless case with ⌘ = 0 and a fixed number of measurements
m = 300. The 2-layers generative networks have fixed layer widths of dimensions n1 = 700 and
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Algorithm 2: PRACTICAL SUBGRADIENT DESCENT [21]
Input: Objective function f , initial point x0 2 Rk \ {0} and step size ↵

Output: An estimate of the target signal y? = G(x?) and latent vector x?

1 for t = 0, 1, . . . do
2 if f(�xt) < f(xt) then x̃t  �xt

3 else x̃t  xt

4 v
0
x̃t

= ⇤T
d,x̃t

A
T (A⇤d,x̃t x̃t � b)

5 xt+1  x̃t � ↵v
0
x̃t

6 end
7 return xt, G(xt)

Figure 1: Empirical probability of successful recovery the latent vector from compressed noiseless
random measurements versus the latent dimension. The 2-layers generative networks have fixed layer
widths of dimensions n1 = 700 and n = n2 = 600 and the 3-layers generative networks have fixed
layer widths of dimensions n1 = 150, n2 = 700 and n = n3 = 600.

n = n2 = 650 with varying latent dimension n0 = k. The 3-layers generative networks have fixed
layer widths of dimensions n1 = 150, n2 = 700 and n = n3 = 600 with varying latent dimension
n0 = k.

Figure 1 reports the empirical probability of successful recovery from 30 random independent trials
(over A and G) for of noiseless problems, where a run Algorithm 2 is called successful if the relative
reconstruction error kx? � xT k/kx?k is below 10�3. These experiments show that recovery of x?

from undersampled measurements can be achieved even in the case of non-expansive generative
networks and adding more layers makes the problem harder. Nonetheless, the algorithm succeeds in
wider range of parameters as predicted by our theory, in particular with a milder dependence on the
depth d.

In the second experiment we study the noisy compressive sensing problem with a fixed num-
ber of measurements m = 300. We consider 2-layers generative networks with fixed layer
widths of dimensions n1 = 700 and n = n2 = 600, and varying latent dimension n0 = k in
{5, 10, 15, 20, 25, 30, 35, 40, 45}. The measurements are taken to be b = Ay? + ⌘ where ⌘ = ⌧ e

where e is taken uniformly at random over the sphere Sm�1 and ⌧ is chosen so that the signal to
noise ratio (SNR) varies in {20, 40, 80}. The SNR is defined as 10 log10

�
kAG(x?)k/k⌘k

�
.

In Figure 2 we plot the average reconstruction error kG(xT ) � y?k/ky?k over 30 independent
random draws of A and G. As predicted by our theory this quantity scales linearly with the ratio
k/m. Furthermore, the error is proportional to the magnitude of the noise k⌘k.
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Figure 2: Reconstruction error ky? �G(x)k/ky?k from noisy compressed linear measurements at
varying level of SNR. The number of measurements m is fixed at 300 and latent dimension k is
varied. The generative networks have outputs of dimension n = n2 = 600 and hidden layers of
dimension n1 = 700.
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