
A Notation Summary and Organization

A.1 Organization

After establishing notation below, the rest of the appendix is organized as follows. Appendix B
provides additional algorithm details, including extension to backtracking and discussion of oracle
complexity. Appendix C sketches implementation via finite-sample, finite-horizon oracles; notably,
Appendix C.2 describes implementation with an oracle which does not require direct access to sys-
tem states, but which rather “subsamples” outputs at various time steps.

Appendix D provides further discussion on the somewhat-nonstandard controllability assumption,
Assumption 2.4, and demonstrates it holds generically. Appendix E contains assorted results about
our assumptions and various other control-theoretic considerations. Appendix E also contains the
proofs of various other supporting results, mainly on the characterization of optimal policies and
their informativity. It also shows that random (continuous) initializations are informative with prob-
ability one. Finally, Appendix F provides further details for the various counterexamples presented
in Section 3.

Part II turns to the proof of our main result, Theorem 2, as well as its more qualitative statement, The-
orem 1. The high level proofs are given in Appendix G, with the following appendices establishing
the main constituent results. Specifically, Appendix H establishes the proofs for the DCL framework
and gradient descent for general objective functions. Appendix I substantiates the framework, and
exhibits a DCL for our regularized loss for the OE problem, using a convex reformulation due to
Scherer [1995]. Appendix J then establishes that informativity translates into bounds on the norm of
the solutions to Lyapunov equations involving the closed loop matrix Acl,K. This is one of our most
technically innovative arguments. Finally, Appendix K upper bounds the norms of various first- and
second-order derivatives, via somewhat standard arguments.

A.2 Notation

We let lower case variables in script font (x,y, z) denote abstract parameters for optimization;
standard vectors (x,y, z) are reserved for random variables and/or dynamical quantities. Matrices
are denoted in bold, e.g X,Y,Z. For vectors, kxk denotes the Euclidean norm, kXk denotes the
matrix operator norm and kXkF, the Frobenius norm.

We let Sn�1 denote the unit sphere in Rn. We denote the set of symmetric n⇥n matrices as Sn; the
set of nonstrictly positive semidefinite (PSD) matrices as Sn+, strictly positive definite (PD) matrices
as Sn++, and invertible matrices as GL(n). Given X1,X2 2 Sn, we let X1 � X2 denote nonstrict
PSD inequality, with X1 � X2 denoting strict inequality. Given a square matrix A 2 Rn⇥n,
exp(A) denotes the matrix exponential. For A with real eigenvalues, �i(A), i = 1, . . . , n denotes
its eigenvalues in descending order, with �max(A) = �1(A) and �min(A) = �n(A); when A has
complex eigenvalues, �i(A) are arranged in an arbitrary order. For general rectangular matrices
A 2 Rm⇥n, �i(A), i = 1, . . . , n denotes its singular values in descending order. We use In to
denote the identity matrix with dimension n ⇥ n, and omit n when the dimension is clear from
context.

We use parentheses to denote parameter concatenation: e.g. X̄ = (X1,X2,X3) 2 Rn1⇥m1 ⇥
Rn2⇥m2 ⇥ Rn3⇥m3 for Xi 2 Rni⇥mi , and we define Euclidean norms of concatenation in the
natural way (e.g. kX̄k`2 =

pP
i
kXik2F for the previous example X̄ = (X1,X2,X3)).

A.3 Further Notational Review

In this section, we review some of the key notation used throughout.

System Variables Definition
x(t) system state, dimension n
y(t) system observation, dimension m
z(t) system output, dimension p
w(t) process noise, dimension n
v(t) observation noise, dimension m
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System Parameters Definition
A system state transition matrix, ẋ(t) = Ax(t) +w(t) .
C system observation matrix, z(t) = Cx(t) + e(t)
G system output matrix, z(t) = Gx(t)
W1 process noise covariance, w(t) ⇠ N (0,W1)
W2 output noise covariance, v(t) ⇠ N (0,W2)

Nominal System Quantitites Definition

⌃11,sys
steady-state system covariance
((1, 1)-block of any ⌃K, see below)

P? Solution to Riccati equation (Eq. (2.5))

�?
�min(P?)
(strictly positive due to Lemma 3.3)

L? Optimal Kalman Gain (Eq. (2.5))

Csys

Upper bound on relevant problem parameters, Eq. (3.3)
max

�
kAk, kCk, kGk, kW2k, kW�1

2 k, kW
�1
1 k, k⌃11,sysk, ��1

?

 

Policy Parameters Definition

K = (AK,BK,CK)
parametrization of policy
d
dt x̂(t) = AKx̂(t) +BKy(t), ẑ(t) = CKx̂(t)

K?
cannonical realization of optimal policy
K? = (A� L?C, L?, G)

LOE(K) output estimation loss (Eq. (1.3))

SimS(K)
Similarity transform
(AK,BK,CK) 7! (SAKS�1,SBK,CKS�1).

Acl,K closed-loop system matrix (Eq. (2.1))
⌃K steady state covariance (Eq. (2.2))
Wcl,K closed-loop noise matrix (Eq. (2.2))

⌃11,sys,⌃12,K,⌃22,K
block-parition of ⌃K (Eq. (2.3))
(note ⌃11,sys does not depend on K.)

⌃ typical variable name for matrix ⌃ 2 S2n+
⌃11,⌃12,⌃22 block-parition of arbitrary ⌃ (Eq. (2.3))
Policy Classes Definition

Kstab

class of all stabilizing policies
(Kstab := {K 2 Kstab : Acl,K is Hurwitz})

Kctrb

class of all controllable policies
(Kctrb := {K 2 Kstab : ⌃22,K � 0} )

Kinfo

class of all informative policies
(Kinfo := {K 2 Kstab : rank(⌃12,K) = n} )
(alternately, Kinfo := {K 2 Kctrb : rank(ZK = n} )

Kopt

class of all optimal policies
(similarity transforms of K? )

Informativity & Reconditioning Definition

ZK
Informativity Matrix
(ZK := ⌃12,K⌃

�1
22,K⌃

>

12,K)

Rinfo(K)
Informativity Regularizer,
(= tr[Z�1

K ] if K 2 Kinfo,1 otherwise)

L�(K)
Regularized Loss
(L�(K) = LOE(K) + � · Rinfo(K))

recond(K)
Reconditioning matrix, Eq. (3.2)
recond(K) := SimS(AK,BK,CK), where S = ⌃�1/2

22,K
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DCL Notation Definition
R̄ extended reals, R [ {1}

f
function in question for DCL, argument
takes argument x 2 Rd

dom(f) given f : Rd ! R̄, {x : f(z) 6=1}
inf(f) infx2Rd f(x)
K typical notation for K ⇢ Rd

C k(K) functions k-times differentiable on open set containing K

fcvx
convex function in DCL
takes in argument z 2 Rdz

flft
lifting function in DCL
takes in argument (x, ⇠) 2 Rd ⇥ Rd⇠

� Reparametrization Rd+d⇠ ! Rdz

(�, fcvx, flft) triple defining a DCL (Definition 4.1)
↵DCL weak-PL constant for DCL (Theorem 3)

B Additional Algorithmic Details

B.1 Backtracking

In general, the smoothness constants may be difficult to compute in a model free fashion. We show
that simple modification of our algorithm based on backtracking line search also inherits provable
convergence guarantees. To this end, let Sbkt be finite set of step sizes (to ensure the algorithm is
always well defined, we assume that Sbkt contains 0.) It is common practice to choosen Sbkt to
contain geometrically decreasing sizes (see,e.g. Wright et al. [1999, Chapter 3]). To choose the step
sizes ⌘t, we search over Sbkt to find the step which minimizes the objective subject to the constraint
that ⌃22,K remains well-conditioned, i.e.

Ks+1 = eKs � ⌘srs,where rs = rL�(eKs) and (B.1)

⌘s 2 argmin
⌘2Sbkt

⇢
L�(K) : 1

2In � ⌃22,K �
3

2
In, where K := eKs � ⌘rs

�
. (B.2)

Note that since 0 2 Sbkt and K = eKs has ⌃22,K = In, the backtracking condition is at the very least
met with ⌘s = 0. The following modifies Theorem 2, and is proven in Appendix G.4.
Theorem 2a. Fix � > 0, K0 2 Kinfo. There are terms C1, C2 � 1, which are at most polynomial in
n,m,Csys,�,��1 and L�(K0) such, if Sbkt contains a step size ⌘ > 0 satisfying stepsize ⌘  1

C1
,

then the iterates produced by Algorithm 2 satisfy

LOE(Ks)�min
K

LOE(K)  L�(Ks)�min
K

L�(K) 
C2
⌘

· 1
s
, 8s � 1.

Algorithm 2 IR-PG with backtracking
1: Input: Initial K0 2 Kinfo, step size ⌘ > 0, regularization parameter � > 0

% Define L�(K) := LOE(·) + �tr[Z�1
K ]

2: for each iteration s = 0, 1, 2, . . . do
3: Recondition eKs = recond(Ks), where recond(·) is defined in Eq. (3.2).
4: Compute rs = rL�(eKs).
5: Update Ks+1  eKs � ⌘srs, where ⌘s is the backtracking step from Eq. (B.2).

B.2 Oracle Complexity

At each iteration, one can compute the derivative of L� using one call to oraceval (which evaluates
LOE(Ks) and ⌃K), and one call to oracgrad, which computes the gradients of these quantities. This
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is true because rtr[Z�1
K ] admits a closed form in terms of ⌃K and its gradient. The balancing step

also requires only evaluation ⌃K, and can use an evaluation query called for the gradient. Thus,
gradient descent variant (Algorithm 1) calls one evaluation and one gradient oracle per iteration.
With backtracking (Algorithm 2), the backtracking step requires an evaluation query for all |Sbkt|
filters of the form eKs � ⌘rs. In total, therefore, each iteration uses 1 call to oracgrad, and |Sbkt|+2
calls to oraceval.

C Further Details on Evaluation Oracle

Given that our primary focus is on understanding the landscape properties of the OE problem, we
leave the precise details of finite sample considerations to future work. In this section, we pro-
vide brief remarks on how one might approximate the cost and gradients from finitely-many, finite-
horizon samples. Subsequently, we describe how to implement cost and gradient evaluations without
direct access to the state covariance matrix ⌃K assumed in the body of the work.

C.1 Finite-sample considerations

Gradient descent with inexact gradients. In the finite-sample regime, one uses statistical ap-
proximations to the gradients and, in the case where the stepsize is determined by line search, func-
tion evaluations. A straightforward modification of our generic analysis of gradient descent under
weak-PL, Proposition G.2, can establish robustness to these inexact queries. Robustness of gradient
descent to error is well-known in the literature, even in generic problem settings (see Scaman and
Malherbe [2020]; this is also related to the stability properties established in Hardt et al. [2016]).

Time discretization. Using digital controllers, one must implement the filter in discrete time.
Given a discretization incremement �, the (Euler) discretized filter dynamics for filter K =
(AK,BK,CK) is

ẑk;� = CKx̂k;�, x̂k+1;� = (In + �AK)x̂k;� +BKy(k�), x̂0;� = 0. (C.1)

Finite-horizon, finite-sample losses. Given independent trials indexed by i = 1, 2, . . . , N , and T
such that H = T/� is integral, we set

L̂OE(K) :=
1

N

NX

i=1

kz(i)(H�)� ẑ(i)
H;�k

2

⌃̂K =
1

N

NX

i=1

"
x(i)(H�)

x̂(i)
H;�

#"
x(i)(H�)

x̂(i)
H;�

#>
.

Using stability of the filter and nominal system and well-known properties of the Euler discretiza-
tion,

|E[L̂OE(K)]� LOE(K)| = +O
⇣
�+ e�⌦(�H)

⌘

kE[⌃̂K]�⌃Kk = O
⇣
�+ e�⌦(�H)

⌘
,

(C.2)

which can be made arbitrarily close to being unbiased as � ! 0 and �H ! 1. Here, the term
O (�) comes from a standard error analysis of the Euler discretization (c.f. e.g Iserles [2008, Theo-
rem 1.1]), and the exponentially decaying term e�⌦(�H) from standard mixing time arguments Yu
[1994]. Above, we surpress various problem dependent constants, including terms polynominal in
dimension. By standard concentration inequalities (e.g. Tropp [2015]), we can obtain finite-sample
concentration with high probability:

|L̂OE(K)� LOE(K)| = O
⇣
�+ e�⌦(�H)

⌘
+ eO

✓
1p
N

◆

kE[⌃̂K]�⌃Kk = O
⇣
�+ e�⌦(�H)

⌘
+ eO

✓
1p
N

◆
.

(C.3)
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In particular, for � sufficiently small and �N sufficiently large, invertibility of ⌃22,K (i.e. K 2 Kctrb)
implies that ⌃̂22,K is invertible with high probability. We may then define:

R̂info(K) := tr(⌃̂12,K(⌃̂22,K)
�1⌃̂>

12,K),

which yields the estimated regularized loss

L̂�(K) := L̂OE(K) + � · R̂info(K).

Note that, since K passes nonlinearly into R̂info(K) and L̂�(K), these losses are in general biased
estimates of Rinfo(K) and L�(K). Invoking Eq. (C.3), together with some standard matrix (and
matrix-inverse) perturbation arguments,

|L̂�(K)� L�(K)|
= |L̂OE(K)� E[L̂OE(K)] + � ·

�
tr(⌃̂12,K(⌃̂22,K)

�1⌃̂>

12,K)� tr(⌃12,K⌃
�1
22,K⌃

>

12,K)
�
|

 O
⇣
�+ e�⌦(�H)

⌘
+ eO

✓
1p
N

◆
+ (lower order terms).

Cost evaluations. In light of the above discussion, L̂�(K) can be used to evaluate L�(K) provided
the step size � is sufficiently small, horizon H sufficiently large, and sample size N sufficiently
large. This minimics the findings of Fazel et al. [2018], Mohammadi et al. [2021], Malik et al.
[2019] in various related settings.

Gradient evaluations. To estimate gradients of the L�, two strategies are possible. One can use
the zeroth-order gradient estimator [Flaxman et al., 2005], where one estimates the gradient by
evaluating

r̂L�(K) =
1

M

MX

j=1

1

N(r)
L̂�(K+ rU(j))U(j),

where U
(j) = (U(j)

A
,U(j)

B
,U(j)

C
) are i.i.d. parameter perturbations from a suitable, zero-mean dis-

tribution parameters (e.g. uniform on perturbation on the unit-Frobenius ball (kUAk2F + kUBk2F +
kUCk2F = 1)), r a user-defined smoothing parameter that scales the perturbation, and 1

N(r) a nor-
malization constant. As in previous work, (Fazel et al. [2018], Malik et al. [2019], Mohammadi
et al. [2021]), one can argue that this yields an estimator of the gradient with polynomial sample
complexity. As in prior work, r must be chosen sufficiently small so that the perturbations do not
render AK unstable.

Because we consider a filtering problem, rather than a control problem, it is possible to directly com-
pute the gradients of L̂�(K) by differentiating through the discretizated filter dynamics in Eq. (C.1)
(provided ⌃̂22,K � 0, so that the loss is defined and differentiable). Similar concentration techniques
can be deployed to establish the accuracy of this estimator as well.

C.2 Implementation without access to system states

We now turn to the implementation of our algorithm without direct access to system states. For
simplicity, this example considers continuous-time, infinite-horizon, and infinite-sample cost eval-
uations (and gradients). In essence, we provide a reduction to the oracle described in the main
text.

Subsampled covariance matrix. In the subsampling oracle, we have access to evaluations and
gradients of the following subsampled covariance matrix:

⌃̄K,t := lim
T!1

1

T
E

2

66664

Z
T

0

2

6664

y(t+ t1)
y(t+ t2)

. . .
y(t+ tk)
x̂K(t)

3

7775

2

6664

y(t+ t1)
y(t+ t2)

. . .
y(t+ tk)
x̂K(t)

3

7775

>

dt

3

77775
. 2 R(k+1)n⇥(k+1)n (C.4)
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Here, t = (t1, t2, . . . , tk) is a vector of increasing sampling times 0 = t1 < t2 < · · · < tk.
Introduce, for the sake of analysis, the observability matrix

Vt :=

2

64

C exp(t1A)
C exp(t2A)

. . .
C exp(tkA)

3

75 ,

where exp(·) denotes the matrix exponential. We make the following assumption.
Assumption C.1. We assume that t is selected so that the observability matrix is full-rank:
rank(Vt) = n.

Importantly, Assumption C.1 holds generically when (A,C) is observable, as per Assumption 2.2.
The following lemma makes this precise:
Lemma C.1. Suppose (A,C) is observable, and that k � n. Then, the {t 2 Rk : rank(Vt) < n}
has Lebesgue measure zero. In particular, if t are drawn from a distribution with density with respect
to the Lebesgue measure (e.g., drawn k points uniformly [0, 1], and order them in increasing order),
then P[rank(Vt) = n] = 1.

We establish the lemma at the end of the section.

Subsampled losses. One can compute that ⌃̄K,t can be partitioned in the following form

⌃̄K,t =


⌃̄K,t,11 ⌃̄K,t,12

⌃̄>

K,t,12 ⌃̄K,t,22

�
=


⇤ Vt⌃K,12

⌃>

K,12V
>
t ⌃K,22

�
, (C.5)

where ⇤ is immaterial to the following discussion. We define

Z̄K := ⌃̄K,t,12⌃̄
�1
K,t,22⌃̄

>

K,t,12 2 Snk+ . (C.6)

We define the subsample regularized loss as follows:

L�,sub(K) = LOE(K) + �Rsub(K), Rsub(K) :=
nX

i=1

�i(Z̄K)
�1. (C.7)

Notice that Rsub(K) is reminiscent of the regularizer Rinfo(K) uses the state covariance oracle. It
is clear that Rsub(K), and thus L�,sub(K) can be evaluated for any K. These quantities to do need
knowledge of Vt to be evaluated.

Differentiability of Rsub(K). We now show that Rsub(K) is C 2 for K 2 Kinfo. Introduce the
matrix P to be any orthogonal projection matrix from the space spanned by the image of Vt (which
is rank n) to Rn. Define eV and eZK by

eV = PVt, eZK = PZ̄KP>.

Since the row (and hence column) space of the symmetric matrix Z̄K is equal to the column space
of Vt, which is precisely the row space of P , we see that

�i(eZK) = �i(Z̄K), i 2 [n],

so that

Rsub(K) = tr[eZ�1
K ]. (C.8)

From Eq. (C.5), we can compute that eZK is related to ZK via conjugation by eV:

eZK = eVZK
eV>,

so that

Rsub(K) = tr[(eVZK
eV>)�1],

showing that Rsub(K) is C 2. Thus, the subsampled oracle model affords both evaluations and
derivatives of L�,sub(K). Note that Rsub(K) can be evaluated without knowledge of P and Vt by
using the original definition in Eq. (C.7).
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Remark C.1. A similar approach to the computation above can be used to derive a closed-form
expression for the derivative of Rsub(K) in terms of the derivatives of only ⌃̄K,t, and not in terms
of the observation matrix Vt (which we do not have access to in this model).

In view of the identity Rsub(K) = tr[eZ�1
K ] established above, we see that optimizing

L�,sub(K) = LOE(K) + tr[eZ�1
K ] (C.9)

is equivalent to optimizing the state-covariance oracle loss L�(K) on the following similarity-
transformed realization of the dynamics

d
dtex(t) = eAex(t) + ew(t), y(t) = eCex(t) + v(t), z(t) = eGex(t), ex(0) = 0,

ew(t)
i.i.d⇠ N (0,fW1), v(t)

i.i.d⇠ N (0,W2),
(C.10)

where eA = eVAeV�1, eC = CeV�1, eG = GeV�1, and fW1 = eVW1 (it follows from Assump-
tion C.1 and the definition of the projection P that eV is nonsingular). Indeed, LOE(K) is invariant
under similarity transformation of the true system, and if e⌃K is the associated covariance matrix
(partitioned in the standard way), then we can verify

eZK = e⌃K,12
e⌃�1
K,22

e⌃>

K,12.

Therefore, via this similarity-transformation, optimizing L�,sub(K) on the dynamics Eq. (1.1) inher-
its all the guarantees of optimizing the loss L�(K) on the tilde-dynamics in Eq. (C.10).

We complete the section by providing the proof of Lemma C.1.

Proof of Lemma C.1. The proof is divided into two steps. First, we exhibit a t for which
rank(Vt) = n; then we use an analytic continution argument to establish that, if such a t exists,
then rank(Vt) = n Lebesgue almost everywhere.

Existence of a t for which rank(Vt) = n. Without loss of generality, we may assume that
k = n. Fix � > 0, and consider ti = (i� 1)�. Expanding the matrix exponential, we have

Vt := C ·

2

6664

Im
exp(�A)
exp(2�A)

. . .
exp((n� 1)�A)

3

7775

=

2

666664

Im 0 0 . . . 0

Im �Im
�2

2! Im . . . �n�1

(n�1)!Im

Im 2�Im
(2�)2

2! Im . . . (2�)n�1

(n�1)! Im
. . .

Im (n� 1)�Im
((n�1)�)2

2! Im . . . ((n�1)�)n�1

(n�1)! Im

3

777775

| {z }
Tn,�

2

6664

C
CA
CA2

. . .
CAn�1

3

7775

| {z }
On

+

2

666664

0

C
P

i�n

(�A)i

i!

C
P

i�n

(2�A)i

i!
. . .

C
P

i�n

((n�1)�A)i

i!

3

777775

| {z }
Rn,�

.

We show below that Tn,� is invertible, so it suffices to show that for some � > 0,

T �1
n,�

Vt = On + T �1
n,�Rn,� has rank n.

Since (A,C) is observable , rank(O) = n (c.f. Zhou et al. [1996, Theorem 3.3]). Therefore, since
the set of full-rank matrices is an open set, it suffices to show that lim�!0 T �1

n,�Rn,� = 0. Since
kRn,�k = O (�n) as �! 0, it suffices to show that kT �1

n,� k = O
�

1
�(n�1)

�
. To this end, we factor

Tn,� =

2

666664

Im 0 0 . . . 0
Im Im

1
2!Im . . . 1

(n�1)!Im

Im 2Im
22

2! Im . . . 2n�1

(n�1)!Im
. . .

Im (n� 1)Im
(n�1)2

2! Im . . . (n�1)n�1

(n�1)! Im

3

777775

| {z }
Un

2

6664

Im 0 0 . . . 0
0 �Im 0 . . . 0
0 0 �2Im . . . 0
. . .
0 0 0 . . . �n�1Im

3

7775

| {z }
Dn,�

.
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Using row elimination, it is easy to observe that Un is invertible for any � > 0. In addition, Dn,� is
invertible, with kD�1

n,�k = 1
�n�1 . Note that the invertibility of Un and Dn,� establish the invertibility

of Tn,�, as promised. To conclude, we observe that since Un does not depend on �,

kT �1
n,� k  kUnk�1 · kD�1

n,�k =
1

�n�1
kUnk�1 = O

�
�n�1

�
.

Proof for Lebesgue-almost-every t. Having established the result for a fixed t, define the function
f(t) := det(V>

t Vt), with domain t 2 Rk.5 Then f(t) is defined and analytic on all of Rk.
Moreover, f(t) = 0 if and only if rank(Vt) 6= n. Therefore, the previous part of the lemma
establishes that there exists at least some t 2 Rk for which f(t) 6= 0. The lemma is now a direct
consequence of the identity theorem for analytic functions (Fact D.1).

Part I

General Control-Theoretic Proofs
D Discussion of Controllability Assumption 2.4

D.1 Remarks of Assumption 2.4

Lemma D.1. The following conditions are equivalent to Assumption 2.4:

(a) There exists at least one K? 2 Kopt for which (AK? ,BK?) is controllable.

(b) (A� L?C,L?) is controllable.

(c) (A,L?) is controllable.

Proof. Point (a) follows since controllability is invariant under similarity transform; point (b) fol-
lows by taking (AK? ,BK?) to be the the canonical realization of the optimal filter; point (c) follows
since maps of the form (eA, eB)! (eA+ eKeB, eB) preserve controllability.

Proposition D.2. Fix any n,m � 1, W1 2 Sn++,W2 2 Sm++, and suppose that (A,C) are drawn
from a distribution with density with respect to the Lebesgue measure, such that with probability 1,
A is Hurwitz stable. Then P[Assumption 2.4 holds for (A,C,W1,W2)] = 1.

Proposition D.2 is proven in Appendix D.4.

D.2 A strictly smaller problem set

Assumption 2.4 states that any optimal (AK,BK) must be controllable, which implies that ⌃22,K ⌫
0, cf. Appendix E.1. This in turn ensures that Z? = ⌃12,K⌃

�1
22,K⌃

>

12,K and the regularizer tr[Z�1
?

]
are well-defined at optimality. Not all OE instances satisfy this property, as the following example
demonstrates:
Example D.1. Consider the OE problem instance given by

A =


�1 0
0 �2

�
, C = [1 1] , W1 =


48 �36
�36 48

�
, W2 = 1.

It is readily verified that this instance satisfies Assumptions 2.1 to 2.3. The optimal policy (up to
similarity transformations) is given by

AK? =


�5 �4
0 �2

�
, BK? = L? =


4
0

�
, P? =


16 �12
�12 12

�
.

5Observe that, while we only select strictly increasing t, this lemma does not need such a restriction.
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Recall that the optimal policy is independent of G, the value of which is irrelevant for this example.
Straightforward calculations reveal that

[BK? AK?BK? ] =


4 �20
0 0

�
, ⌃K? =

2

64

24 �12 8 0
�12 12 0 0
8 0 8 0
0 0 0 0

3

75 ,

confirming that (AK? ,BK?) is not controllable and ⌃K? is rank-deficient.

D.3 Implications for the convex reformulation

In this subsection, we discuss the implications of Assumption 2.4 and Example D.1 for the convex
reformulation of OE developed in Scherer et al. [1997]. In particular, it is natural to wonder whether
the breakdown of the change of variables at the optimal policy for problems such Example D.1 pose a
problem for the methods of Scherer et al. [1997]. Fortunately, they do not. The LMI formulations of
Scherer et al. [1997] circumvent these degeneracies in the landscape by employing strict inequalities.
As we detail below, one can always perturb the decision variables to satisfy these strict inequalities,
even at points where ⌃12,K is rank deficient, resulting in arbitrarily tight upper bounds on the true
cost LOE(K).

Specifically, given the decision variables S,X,Y,K,L,M, and defining

Ā :=


AY +BM A

K AX+ LC

�
, B̄ :=

"
W1/2

1 0

XW1/2
1 LW1/2

2

#
, C̄ := [GY �M G] , X̄ =


Y I
I X

�
,

the approach of Scherer et al. [1997] proposes solving the following semidefinite program (SDP)

min tr(S) (D.1)

s.t.

S C̄
C̄> X̄

�
� 0,


Ā+ Ā> B̄

B̄> �I

�
� 0,

which minimizes a convex upper bound on the OE cost. At optimality, to achieve tr(S) = LOE(K?),
the above linear matrix inequalities (LMIs) must be tight. Moreover, X̄ can then be interpreted
as ⌃�1

K?
, subject to a specific congruence transformation, cf. Scherer et al. [1997]. However, for

problem instances such as Example D.1, ⌃K? is rank deficient and thus ⌃�1
K?

does not exist. The
convex reformulation circumvents this problem by through the use of strict LMIs: at optimality, the
above inequalities remain strict, and tr(S) > LOE(K?). In fact, for Example D.1, if one approximates
the strict LMIs F � 0, for generic F, with non-strict F ⌫ "I for " = 10�8, then Eq. (D.1) returns a
solution satisfying tr(S)� LOE(K?) ⇡ 8⇥ 10�6.

D.4 Proof of Proposition D.2

Our argument relies on the identity theorem for real-analytic functions. 6

Fact D.1. Let U be an open, connected subset of Rk, and F : U ! R be an analytic function which
is not identically zero. Then the set {x 2 U : f(x) = 0} has Lebesgue measure zero.

Give W1 2 Sn++,W2 2 Sm++. Let Hurn := {A 2 Rn⇥n : �i(A) < 0, 8i 2 [n]} denote the set of
Hurwitz matrices. We consider (A,C) 2 Uasm := Hurn ⇥Rm⇥n. Uasm is open and connected as a
consequence of the following claim, due to Duan and Patton [1998]:
Claim D.3. The set of Hurwitz matrices Hurn := {A : �i(A) < 0} is a connected, open subset of
Rn⇥n.

We define our candidate function fasm as follows. Given (A,C) 2 Uasm, let

fasm(A,C) = det(
n�1X

i=0

AiL?L?A
i)., (D.2)

6For a proof, see e.g. https://math.stackexchange.com/questions/1322858/

zeros-of-analytic-function-of-several-real-variables.
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where L? solves is the associated optimal gain for (A,C,W1,W2) (this exists for all Hurwitz A).
From Zhou et al. [1996, Theorem 3.3]), (A,L?) is controllable if and only if rank[L? | AL? |
A2L? | . . .An�1L?] = n, which holds if and only if fasm(A,C) 6= 0. Hence, by Lemma D.1, we
conclude
Claim D.4. (A,C) 2 Hurn⇥Rm⇥n satisfies Assumption 2.4 if and only if fasm(A,C) 6= 0, which
holds if and only if (A,L?) is controllable.

To conclude, we must argue that (1) fasm is analytic on Uasm, and (2) fasm is not identically zero on
Uasm; i.e. there exists some (A,C) 2 Uasm for which (A,L?) .

Analyticity of fasm. For the first point, we have the following claim.
Claim D.5. Fix matrices W1 � 0,W2 � 0. Then, the mapping FP : (A,C) 7! P? to the solution
P? to the Riccati equation below, as well as the map FL : (A,C) 7! L? given below, are both real
analytic on Uasm.

AP? +P?A
> �P?C

>W�1
2 CP? +W1 = 0, L? = P?C

>W�1
2 . (D.3)

As a consequence, fasm is real analytic on Uasm

Proof. Since W1,W2 are fixed, the map F0 : (P?,C) 7! L? is polynomial, and thus analytic.
Hence, FL = F0 � FP is analytic whenever FP is. Similarly, fasm is analytic whenever FL is
analytic, and hence whenever FP is analytic.

To see that FP is analytic, let us use the implicit function. FP (A,C) is define by the zero of the
equation

G(A,C,P) = AP+PA> �PC>W�1
2 CP+W1.

The total derivative of G is then

dG(A,C,P)

= dAP+PdA> �Pd(C>W�1
2 CP) +W1 + (A�C>W�1

2 CP)dP+ dP(A�C>W�1
2 CP)>

= dAP+PdA> �Pd(C>W�1
2 CP) +W1 + (A� L?C)dP+ dP(A� L?C)>.

We see that a solution to dG(A,C,P) = 0 must have that dP satisfies the following Lyapunov
equation for Y := dAP+PdA> �Pd(C>W�1

2 CP) +W1:

eAdP+ eAdP+Y = 0. (D.4)

Since the Since eA := (A � L?C) is Hurwitz for a solution L? to Eq. (D.3), the solution dP to
Eq. (D.4) is unique. Hence, dG(A,C,P) satisfies the conditions of the implicit function theorem.
In addition, G is analytic. This means that, in a neighborhood around any (A,C) 2 Hurn ⇥Rm⇥n,
there is an analytic function corresponding to (A,C) 7! P?. By definition, this function coincides
with FP on that neighborhood, meaning FP is also analytic.

fasm is not identically zero. To conclude, it suffices to show the existence of some (A,C) 2 Uasm

for which fasm doesn’t vanish; i.e., some (A,C) 2 Uasm for which (A,L?) is controllable. The
following lemma is useful in our construction.
Lemma D.6. Fix W1 2 Sn++,W2 2 Sm++, (A,C) 2 Uasm, and let P?,k be the solution to the
Lyapunov equation with (A, 1

k
C,W1,W2). Then, limk!1 P?,k = P?,1, where P?,1 solves

AP+PA> +W1 = 0.

Proof. The sequence P?,k are the solution to the Ricatti equation Tk(P) = 0, where

Tk(P) := AP+PA> �PC>

k
W�1

2 CP+W1

Since A is stable, P?,k also the unique solution P to the Lyapunov equation eTk(P) = 0 constructed
by fixing P = P?,k in the third term in Tk(P):

eTk(P) := AP+PA> + fW1,k, fW1,k :=

✓
W1 �

1

k
P?,kC

>

k
W�1

2 CP?,k

◆
.

23



Since fW1,k � W1, we have that P?,k � P?,1. In addition, P?,k ⌫ 0 for all k. Thus, P?,k lie
in the compact set P := {P 2 Sn : 0 ⌫ P ⌫ P?,1}, and hence it suffices to show that for any
convergent subsequence (P?,ki) which converges to a limit eP 2 P , eP = P?,1. To show show this,
observe Tk(·)! T1(·) uniformly on the compact set P , and since T1 is continuous, it follows that

0 = lim
i!1

Tki(P?,ki) = lim
i!1

T1(P?,ki) = T1(eP).

Since T1(·) is a Lyapunov equation with A stable, the solution to T1(·) = 0 is unique, and hence
eP = P?,1, as needed.

Claim D.7. Fix W1 2 Sn++,W2 2 Sm++. Then, there exists an (A,C) 2 Uasm for which (A,L?)
is controllable, where L? is as in Eq. (D.3). In particular, for this (A,C), fasm(A,C) 6= 0.

Proof. By a change of basis of Rn and Rm, we may assume without loss of generality that W1 =

In and W2 = Im. Let A = Diag(1, 2, . . . , n), and let C1 := [1 0n . . . 0n]
>, and set

Ck = 1
k
C1. It P?,k (resp. L?,k) solve the Ricatti equation (resp. be the optimal gain) matrix for

(A,Ck). We show that for all k sufficiently large, (A,L?,k) is controllable (indeed, this establishes
existence.)

It suffices to show that, for all k sufficiently large, (A, eL?,k) is controllable where eL?,k := kL?,k.
From Eq. (D.3), the definition of Ck, and assumption W2 = Im,

eL?,k := kL?,k = kP?,kW
�1
2 C>

k
= P?,kC

>

1

Since the set of controllable matrices is an open set, and since limk!1 Pk,? = P?,1 by
Lemma D.6, we see that (A, eL?,k) is controllable for all k sufficiently large as long (A,P?,1C>

1 )
is controllable. Since A is diagonal, one can verify that P?,1 = � 1

2A
�1. In particular,

P?,1C>
1 =

⇥
� 1

2A
�11 0n . . . 0n

⇤
; hence the first column of P?,1C>

1 does not lie in any
A-invariant subspace, so (A,P?,1C>

1 ) = (A, eL?,k) is controllable for all k large. As noted above,
this implies (A,L?,k) is controllable, so that by Claim D.4, fasm(A,Ck) 6= 0.

Conclusion. Hence, we have established that fasm is analytic, but not identically zero, on the open
and commented domain Uasm. The proof follows.

E Control Proofs

E.1 Controllability, stability, and nonsingularity of internal-state covariance

In Section 2, we restricted our attention to policies K 2 Kstab, that is, where the filter transition
matrix AK was Hurwitz stable. This is equivalent to stability of Acl,K, as shown by the following
lemma.
Lemma E.1. AK is stable if and only if Acl,K is stable, and ⌃K is given by the solution of the
Lyapunov equation Eq. (2.2).

Proof. The equivalence of the stability of AK and Acl,K comes from the fact that, due to the block-
triangular form of Acl,K with blocks A and AK, the eigenvalues of Acl,K are just the union of those
of AK and those of A. All eigenvalues of A have negative real part by Assumption 2.1, so the
non-negative real part of the eigenvalue of Acl,K are equal to those of AK. Thus, stability of AK

and Acl,K are equivalent. That ⌃K is given by the solution of the Lyapunov equation is standard, cf.
[Zhou et al., 1996, Theorem 3.18].

Next, we show the equivalence between ⌃22,K � 0 and controllability of (AK,BK). We define
controllability for (possibly unstable) AK as follows, cf., e.g., [Zhou et al., 1996, Theorem 3.1].
Definition E.1. The pair (AK,BK) is controllable if and only if there exists some t > 0 such that

G[t]
cont,K :=

Z
t

0
exp(sA)BKB

>

K exp(sA>)ds

is strictly positive definite.
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Lemma E.2. Suppose that Assumptions 2.1 and 2.3 hold. Then the following statements are equiv-
alent.

(a) The limiting covariance ⌃22,K, defined below, exists, and has ⌃22,K � 0,

⌃22,K = lim
t!1

E
⇥
x̂K(t)x̂K(t)

>
⇤
2 S2n+ .

(b) AK is stable, and (AK,BK) is controllable.

(c) AK is stable and ⌃22,K � 0.

Moreover, these equivalent conditions imply the limiting covariance ⌃K is well-defined and given
by the solution to Eq. (2.2).

Proof. The “moreover” statement is a consequence of Lemma E.1. We establish the equivalences
of (a), (b), and (c).

(a) implies (b). We compute that

⌃22,K = lim
t!1

⌃[t]
22,K, which is the bottom-diagonal block of ⌃[t]

K =

Z
t

0
exp(sAcl,K)Wcl,K exp(sAcl,K)

>ds.

First, we show that (AK,BK) are controllable. Indeed, since ⌃22,K � 0 and limt!1 ⌃[t]
22,K exists

and is finite, we have that for this ⌧ , ⌃[⌧ ]
22,K � 0. Thus by Lemma J.10, it follows that for some finite

⌧ ,
Z
⌧

0
exp(sAK)BKW2B

>

K exp(sAK)
>ds � 0. (E.1)

Since W2 � 0 by Assumption 2.3, it therefore follows that

G[⌧ ]
cont,K =

Z
⌧

0
exp(sAK)BKB

>

K exp(sAK)
>ds � 0.

Next, we show stability. Since exp(sAcl,K)Wcl,K exp(sAcl,K)> ⌫ 0, existence of the limiting
⌃22,K implies that for any vector of the form v = (0,v2) 2 R2n for v2 2 Rn,

Z
1

0
kv> exp(sAcl,K)W

1/2
cl,Kk

2ds <1.

Note the (2, 2)-bock of exp(sAcl,K) is exp(sAK) (see Lemma J.3), and that, since Wcl,K is block-
diagonal,

Wcl,K :=


W1 0
0 BKW2B>

K

�
⌫

0 0
0 BKW2B>

K

�

Thus, considering a vector v of the form (0,v2), for v2 2 Rn,

lim
t!1

Z
t

0
v>

2 exp(sAK)BKW2B
>

K exp(sAK)v2ds <1,

which shows that the following limiting integral is well definedR
1

0 exp(sAK)BKW2B>

K exp(sAK)>. On the other hand, by Eq. (E.1), we must have that
the following limiting integral is well-defined and strictly positive definite

Z
1

0
exp(sAK)BKW2B

>

K exp(sAK)ds � 0.

Thus, Lemma J.6 implies that AK is Hurwitz stable. This (together with stability of A) implies
Hurwitz stability of Acl,K (see below), and Lemma J.2 therefore guarantees that ⌃K is the solution
of the appropriate Lyapunov equation, given in Eq. (2.2).
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(b) implies (c). From the computation in part (a), one can check that

⌃22,K ⌫ lim
t!1

Z
1

0
exp(sAK)BKW2B

>

K exp(sAK)ds ⌫ �min(W2) lim
t!1

G[t]
cont,K.

Thus, controllability of (AK,BK) implies G[t]
cont,K � 0 for some finite t, which implies ⌃22,K � 0.

(c) implies (a). From Lemma J.2, stability of AK implies stability of Acl,K, which implies that the
limiting covariance ⌃K exists. In particular, the limiting (2,2)-block covariance exists.

E.2 Characterization of optimal policies

We begin by reviewing some well-known properties of the optimal solution to the OE problem.
Lemma E.3. Under Assumptions 2.1 to 2.3, the unique (up to similarity transformations) optimal
solution to the OE problem is given by the policy

AK? = A�P?C
>W�1

2 C, BK? = P?C
>W�1

2 , CK? = G, (E.2)

where P? � 0 is the solution to the algebraic Riccati equation Eq. (2.5).

Proof. A proof of this classical result can be found, e.g, in [Doyle et al., 1989, §IV.D]. We note
that strict positive definiteness of P? is implied by the controllability of (A,W1), cf. [Doyle et al.,
1989, §II.B]. Controllability of (A,W1) follows from W1 � 0, cf. Assumption 2.3.

Fact E.1. The optimal solution to the OE problem is independent of G, and optimal for all values
of G.

Proof. The optimal policy given in Eq. (E.2) and the Riccati equation Eq. (2.5) are both independent
of G. Moreover, there are no restrictions placed on G (beyond the requirement that the number of
columns matches the dimension of the state of the true system).

E.3 Informativity of optimal policies

We begin with the following useful fact.
Fact E.2. Let K? 2 Kopt denote the realization of the optimal policy given in Eq. (E.2), i.e. with
CK? = G. Then, under Assumptions 2.1 to 2.3, ⌃12,K? = ⌃22,K? .

Proof. All optimal policies K 2 Kopt must satisfy

@LOE(K)

@CK
= 2CK⌃22,K � 2G⌃12,K = 0. (E.3)

In particular, for the realization of the optimal policy in Eq. (E.2) with CK? = G, this implies that
G(⌃22,K? � ⌃12,K?) = 0. By Fact E.1, this must hold for all G, which implies that ⌃22,K? =
⌃12,K? .

Lemma 3.1. Under Assumptions 2.1 to 2.4, Kopt ⇢ Kinfo ⇢ Kctrb, and Kinfo is an open set.

Proof. We prove each part in sequence.

Inclusion Kopt ⇢ Kinfo. Let K? 2 Kopt denote the realization of the optimal policy given in
Eq. (E.2). By Assumption 2.4, all optimal policies are controllable, and so ⌃22,K? � 0. By Fact E.2,
we have ⌃12,K? = ⌃22,K? � 0, which implies that ⌃12,K? is full-rank. The rank of ⌃12,K is
invariant under similarity transformations of the policy; hence, ⌃12,K is full-rank for all K 2 Kopt.

Inclusion Kinfo ⇢ Kctrb. Recall that Kctrb := {K 2 Kstab : ⌃22,K � 0}. Hence, it suffices to
show that if K 2 Kstab has rank(⌃12,K) = n, then ⌃22,K � 0. This follows since ⌃K ⌫ 0.
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Openness. To see that Kinfo is open, we observe that Kstab is open (this follows from Claim D.3),
and that K 7! ⌃K is continuous on Kstab (this is standard, and follows, for example, from arguments
inAppendix E.7), Hence, the map f : K 7! det(⌃12,K) is continuous on Kstab, and thus Kinfo :
{K 2 Kstab : det(⌃22,K) 6= 0}, being the inverse-image of the open set R \ {0} under f , is
open.

E.4 Maximality of Z?

Lemma 3.2 (Existence of maximal ZK). Under Assumptions 2.1 to 2.3, there exists a unique Z? � 0
such that Z? = ZK if and only if K 2 Kopt, and Z? ⌫ ZK for all K 2 Kctrb \ Kopt. Consequently,
Kopt 2 argminK2Kctrb

Rinfo(K).

Proof. We restrict our attention to K 2 Kctrb, otherwise ⌃22,K is not invertible and ZK =
⌃12,K⌃

�1
22,K⌃

>

12,K is not well-defined. Recall that ZK is independent of the realization of K, i.e.
ZK is invariant under similarity transformations of K.

First, observe that the OE cost can be written as

LOE(K) = tr
h
[G �CK]⌃K [G �CK]

>
i
= tr[G⌃11,sysG

>]�2tr[G⌃12,KC
>

K ]+tr[CK⌃22,KC
>

K ],

(E.4)
where ⌃K satisfies the Lyapunov equation in Eq. (2.2). Minimizing Eq. (E.4) w.r.t. CK (keeping
AK, BK fixed) gives

tr[G(⌃11,sys �⌃12,K⌃
�1
22,K⌃

>

12,K| {z }
=ZK

)G>] = min
CK

LOE((AK,BK,CK)). (E.5)

Let K? 2 Kopt, and denote Z? = ⌃12,K?⌃
�1
22,K?

⌃>

12,K?
. Then by optimality of K? we have

tr[G(⌃11,sys � ZK)G
>] � tr[G(⌃11,sys � Z?)G

>] =) tr[G(Z? � ZK)G
>] � 0, (E.6)

with equality if and only if K 2 Kopt, due to uniqueness (of the transfer function) of the optimal
policy, cf. Lemma E.3. By Fact E.1, this holds for all G, which implies that Z? � ZK ⌫ 0, again
with equality if and only if K 2 Kopt. This completes the first part of the proof.

To show that K? minimizes Rinfo(K) = tr[Z�1
K ], we distinguish between two cases: those in which

ZK is invertible, and those in which it is not. Consider the former, and assume K is such that ZK

is invertible. Observe that Z? is always invertible: by Assumption 2.4 we have that ⌃22,K? � 0,
and by Lemma 3.1 we have that ⌃12,K? is full-rank. Therefore, Z? = ⌃12,K?⌃

�1
22,K?

⌃>

12,K?
is also

full-rank. We then have the following:

Z? ⌫ ZK =) Z�1
K ⌫ Z�1

?
=) tr[Z�1

K ] � tr[Z�1
?

] =) Rinfo(K) � Rinfo(K?), (E.7)
with equality if and only if K 2 Kopt. This implies that K? 2 Kopt minimizes Rinfo(·) over all
K 2 Kctrb such that ZK is invertible.

Next, we consider the case in which K is such that ZK is not invertible. In this case,
Rinfo(K) := 1, and so Rinfo(K) � Rinfo(K?) holds trivially. This completes the proof that
Rinfo(K) � Rinfo(K?) for all K 2 Kctrb.

E.5 Positivity and characterization of �?

Lemma 3.3. Let P? be the solution to the Riccati equation in Eq. (2.5). Then under Assumptions 2.1
to 2.3, �? := �min(P?) is strictly positive. Moreover, P? = ⌃11,sys � Z?.

Proof. Strict positivity of �? := �min(P?) follows directly from Lemma E.3, which states that
P? � 0.

To show that P? = ⌃11,sys�Z?, we will first show that P? = ⌃11,sys�⌃22,K? , where K? denotes
the realization given in Eq. (E.2). Let ⌃K? be given by the solution to the Lyapunov equation
Acl,K?⌃K? +⌃K?A

>

cl,K?
+Wcl,K? = 0, as in Eq. (2.2). The (2,2) block of this Lyapunov equation

is given by

AK?⌃22,K? +⌃22,K?A
>

K?
+BK?C⌃12,K? +⌃>

12,K?
C>B>

K?
+BK?W2B

>

K?
= 0. (E.8)
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Substituting AK? = A�P?C>W�1
2 C and BK? = P?C>W�1

2 into Eq. (E.8) gives

(A�P?C
>W�1

2 C)⌃22,K? +⌃22,K?(A�P?C
>W�1

2 C)> +P?C
>W�1

2 C⌃12,K? +⌃>

12,K?
C>W�1

2 CP?

+P?C
>W�1

2 CP? = 0. (E.9)

Subtracting the (1,1) block of the Lyapunov equation Eq. (2.2), given by A⌃11,sys +⌃11,sysA> +
W1 = 0, from Eq. (E.9) and collecting terms leads to

A(⌃22,K? �⌃11,sys) + (⌃22,K? �⌃11,sys)A
> +P?C

>W�1
2 C(⌃12,K? �⌃22,K?)

+ (⌃12,K? �⌃22,K?)
>C>W�1

2 CP? +P?C
>W�1

2 CP? �W1 = 0. (E.10)

Next, from Fact E.2 we have ⌃12,K? = ⌃22,K? for this particular realization of K?, given in
Eq. (E.2). Making this substitution, and adding the Riccati equation Eq. (2.5) to Eq. (E.10) gives

A(P? +⌃22,K? �⌃11,sys) + (P? +⌃22,K? �⌃11,sys)A
> = 0. (E.11)

Clearly, P? +⌃22,K? �⌃11,sys = 0 is a valid solution to Eq. (E.11). As A is stable, the solution to
the Lyapunov equation Eq. (E.11) is unique, and hence P? = ⌃11,sys �⌃22,K? . Recall once more
that due to Fact E.2 we have ⌃12,K? = ⌃22,K? , with ⌃22,K? being symmetric. Therefore,

⌃22,K? = ⌃12,K? = ⌃12,K?⌃
�1
22,K?

⌃>

12,K?
=: Z?,

and so P? = ⌃11,sys �⌃22,K? = ⌃11,sys �Z?. Though we arrived at this conclusion via a specific
realization Eq. (E.2) of the optimal policy K?, both ⌃11,sys and Z? are independent of the realization
of the optimal policy.

E.6 Information-theoretic interpretation of ZK

Recall that

⌃K = lim
t!1

E


x(t)
x̂(t)

� 
x(t)
x̂(t)

��
.

Since (x(t), x̂(t)) are jointly Gaussian with zero mean, (x(t), x̂(t)) converge in distribution to a
limiting Gaussian distribution


x1

x̂1

�
⇠ N (0,⌃K), ⌃K =


⌃11,sys ⌃12,K

⌃>

12,K ⌃22,K

�
.

The conditional covariance of x1 given x̂1 is then given by the formula

Cov[x1 | x̂1] = ⌃11,sys �⌃12,K⌃
�1
22,K⌃12,K = ⌃11,sys � ZK.

In other words, ZK describes the reduction in covariance of x1 provided by the information in x̂1.

E.7 Random Stable Initializations Are Informative

Lemma E.4. Fix CK, and suppose that the (AK,BK) is chosen from some probability distribution P
with density with respect to the Lebesgue measure on Rn⇥n⇥Rn⇥m satisfying P[AK is Hurwitz] =
1. Then, P[K 2 Kinfo] = 1.

Proof. Let Hurn denote the set of Hurwitz matrices in Rn ⇥ n. Note that if (AK,BK) 2 Hurn ⇥
Rn⇥m, then K 2 Kinfo if and only if rank(⌃22,K) = n and rank(⌃12,K) = n. In fact, since
⌃K ⌫ 0, The Schur complement test implies that K 2 Kinfo if and only if rank(⌃12,K) = n (as this
also implies rank(⌃22,K) = n). Thus, if f(AK,BK) is the mapping from (AK,BK) to det(⌃12,K),
then, given (AK,BK) 2 Hurn ⇥ Rn⇥m, K 2 Kinfo if and only if f(AK,BK) 6= 0.

As shown in Claim D.3, the set Hurn is open and connected, so the U := Hurn⇥Rn⇥m. Moreover,
f does not identically vanish on U : indeed, for any (AK? ,BK?) corresponding to some K? 2 Kopt,
we have rank(⌃12,K?) = n by Lemma 3.1, so f(AK? ,BK?) 6= 0.

Therefore, to prove our result, it suffices to show that f is an analytic function of (AK,BK), and
apply the identity theorem (Fact D.1). In fact, we show f(AK,BK) is an rational function. The
following claim is useful.
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Claim E.5. Let F̄ : Hur2n ⇥ S2n ! S2n be the map for which F̄ (Ā,W̄) is the solution to the
Lyapunov equation Ā�+�Ā+W̄ = 0. Then F̄ is a rational function with no poles on Hur2n⇥S2n.

Proof. Since this solution to the Lyapunov equation is unique for Ā 2 Hur2n, we see that the map
TĀ : � 7! Ā�+ �Ā is invertible, and hence F̄ (Ā,W̄) = T �1

Ā
(W̄). It follows that F̄ (Ā,W̄) is a

rational function (notice the entries of TĀ are linear in Ā, and thus the inverse is a rational function
of TĀ using the adjugate formula for matrix inverses). It has no polls because TĀ is invertible for
Ā 2 Hur2n

By composing the rational F̄ (·, ·) in the above claim with the polynomial-function (AK,BK) 7!
(Acl,K,Wcl,K), we see that (AK,BK) 7! ⌃K is a rational function function on Hurn ⇥ Rn⇥m. In
particular, (AK,BK) 7! ⌃K is an analytic function. Thus, f(AK,BK), being a polynomial in ⌃K,
is also rational. This concludes the proof.

F Details for examples in Section 3

F.1 Details for Example 3.1

That Kbad is a suboptimal stationary point follows from [Tang et al., 2021, Theorem 4.2], as OEis
a special case of LQG. Nonetheless, it is straightforward to verify that Kbad is indeed a stationary
point. Specifically, one can readily verify that the controllability Gramian

⌃ =


⌃11,sys 0

0 0

�

satisfies the Lyapunov equation

A 0
0 Abad

� 
⌃11,sys 0

0 0

�
+


⌃11,sys 0

0 0

� 
A 0
0 Abad

�>
+


W1 0
0 0

�
= 0,

and that the observability Gramian

O =


O11 0
0 0

�

satisfies the Lyapunov equation

A 0
0 Abad

�> O11 0
0 0

�
+


O11 0
0 0

� 
A 0
0 Abad

�
+


GG> 0
0 0

�
= 0.

It is then straightforward to confirm that

@LOE(Kbad)

@Abad
= 2O>

12⌃12 + 2O22⌃22

= 2⇥ 0⇥ 0+ 2⇥ 0⇥ 0 = 0,

@LOE(Kbad)

@Bbad
= 2(O>

12⌃11,sysC
> +O22⌃

>

12C
> +O22BbadW2)

= 2(0> ⇥⌃11,sysC
> + 0⇥ 0> ⇥C> + 0⇥ 0⇥W2) = 0,

@LOE(Kbad)

@Cbad
= 2(Cbad⌃22 �G⌃12)

= 2(0⇥ 0�G⇥ 0) = 0.

Moreover, TBbad = 0 and CbadT�1 = 0 for all similarity transformations T. Given that B? and
C? are nonzero, it is clear that Kbad is not equivalent to K? under any similarity transformation.
Hence, Kbad is suboptimal.
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F.2 The perils of enforcing minimality

A classical result due to Brockett [1976] states that the set of minimal n-th order single input-single
output transfer functions is the disjoint union of n + 1 open sets. Moreover, it is impossible for
a continuous path through parameter space to pass from one of these open sets to another without
entering a region corresponding to a non-minimal transfer function. This implies that if one were to
regularize so as to ensure minimality of the filter at every iteration, the search will remain confined
in the open set in which it is initialized, unable to reach the set containing the optimal filter, unless
there is some mechanism (e.g. sufficiently large step size) by which to “hop” over the boundary of
non-minimality, from one region to another. We now illustrate the possibility of this phenomenon
(of remaining trapped in such a region) on a simple second-order (n = 2) example. We begin by
characterizing the three open sets that partition the space of minimal second-order transfer functions;
cf. [Brockett, 1976, §II] for derivation.

Fact F.1. Every strictly proper second-order transfer function with no pole-zero cancellations be-
longs to exactly one of the following three open sets, characterized as follows:

1. Both poles are real, and both residues are positive. This set is simply connected.

2. Poles are complex, or if both poles are real, then the residues have opposite signs. This set
is not simply connected.

3. Both poles are real, and both residues are negative. This set is simply connected.

For the purpose of the following example, we shall refer to these sets as regions 1 to 3.

Example F.1. Consider OE instance given by:

A =


�1.2901 �0.2626
�0.2626 �0.2814

�
, C = [0.5710 �0.5093] , G = C,

W1 =


3.0940 �1.5716
�1.5716 1.2422

�
, W2 = 1.

It may be verified by straightforward calculations that the optimal filter K? for this instance belong
to region 1. Let K0 denote the filter from which policy search is initialized. K0 is given by:

AK0 =


�9.863 �20.19
17.4 �4.143

�
, BK0 =


�1.499
�16.44

�
, CK0 = [11.56 �2.97] .

Similarly, it may be readily verified that K0 belong to region 2.

We apply policy search to Example F.1, using four different regularization strategies:

a. No regularization, i.e. gradient descent on LOE(K).

b. Regularization for controllability, i.e. gradient descent on LOE(K) + �Rctr(K), where
Rctr(K) := kYctr,K � Y�1

ctr,Kk2F and Yctr,K is the controllability Gramian for (AK,BK)

satisfying the Lyapunov equation AKYctr,K +Yctr,KA>

K +BKB>

K = 0.

c. Regularization for minimality, i.e. gradient descent on LOE(K) + �(Rctr(K) +Robs(K)),
where Robs(K) := kYobs,K � Y�1

obs,Kk2F and Yobs,K is the observability Gramian for
(AK,CK) satisfying the Lyapunov equation A>

KYobs,K +Yobs,KAK +C>

KCK = 0.

d. The proposed algorithm IR-PG.

The results are presented in Fig. 1 below. Observe that while all other methods eventually cross from
region 2 (containing the initial K0) to region 1 (containing K?), the method regularized to preserve
minimality at each iteration remains “trapped” in region 2.
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(a) No regularization. (b) Regularizing for controllability.

(c) Regularizing for minimality. (d) IR-PG.

Figure 1: Suboptimality, region of parameter space, and controllability/observability as a function of
iteration for Example F.1 and four different regularization strategies. All searches are initialized at
the same filter in region 2 of parameter space; the optimal filter is located in region 1. A backtracking
line search is used in all instances. (a) with no regularization, the iterate crosses from region 2 to
region 1 with a loss of controllability. (b) regularizing for controllability, the iterate now crosses
from region 2 to region 1 with a loss of observability instead. (c) regularizing for minimality, the
iterate never crosses from region 2 to region 1. (d) under the proposed method, IR-PG, the iterate
crosses from region 2 to region 1 with a loss of observability, and quickly converges to the global
optimum.

31



F.3 Insufficiency of controllability

Consider the OE instance given by

A =


�1 0
0 �1

�
, C = I2, W1 = 3⇥ I2, W2 = I2, (F.1)

and the filter Kbad given by

Abad =


�2 0
� ��

�
, Bbad =


1 0
0 0

�
, Cbad =


1 0
0 0

�
. (F.2)

The following shows that the true system Eq. (F.1) satisfies all our assumptions, and that the filter
Eq. (F.2) is a critical point, but, because ⌃12,Kbad is not full rank, it is a strictly suboptimal first-order
critical point of LOE(K). The following proposition is proven in Appendix F.4.
Proposition F.1. For the OE instance Eq. (F.1) and any � > 0, and any filter Kbad of the form
Eq. (F.2), the following are true:

i. Eq. (F.1) satisfies Assumptions 2.1 to 2.4.

ii. Kbad 2 Kstab.

iii. Kbad is a first-order critical point: rLOE(Kbad) = 0.

iv. The filter is strictly suboptimal: Kbad /2 Kopt.

v. Kbad is controllable: Kbad 2 Kctrb, ⌃Kbad,22 � 0.

vi. ⌃12,Kbad is not full rank.

Moreover, LOE(K) does not depend on �, showing that LOE does not have compact level sets.

A proof of Proposition F.1 is given in Appendix F.4. Here, let us briefly describe the intuition be-
hind this construction. To see that Kbad is suboptimal, first notice that the true system in Eq. (F.1)
comprises two independent, first-order subsystems. As the second row of Bbad is zero, the output
of the second subsystem will never enter the policy Kbad. In particular, the state of the policy will
contain no information about the state of the second subsystem, resulting in suboptimal predictions
concerning the second subsystem. To see that Kbad is controllable, notice that the non-zero (2, 1)
entry of Abad allows the first component of the state of Kbad to excite the second component. This
ensures controllability of Kbad, even though the second state of Kbad is not excited directly by the
input to the policy (as the second row of Bbad is zero). To see that Kbad is a stationary point, first
observe that the first row of the matrices comprising the policy Kbad in Eq. (F.2) corresponds to
the optimal policy (filter) for the first subsystem in Eq. (F.1), i.e. these are the optimal parameters
that will provide the best possible prediction of the output of the first subsystem. Any single per-
turbation to one of these parameters will result in worse predictions and higher cost. Next, notice
that the second row of Cbad is zero; as such, any single perturbation to any parameter in the second
row of Abad or Bbad will not change the output of the policy, and therefore not change the cost.
Finally, because the internal state of the policy contains no information about the state of the second
subsystem in Eq. (F.1), any single perturbation to Cbad will simply inject uncorrelated noise into
the prediction for the second subsystem, thereby increasing the cost.

Moreover, as shown in Fig. 2 below, the minimum eigenvalue of the Hessian r2LOE(Kbad) can be
made arbitrarily close to zero by taking � in Eq. (F.2) to be arbitrarily large. Existing results suggest
that first order methods may take take ⌦(poly("))-iterations to escape an approximate saddle point
with minimum-Hessian eigenvalue " [Jin et al., 2017, 2018, Carmon et al., 2018, Agarwal et al.,
2017]; hence, these large-� examples may prove challenging for first-order methods designed to
escape approximate saddles. In addition, the non-compactness of the level sets for the OE objective
may also lead to a number of pathologies.

Before closing, we note that one can similarly construct examples of policies that are observable, but
not controllable, that correspond to suboptimal first-order critical points. For example, the policy

Abad =


�2 0
0 ��

�
, Bbad =


1 0
0 0

�
, Cbad =


1 �
0 0

�
, (F.3)
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is observable for � > 0, yet corresponds to a suboptimal first-order critical point of the OE loss for
the true system Eq. (F.1). The intuition behind this construction is similar to that of Eq. (F.2) above.
In particular, lack of controllability (notice that the (2, 1) entry of Abad is now zero) implies that
the second component of the policy state decays to zero in steady state. As such, the non-zero (1, 2)
entry of Cbad does not disturb the optimal prediction for the first subsystem of Eq. (F.1). It does,
however, ensure that (Cbad,Abad) is observable.

Figure 2: Spectral properties of the Hessianr2LOE(Kbad) in Proposition F.1 for various values �, cf.
Abad in Eq. (F.2). Here Gctrb denotes the controllability Gramian associated with (Abad,Bbad).

F.4 Proof of Proposition F.1

Part i. Assumptions. The matrix A is Hurwitz stable, with eigenvalues �1 (repeated), meeting
Assumption 2.1. The pair (A,C) is observable, as C = I2, meeting Assumption 2.2. W1 and W2

are also clearly positive definite, meeting Assumption 2.3. Lastly, one can show that

(AK,BK,CK) = (�2I2, I2, In)
is an optimal filter. Clearly (AK,BK) is controllable, so Assumption 2.4 is met.

Part ii. Stability. As Abad is lower diagonal, the eigenvalues are easily seen to be (�2,��).
Hence Abad is Hurwitz stable.

Part iii. First-Order Critical Point. Decompose

LOE(K) = E[kx� ẑKk2] = E[|x[1]� ẑK[1]|2]| {z }
L1(K)

+E[|x[2]� ẑK[2]|2]| {z }
L2(K)

, (F.4)

where (x, ẑK) are jointly distribution as N (0,⌃K). We show K = Kbad is a critical point of both
L1(K) and L2(K). We start with L1(K).
Claim F.2. We have rKL1(K)

��
K=Kbad

= 0.

Proof. It suffices to show that K = Kbad is global minimizer of L1(·). This can be checked by
showing that (aK, bK, cK) = (�2, 1, 1) is the optimal solution to the one-dimensional scalar OE
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problem with (a, c, w1, w2) = (�1, 1, 3, 1) and z = 1. Solving the scalar Continuous Algebraic
Riccati Equation, we see that an optimal filter is of the form (aK, bK, cK) = (a � `, 1, 1), where
` = w�1

2 cp = p, and p > 0 solves the continuous Algebriac Ricatti Equation

0 = ap+ pa+ p2b2w�1
2 + w1 = �2p� p2 + 3

Taking the positive solution to the quadratic 0 = p2 + 2p � 3 = (p + 3)(p � 1), we have p = 1.
Hence, the optimal filter has l = w�1

2 cp = 1. Hence, (a� `, 1, 1) = (�1� 1, 1, 1) = (�2, 1, 1) is
an optimal solution to the scalar OE problem, as needed.

Next, we address L2(K). We begin with a lemma establishing the structure of ⌃12,K for K = Kbad,
proven in Appendix F.5.
Lemma F.3. For K = Kbad, we have

⌃12,K =


1
2

�

2(1+�)

0 0

�
.

We can now conclude by checking that Kbad is a criticial point of L2(·).
Claim F.4. We have rKL2(K)

��
K=Kbad

= 0.

Proof. For simplicity, we drop the subscripts involving K.

L2(K) = E[|x[2]� ẑ[2]|2] = E[|x[2]� e>2 CKx̂|2]
= E[x[2]2]� 2e>2 E[xx̂>]C>

Ke2 + e>2 CK,2E[x̂x̂>]e>2 CK,2

= E[x[2]2]� 2e>2 ⌃12,KCKe2 + e>2 CK⌃22,KC
>

Ke2

= E[x[2]2]| {z }
=L2(Kbad)

�2e>2 (⌃12,K �⌃12,bad)(CK �Cbad)
>e2 + e>2 (CK �Cbad)

>⌃22,K(CK �Cbad)
>e2,

where above we use C>

bade2 = 0 and, as shown in in Lemma F.3, e>2 ⌃12,bad = 0. In particular, for
a perturbation �K = (�A,�B ,�C),

L2(Kbad + t�K)� L2(Kbad)

= �te>2 (⌃12,Kbad+t�K �⌃12,bad)�
>

Ce2 + t2e>2 �C⌃22,Kbad+t�K�
>

C
e2

= �te>2 ⌃12,bad�
>

Ce2 � t2e>2 �12�
>

Ce2 + t2e>2 �C⌃22,bad�
>

C
e2 +O(t3)

= �t2e>2
✓

d

dt
⌃Kbad+t�K,12

��
t=0

◆
�>

Ce2 + t2e>2 �C⌃22,bad�
>

C
e2 +O(t3),

where again we use e>2 ⌃12,bad = 0 by Lemma F.3. Thus, d
dtL2(Kbad + t�K) = 0, showing

rL2(K)
��
K=Kbad

= 0.

Part vi. Suboptimality. By solving the continuous algebraic Ricatti equation (in the spirit of
Claim F.2), one can show that

(AK,BK,CK) = (�2I2, I2, In)
is an optimal filter. It is clear that there is no similarity transformation which relates this filter to
Kbad = (Abad,Bbad,Cbad) (for one, the the rank of BK, CK would be preserved under such a
similarity transform). Since optimal filters are unique up to similarity transform (Lemma E.3), Kbad

cannot be optimal.

Part v. Controllability and rank of ⌃22,K ( K 2 Kctrb) As shown in Appendix E.1, ⌃22,K � 0
provided that (Abad,Bbad) is controllable. The latter can be verified since Bbad = [e1 | 02], and
e1 is not an eigenvector of Abad.

Part vi. Rank of ⌃12,K The computation in Lemma F.3 shows ⌃12,K has rank 1.

This concludes the demonstration of points i-vi. To see uniform boundedness, we again de-
composition LOE(K) = L1(K) + L2(K) as in Eq. (F.4). Since L1(K) is globally minimized at
K = Kbad, and since ẑ[2] ⌘ 0 regardless of �, we see LOE(K) does not depend on �.
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F.5 Proof of Lemma F.3

Proof. Writing out the Lyapunov equation (and using ⇤ to ignore irrelevant blocks),

�

3In 0
⇤ ⇤

�

=


A 0
BK ⇤

� 
⌃11,sys ⌃12,K

⌃>

12,K ⇤

�
+

✓
A 0

Bbad Abad

� 
⌃11,sys ⌃12,K

⌃>

12,K ⇤

�◆>

=


A⌃11,sys A⌃12,K

Bbad⌃11,sys +Abad⌃>

12,K ⇤

�
+

✓
A⌃11,sys A⌃12,K

Bbad⌃11,sys +Abad⌃>

12,K ⇤

�◆>

=


A⌃11,sys +⌃11,sysA> A⌃12,K + (Bbad⌃11,sys +Abad⌃>

12,K)
>

⇤ ⇤

�

Using A = �I2, we have �3I2 = �2⌃11,sys, so ⌃11,sys =
3
2I2. Then,

0 = A⌃12,K + (Bbad⌃11,sys +Abad⌃
>

12,K)
>

= �⌃12,K +
1

2
(3I2)B

>

bad +⌃12A
>

bad

=
3

2
B>

bad +⌃12,K(Abad � In)
>,

so that

⌃12,K = �3

2
B>

bad(Abad � In)
�>

Next,

(Abad � In)
�1 = �

✓
1 + a? 0
�� 1 + �

�◆�1

= �

(1 + a?)�1 0

�

(1+a?)(1+�)
(1 + �)�1

�

=


� 1

3 0
��

3(1+�)
�1
1+�

�

So, substituing in the definition of Bbad

⌃12,K = �3

2


1 0
0 0

�>  � 1
3 0

��

3(1+�)
�1
1+�

�>
=


1
2

�

2(1+�)

0 0

�

.

F.6 Additional numerical examples

In this subsection we present the results of a number of additional numerical experiments illustrating
the performance of IR-PG. All numerical experiments are carried out with a 2.4 GHz 8-Core Intel
Core i9 processor with 64 GB of RAM.

Random generation of true systems. Each experimental trial begins with the random generation
of a true system of the form Eq. (1.1). System parameters A,C are randomly generated using
Matlab’s rss function, with state dimension n = 2 and output dimension m = 1. The matrix G
defining the mapping from state to performance output z is set to G = I . The intensity of the system
disturbances is randomly generated as W1 = M>M with each entry of M 2 Rn⇥n sampled from
N (0, 1). The intensity of the measurement noise is normalized to W2 = 1. To select suitable
systems, we then rejection sample according to the following criteria: i) A must be strictly stable,
and the observability Gramian O corresponding to (A,C) must satisfy 10�4  �min(O)  10�2;
ii) W1 must satisfy �max(W1)  5; iii) the optimal cost must satisfy LOE(K?)  103. The
first criterion regulates the observability of the true system, which sets the difficulty of the filtering
problem; the second ensures that the ratio between the disturbances and measurement noise remains
“reasoanble”; and the third ensures that the problem instance is not “pathological”, as determined
by excessively high cost of the optimal filter.
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Remark F.1 (Choice of G = I .). As detailed in Section 3.2, IR-PG makes use of the regularizer
Rinfo, defined in Eq. (3.1), the computation of which requires access to the true system states x,
as described in Section 2. To facilitate a more fair comparison with direct minimization of LOE, we
selected G = I to effectively give the optimizer of LOE access to the true system states x as well.
As a result, all algorithms compared in this section have access to the same information concerning
the true system.

Random generation of initial filters. Next we randomly generate a filter K0 from which to
initialize gradient descent. To do so, we take the optimal (Kalman) filter K?, and randomly perturb
each of the parameters; specifically, we set (K0)i = (K?)i + �i with �i ⇠ N (0, 100) for the ith
parameter. Before accepting this K0, we rejection sample based on the following criteria: i) ⌃K0

must satisfy 10�5  �min(⌃12,K0)  10�3; ii) ⌃K0 must satisfy 10�3  �min(⌃22,K0)  1;
iii) the initial suboptimality must satisfy LOE(K0)  100⇥LOE(K?). The first criterion ensures that
we do not begin from an initial guess for which the informativity is too low, nor a guess for which
it is too high (which makes the search easier). The second criterion ensures that the initial filter is
sufficiently controllable, to avoid initializations that are too close to suboptimal stationary points.
The final criterion ensures that the initial guess is, in all other ways, “reasonable”, as measured by
suboptimality.

Optimization methods compared. Given a randomly generated true system, and random initial
filter K0, we then apply the following three optimization algorithms: i) gradient descent on LOE(K);
ii) gradient descent on LOE(K) with filter state normalization performed before each gradient step,
cf. Eq. (3.2); iii) IR-PG, as detailed in Algorithm 1, with regularization parameter � = 10�4. See
below for further discussion on the selection of �. All methods are initialized from the same K0,
and make use of the same backtracking line search to select step sizes. Moreover, all algorithms
have the same termination criteria. Each algorithm terminates when either: i) the Frobenius norm
of the gradient of the cost function being minimized (either LOE or L�) falls below a tolerance of
10�8; ii) the step size selected by the line search falls below a tolerance of 10�16 for more than three
consecutive iterations; or iii) the number of iterations (gradient descent steps) exceeds 100, 000.

Results. The results of 60 such experimental trials are depicted in Fig. 3. It is evident that simple
“unregularized” gradient descent on LOE routinely fails to converge to the global optimum, in the
allotted number of iterations. In fact, the median (normalized) suboptimality gap LOE(K)�LOE(K?)

LOE(K?)

exceeds 10�4, and only a single trial achieves suboptimality less than 10�7. Loss of informativity in
these trials can be seen clearly in Fig. 4. The addition of the filter state reconditioning procedure of
Eq. (3.2) offers only minimal improvement. In contrast, IR-PG converges reliably to high-quality
solutions that are extremely close to the global optimum; the median normalized suboptimality
gap was zero, to numerical precision. In fact, for one third of trials, the suboptimality gap was
actually negative (by very small margins, e.g. 10�17) indicating that IR-PG has reached the limits
of numerical precision with which Matlab’s icare solves Riccati equations (which we use to
compute K?).

Selection of regularization parameter �. Performance of IR-PG is in many instances insensitive
to the value of � selected. Experiments were conducted with � = 10�4. However, we observed that
handful of experimental trails required � to be chosen more judiciously, in particular, when the
spectral properties of r2Rinfo differ significantly from those of r2LOE. Very small stepsizes may
be required when �max(r2Rinfo) is very large, which means the search may make slow progress
in updating CK, as Rinfo is independent of CK. We have observed good performance in practice
by simply “turning off” the regularizer (i.e. setting � = 0) when the stepsize becomes excessively
small (e.g. drops below 10�16).
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(a) Normalized suboptimality at the termi-
nation of each algorithm.

(b) Normalized suboptimality as a function of iteration for each
algorithm.

Figure 3: Performance of each algorithm as measured by the normalized suboptimality of the output
estimation cost, LOE(K)�LOE(K?)

LOE(K?)
. 60 trials of the experimental procedure described in Appendix F.6

are plotted. In (b), the lightly shaded region covers the 10th to 90th percentiles, and the darker region
covers the 25th to 75th percentiles.

(a) Informativity, as measured by �min(⌃12). (b) Conditioning, as measured by �min(⌃22).

Figure 4: Properties of ⌃ for the same 60 trials plotted in Fig. 3. The lightly shaded region covers
the 10th to 90th percentiles, and the darker region covers the 25th to 75th percentiles.

Part II

Proofs for Convergence Guarantee
G Proof of Theorems 1 and 2

G.1 Gradient descent with reconditioning

Before outlining the formal steps of our main results, we provide analyze gradient descent under
the weak-PL condition. This generalizes Proposition 4.1 to accomodate the reconditioning step in
IR-PG (Algorithm 1). All proofs are deferred to Appendix H.3.

37



Definition G.1 (Reconditioning matrix). Given f : Rd ! R̄, we say that ⇤ : dom(f) ! Sn+ is
a reconditioning matrix for f if it is continuous on dom(f), and for every x 2 dom(f) such that
⇤(x) � 0, there exists an x0 2 dom(f) such that ⇤(x0) = In and f(x0) = f(x). We define the
set recond⇤(x) := {x0 : f(x0) = f(x), ⇤(x) = In} as the set of such points. We say x is
reconditioned if ⇤(x) = In.
Observation G.1. ⇤(K) = ⌃K,22 is a reconditioning matrix for the loss L�(·).

Proof. Since dom(L�) = Kinfo ⇢ Kctrb, ⌃22,K � 0 on dom(L�). As observed in Eq. (3.2), there
is a similarity transformation mapping K 2 Kinfo some K

0 with ⌃K0,22 = In. Since L� is invariant
under similarity transformation, it follows L�(K0) = L�(K).

Reconditioning serves to ensure that f need only be well-behaved (i.e. satisfy upper-smoothness
and weak-PL for suitable constants) on a restricted set of approximately reconditioned parameters
x : ⇤(x) ⇡ In.

The following proposition is the guiding template for the overall convergence analysis. Its proof is
given in Appendix H.3.1.
Proposition G.2. Let f : Rd ! R̄, x0 2 dom(f), and let ⇤ be a reconditioning matrix for f such
that ⇤(x0) � 0. Define K(x0) as the following reconditioned level set, which we assume is closed:

K(x0) :=

⇢
x 2 Rd : f(x)  f(x0) and k⇤(x)� Inkop 

1

2

�
. (G.1)

Assume that the function x 7! ⇤(x) is Lcond,x0 -Lipschitz as a mapping from (Rd, k · k)! (Sn+, k ·
kop) and that f is �x0 -upper-smooth, Lf,x0 -Lipschitz, and satisfies the ↵x0 -weak PL condition for
points in K(x0). Lastly, let {⌘k}1k=0 be a series of step sizes such that 0 < infk ⌘k  sup

k
⌘k 

min{ 1
�x0

, 1
2Lf,x0Lcond,x0

}. If iterates are chosen according to,

exk 2 recond⇤(xk), xk+1 = exk � ⌘krf(exk), (G.2)

or the more general condition,

exk 2 recond⇤(xk), xk+1 satisfies f(xk+1)  f(exk � ⌘krf(exk)), (G.3)

then for all k � 1 it holds that

f(xk) 
2

↵2
x0
⌘
· 1
k
, where ⌘ := inf

k�1
⌘k. (G.4)

Proposition G.2 can also be used to establish that every x0 2 dom(f) is in the path-connected
component of some x? 2 argmin(f). To do so, we need the matrix operator to be connected in the
following sense:
Definition G.2. We say that a reconditioning matrix ⇤ : dom(f)! Sn+ is connected if there exists
a parametrized operator recond⇤(·, ·) : dom(f)⇥ [0, 1]! Sn+ such that (a) recond⇤(·, ·)(x, 0) = x
(b) recond(x, 1) = recond(x), and (c) for all x 2 dom(f), t 7! recond(x, t) is connected, and its
image lies in dom(f).
Observation G.3. The reconditioning matrix ⇤(K) = ⌃K,22 for the loss L�(·) is connected.

Proof. Define recond(K, t) := SimSt(AK,BK,CK), where St = ⌃�t/2
22,K . Since similarity trans-

forms preserve membership in Kinfo, and since t 7! recond(K, t) is continuous and coincides with
K at t = 0 (resp. recond(K) at t = 1), the observation follows.

The following proposition, proved in Appendix H.3.2, establishes path-connectedness for connected
reconditioning matrices.
Proposition G.4. Consider the set up of Proposition G.2 with x0 2 dom(f), and in addition,
suppose (a) that ⇤(·) is continuous reconditioning matrix and (b) the set K(x0) is compact. Then,
there exists an x? 2 argmin(f) and a path � : [0, 1] ! dom(f) such that �(0) = x0 and
�(1) = x?.
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Proposition 4.1 can be recovered as the special case when the reconditioning matrix recond⇤(x) ⌘
Id is always the identity. In this case, the reconditioning step is vacuous. Moreover Lcond,x0 = 0
(recond⇤ is constant), and it is straightforward to modify the proof of Proposition G.2 to dispense
with the dependence on Lf,x0 .

G.2 Proof of Theorem 2

With key ingredients of the analysis in mind, we now finish the proof of Theorem 2 by illustrating the
existence of a DCL for the regularized OE problem, and establishing smoothness and Lipschitzness
of the objective when restricted to the reconditioned set so as to apply Proposition G.2. More
specifically, we first establish the relevant properties “locally”, in that they depend on the choice
of the filter K, and then prove a uniform bound over all K in the reconditioned set at the very end.
A recurring theme is that both the weak-PL and the smoothness properties are controlled by the
informativity, as measured by kZ�1

K k. These are terms are also controlled by k⌃Kk, k⌃�1
K k, which

we show below are bounded in terms of k⌃22,Kk, k⌃�1
22,Kk, which are both bounded due to the

reconditioning step.

As shorthand, we let polyop(X1,X2, . . . ,) denote a term which is at most a polynomial function
of the operator norm of the matrix arguments kX1k, kX2k, . . . , and a polynomial in the scalar
argument ; k ·k`2 denotes the Euclidean norm (e.g. on parameters K = (AK,BK,CK)). All results
below assume K 2 Kinfo, and that ⌃K is invertible (we verify this condition in Lemma G.7 below.)

A DCL for the regularized OE objective. While it is by now well-known within the controls
community that the OE problem admits a convex reformulation [Scherer et al., 1997], we prove a
stronger result showing that this reformulation is in fact a DCL. We prove the following result in
Appendix I.
Proposition 4.2. For any � � 0 (non-strict), the objective L�(K) admits a DCL (fcvx, flft,�)
where the lifted parameter takes the form (K,⌃K) 2 Kinfo ⇥ S2n++, L�(K) = flft(K,⌃K) =
min⌃2S2n+ flft(K,⌃), and where

�dz (r�(K,⌃K)) � 1/polyop
�
A,C,W�1

2 ,⌃K,⌃
�1
K ,Z�1

K ,LOE(K)
�

k�(K,⌃K)k`2  (max{n,
p
mn}+

p
LOE(K)) · polyop

�
A,C,W�1

2 ,⌃K,⌃
�1
K ,Z�1

K

�
.

Furthermore, the norms of the parameters AK,BK,CK satisfy the following bounds:

max{kAKkop, kBKkop}  polyop
�
A,C,W�1

2 ,Z�1
K ,⌃K,⌃

�1
K

�
, kCKkF 

q
LOE(K)/k⌃�1

K k.
(4.1)

Recall that the domain of L�(K) is the set Kinfo, on which ZK and (as noted above) ⌃K are invert-
ible. Hence, all quantities in the above lemma are well-defined. Having established the existence of
a DCL, a direct application of Theorem 3 shows that this objective satisfies the weak-PL property.
Corollary G.1 (Weak-PL Property of L�). For any � � 0 and K 2 Kinfo,

krL�(K)k �
1

CPL(K) ·max{n,
p
mn} · (L�(K)� inf(L�)) , where

CPL(K) = polyop
�
A,C,W�1

2 ,Z�1
K ,⌃K,⌃

�1
K ,LOE(K)

�
.

(G.5)

Smoothness and Lipschitzness of L�(K). To verify these regularity conditions, we need to bound
the norms of various quantities, which are themselves the solutions to Lyapunov equations involving
the closed-loop system matrix Acl,K (defined in Eq. (2.1)). The main step is therefore to show that
the solutions to these Lyapunov equations are uniformly bounded, as per the following lemma (proof
in Appendix J).
Proposition 4.3 (Stability of Acl,K). Suppose that K 2 Kinfo. Then, for any matrix Y 2 S2n, the
solution ⌃K,Y to the Lyapunov equation Acl,K⌃K,Y +⌃K,YA>

cl,K +Y = 0 satisfies

k⌃K,Yk�  Clyap(K) · kYk�, where Clyap(K) = polyop
�
⌃K,⌃

�1
K ,Z�1

K ,W�1
1 ,W�1

2 ,C
�
,

and where k · k� denotes either the operator, Frobenius, or nuclear norm.
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Using this intermediate result, we can bound the norms of the various derivatives which govern the
smoothness and Lipschitz constants for the regularized OE problem. We present the proof of the
following result in Appendix K, as well as formal explanations of the notation of the norms below.
Proposition G.5 (Smoothness and Lipschitzness). For any K 2 Kinfo, L�(·) is C 2 in an open
neighorhood containing K, and

kr2L�(K)k`2!`2  Cgrad,2(K) · Clyap(K)
2 · (1 + �) (Local smoothness)

krL�(K)k`2  Cgrad,1(K) · Clyap(K) · (1 + �)
p
n (Lipschitz loss)

kr⌃22,Kk`2!op  C⌃,1(K) · Clyap(K), (Lipschitz reconditioning)
where C⌃,1(K) = polyop(⌃K,BK,C,W2), where

Cgrad,1(K), Cgrad,2(K) = polyop(Z
�1
K ,⌃�1

22,K,⌃K,BK,CK,C,G,W2),

where Clyap(K) is as in Proposition 4.3, and where the gradient norms are in the Euclidean geom-
etry.

Concluding the proof: uniform parameter bounds. Note again that bounds above are local, in
that they depend on the choice of filter K. To finish the proof of Theorem 2, we prove a uniform
bound over all filters K which lie in the set considered by Proposition G.2, namely.

K0 :=
n
K 2 Kinfo : L�(K)  L�(K0) and

1

2
In � ⌃22,K � 2In

o
. (G.6)

Immediately, we see that on this set k⌃�1
22,Kk  2, and that

LOE(K)  L�(K)  L�(K0), kZ�1
K k  tr[Z�1

K ] = Rinfo(K) 
1

�
L�(K) 

1

�
L�(K0).

As a consequence, we can bound the terms appear in the bounds above as follows (see Ap-
pendix G.5):
Lemma G.6. The terms CPL(K), Clyap(K), C⌃,1(K), Cgrad,1(K), Cgrad,2(K) appearing above are
all bounded by at most polyop(⌃

�1
K ,⌃K,A,C,G,W2,W

�1
2 ,W�1

1 ,L�(K0),
1
�
).

Lastly, we control the dependence on ⌃K and ⌃�1
K . The follow lemma is proven in Appendix G.6.

Lemma G.7. Let �? > 0 be as in we mean Lemma 3.3. Then, for any K 2 Kctrb, it holds that:
(a) ⌃K � 0 is invertible, (b) k⌃�1

K k  2k⌃�1
22,Kk + 2��1

?
max{1, k⌃�1

22,Kkk⌃11,sysk}, and (c)
k⌃Kk  2max{k⌃22,Kk, k⌃11,sysk}.

In particular, on K0, where k⌃�1
22,Kk, k⌃22,Kk  2, we have k⌃Kk, k⌃�1

K k 
polyop(k⌃11,sysk,��1

?
), so that the terms CPL(K), Clyap(K), C⌃,1(K), Cgrad,1(K), Cgrad,2(K) are

all at most polynomial in
Csys := max{k⌃11,sysk, kAk, kCk, kGk, kW2k, kW�1

2 k, kW
�1
1 k,��1

?
}, (G.7)

as well as in L�(K0),
1
�

. Thus, from Corollary G.1 and Proposition G.5, we verify the conditions of
Proposition G.2 uniformly on the set K0.
Corollary G.2. The loss function L� satisfies ↵-weak PL and �-upper smoothness on K0 with

↵�1  max{n,
p
mn} · poly(Csys,L�(K0),

1
�
), �  poly(Csys,L�(K0),

1
�
,�),

where Csys is defined in Eq. (G.7). In addition, on K0, L� is L 
p
npoly(Csys,L�(K0),�,

1
�
)

Lipschitz , and K 7! ⌃22,K is at most L⌃  poly(Csys,L�(K0),
1
�
,�) Lipschitz as a mapping from

(Kinfo, k · k`2)! (Sn, k · kop).

Lastly, we establish compact level sets. The subtlely here is not only showing that K0 is bounded
(this is rather direct from Proposition 4.2), but also closed.
Lemma G.8. Let set K0 in Eq. (G.6) is compact.

The upper bound on L�(Ks)�minK L�(K) in Theorem 2 is now a direct consequence of instantiat-
ing Proposition G.2 ⌘ = ⌘s with the bounds in the above Corollary G.2, and noting that K0 is closed
by Lemma G.8.

The inequality LOE(Ks) �minK LOE(K)  L�(Ks) �minK L�(K) is just a consequence of Corol-
lary 3.1.
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G.3 Proof of Theorem 1

Due to the DCL exhbited by Proposition 4.2, and in particular Corollary G.1, we find that any � � 0
and K 2 Kinfo for which rL�(K) = 0 must be optimal (in applying the corollary, we again note
that ZK is guaranteed to be invertible of K 2 Kinfo, and ⌃K invertible by Lemma G.7). By taking
� = 0, we have rL�(K) = rLOE(K), proving the theorem. Path connectedness follows from
Proposition G.4, again noting that K0 is compact (Lemma G.8).

G.4 Proof of Theorem 2a

The proof is nearly identical to that of Theorem 2. The only difference is that the step sizes are
selected according to backtracking line search. We apply Proposition G.2 where ⌘s (in the statement
of the proposition) is set to any ⌘ 2 Sbkt for all s satisfying the same upper bound ⌘  1

C1
required in

Theorem 2. Since since backtracking line search selects the step which attains the greatest direction
of descent, at each iteration, we have

L�(Kt+1)  L�(eKt � ⌘rL�(eKt)).

Hence, backtracking satisfies the descent condition Eq. (G.3), and the theorem follows.

G.5 Proof of Lemma G.6

Recall that, for K 2 K0,

LOE(K)  L�(K0), kZ�1
K k 

1

�
L�(K0).

Hence, for K 2 K0 and CPL(K) as in Corollary G.1

CPL(K) = polyop
�
A,C,W�1

2 ,Z�1
K ,⌃K,⌃

�1
K ,LOE(K)

�

 polyop

✓
A,C,W�1

2 ,⌃K,⌃
�1
K ,L�(K0),

1

�

◆
.

In addition, from Proposition 4.3,

Clyap(K) = polyop
�
⌃K,⌃

�1
K ,Z�1

K ,C,W�1
1 ,W�1

2

�
 polyop

✓
⌃K,⌃

�1
K ,C,W�1

1 ,W�1
2 ,L�(K0),

1

�

◆
.

Moreover, from Proposition 4.2

max{kAKkop, kBKkop, kCKkF}  polyop
�
A,C,W�1

2 ,Z�1
K ,⌃K,⌃

�1
K ,LOE(K)

�

 polyop
�
A,C,W�1

2 ,⌃K,⌃
�1
K ,L�(K)

�
.

Finally, from Proposition G.5, we have for K 2 K0,

C⌃,1(K), Cgrad,1(K), Cgrad,2(K) = polyop(Z
�1
K ,⌃�1

22,K,⌃K,BK,CK,C,G,W2)

 polyop(⌃K,BK,CK,C,G,W2,L�(K0),
1

�
)

 polyop(⌃
�1
K ,⌃K,A,C,G,W2,W

�1
2 ,L�(K0),

1

�
)

Hence, in summary,

CPL(K), Clyap(K), C⌃,1(K), Cgrad,1(K), Cgrad,2(K)

= polyop(⌃
�1
K ,⌃K,A,C,G,W2,W

�1
2 ,W�1

1 ,L�(K0),
1

�
).
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G.6 Conditioning of the stationary covariance (Lemma G.7)

Part (a). Recall the block decomposition

⌃K =


⌃11,sys ⌃12,K

⌃>

12,K ⌃22,K

�
,

where we note that ⌃11,sys does not depend on K. From the Schur complement test, ⌃K � 0 if
and only if both ⌃22,K � 0 and ⌃11,sys � ⌃12,K⌃

�1
22,K⌃

>

12,K = ZK. The first of these holds for
K 2 Kctrb, and since ZK � Z? (for Z? as in Lemma 3.2), the second holds from Lemma 3.3.

Part (b). We invoke Lemma G.9 below to bound

k⌃�1
K k  2k⌃�1

22,Kk+ 2kX�1
K kmax{1, k⌃�1

22,Kkk⌃11,sysk},

where XK = ⌃11,sys�⌃12,K⌃
�1
22,K⌃

>

12,K = ⌃11,sys�ZK is the Schur complement term. Moreover,
since ZK � Z?, X�1

K � (⌃11,sys � Z?)�1, so kX�1
K k  k(⌃11,sys � Z?)�1k = 1/�min(⌃11,sys �

Z?). Hence,

k⌃�1
K k  2k⌃�1

22,Kk+ 2[�min(⌃11,sys � Z?)]
�1 max{1, k⌃�1

22,Kkk⌃11,sysk},

as needed. By Lemma 3.3, we have �? = �min(⌃11,sys � Z?)

Part (c). Invoking Lemma G.9 part (a), we directly obtain k⌃Kk  2max{k⌃11,sysk, k⌃22,Kk}.
By

Now the remaining part is to prove the following Lemma.
Lemma G.9. Suppose that ⇤ ⌫ 0 is positive semidefinite and has block-diagonal decomposition
with blocks diagonal blocks ⇤11,⇤22. Then,

(a) k⇤k  2max{k⇤11k, k⇤22k}.

(b) If in addition ⇤ � 0, then defining the Schur complement X := ⇤11 � ⇤12⇤
�1
22 ⇤

>
12, we

have

k⇤�1k  2k⇤�1
22 k+ 2kX�1kmax{1, k⇤�1

22 kk⇤11k}.

Proof. We prove each part in sequence:

Part (a). It suffices to prove that

⇤ =


⇤11 ⇤12

⇤>
12 ⇤22

�
� 2⇤̄, where ⇤̄ :=


⇤11 0
0 ⇤22

�

To show the above, consider any vector v = (v1,v2). First, for the modified vector ev = (v1,�v2),
we compute

0  ev>⇤ev = v>

1 ⇤11v1 + v>

2 ⇤22v2 � 2v>

1 ⇤12v2.

Hence,

v>⇤v = v>

1 ⇤11v1 + v>

2 ⇤22v2 + 2v>

1 ⇤12v2

 2v>

1 ⇤11v1 + 2v>

2 ⇤22v2 = 2v>⇤̄v.

Part (b). Introduce the X := ⇤11�⇤12⇤
�1
22 ⇤

>
12 as the Schur-complement term. From the block-

matrix inversion formula,

⇤�1 =

"
X�1 ⇤
⇤ ⇤�1

22

⇣
I+⇤�1/2

22 ⇤>
12X

�1⇤12⇤
�1/2
22

⌘
#
.
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From part (a), we then bound

k⇤�1k  2max
n
kX�1k, k⇤�1

22

⇣
I+⇤�1/2

22 ⇤>

12X
�1⇤12⇤

�1/2
22

⌘
k
o

 2max
n
kX�1k, k⇤�1

22 k
⇣
1 + kX�1k · k⇤12⇤

�1/2
22 k2

⌘
k
o
.

The term k⇤12⇤
�1/2
22 k2 = k⇤12⇤

�1
22 ⇤

>
12k  k⇤11k, where we used that ⇤12⇤

�1
22 ⇤

>
12 � ⇤11 by

the Schur complement test. Hence, we conclude

k⇤�1k  2max
�
kX�1k, k⇤�1

22 k
�
1 + kX�1k · k⇤11k

�
k
 

 2k⇤�1
22 k+ 2kX�1kmax{1, k⇤�1

22 kk⇤11k},

which completes the proof of Lemma G.9.

This finally completes the proof of Lemma G.7.

G.7 Proof of Lemma G.8

To see that K0 is bounded, we use that kAKk, kBKk, kCKk are uniformly bounded on K0. This is a
consequence of the bounds on these parameters in Proposition 4.2, as well as the fact that the various
terms in those bounds are in terms of k⌃Kk, k⌃�1

K k, kZ
�1
K k and LOE(K), all of which are shown to

be uniformly bounded on K0.

To show K0 is closed, it suffices to show that for any convergent sequence of controllers K(i) in K0,
its limit is in K0. In light of the boundness discussion above, this follows directly from the following
lemma.

Lemma G.10. Let K
(i) 2 Kinfo be a sequence of controllers converge to some K, such that

k⌃K(i)k, k⌃�1
K(i)k, kZ�1

K(i)k, as well as kAK(i)k, kBK(i)k, kCK(i)k remain uniformly bounded. Then,
K 2 Kinfo.

Proof. We prove stability, ⌃22,K � 0, and ZK � 0 in succession.

Stability. Let �(i) := kclyap(Acl,K(i) , I2n)k�. Then, sup
i
k�(i)k  M for some M > 0. More-

over, for any " > 0 and i � i0 sufficiently large, we have kAcl,K �Acl,K(i)k  ". Thus, for such
i � i0,

Acl,K�
(i) + �(i)A>

cl,K � Acl,K(i)�(i) + �(i)A>

cl,K(i) + 2M"I2n = �I2n(1� 2M"). (G.8)

Hence, for " = 1/4M , Acl,K�(i) + �(i)A>

cl,K � � 1
2I2n. Since �(i) � 0, this implies Acl,K is

stable.

Controllability. Define the functions Fi(⌃) := Acl,K(i)⌃ +⌃Acl,K(i) +Wcl,K(i) , so that ⌃K(i)

is the unique PSD solution to Fi(⌃K(i)) = 0. By Proposition 4.3, 0 � ⌃K(i) � MI2n for some
i � 0. Hence, there is a subsequence ij such that ⌃K(ij) converges to a limit ⌃̄ on the set X :=

{⌃ : 0 � ⌃ � MI2n}. Since kA(i)
K k, kB

(i)
K k, kC

(i)
K k remain uniformly bounded, Fi ! F (⌃) :=

Acl,K⌃ +⌃Acl,K +Wcl,K uniformly on this set X , and thus, F (⌃̄) = limj!1 Fj(⌃K(ij)) = 0.
Hence, since Acl,K is stable as established above, ⌃̄ = ⌃K. Since this holds for all subsequences,
we have limi!1 ⌃K(i) = ⌃K. Hence, ⌃K � 0, since by assumption k⌃�1

K(i)k is uniformly bounded
in i. Thus ⌃22,K � 0, and thus, K 2 Kctrb.

Informativity. As established above, limi!1 ⌃K(i) = ⌃K. Since the transformation mapping
⌃K(i) ! ZK(i) is continuous for ⌃K(i) � 0, we see that limi!1 ZK(i) = ZK. Hence, since
ZK(i) � 0 and Z�1

K(i) is uniformly bounded, ZK � 0. Thus, K 2 Kinfo.

43



H Proofs for DCLs and Gradient Descent

H.1 Proof of Fact 1.1

Throughout, we use the notation dom>(f) := {x 2 dom(f) : f(x) > inf(f)}.
Fact 1.1. Let f : Rnx ! R be a differentiable, possibly nonconvex function such that minx f(x)
is finite. Suppose there exists a differentiable function  : Rn⌫ ! Rnx satisfying the following
two properties: (i) the mapping  is surjective, i.e. for all x 2 Rnx there exists ⌫ 2 Rn⌫ such that
x =  (⌫), (ii) under the change of variables the function fcvx(⌫) := f( (⌫)) is differentiable and
convex. Then all first-order stationary points, x s.t rf(x) = 0, are globally optimal.

Proof. Let us proceed by contradiction. Suppose that x̄ is a suboptimal stationary point, i.e.
rf(x̄) = 0 but f(x̄) 6= minx f(x). Let ⌫̄ be such that x̄ =  (⌫̄). By surjectivity of  , such
a ⌫̄ always exists. Next, by application of the chain rule to fcvx(⌫) := f( (⌫)), we have

rfcvx(⌫)|⌫=⌫̄ = rf(x)|x=x̄ ·r (⌫)|⌫=⌫̄ . (H.1)

Therefore, by Eq. (H.1), rf(x̄) = 0 implies rfcvx(⌫̄) = 0. However,

fcvx(⌫̄)
(a)
= f( (⌫̄))

(b)
= f(x̄)

(c)
6= min

x
f(x)

(d)
= min

⌫
fcvx(⌫), (H.2)

where (a) follows by definition of fcvx, (b) follows from x̄ =  (⌫̄), (c) follows by suboptimality
of x̄, and (d) follows by the definition of fcvx and surjectivity of  . However, Eq. (H.2) contradicts
the fact that fcvx is a convex function, for which all stationary points must be globally optimal.
Therefore, no such suboptimal stationary point x̄ can exist.

H.2 Proof of Theorem 3

We prove Theorem 3, which can be thought of as a (considerable) strengthening of Fact 1.1. The
theorem pertains DCLs, whose definition we recall below.
Definition 4.1. A triplet of functions (fcvx, flft,�) is a DCL of a proper function f : Rd ! R̄ if
(1) fcvx : Rdz ! R̄ is a proper convex function whose minimum is attained by some z?.
(2) For some additional number of parameters d⇠ � 0, flft : Rd+d⇠ ! R̄ is related to f via partial
minimization: f(x) = min⇠2Rd⇠ flft(x, ⇠).
(3) There is an open set Y ◆ dom(flft) for which � : Y ! dom(fcvx) is C 1 and satisfies flft(·) =
fcvx(�(·)).

Before beginning the proof, we explain why the following “trivializing” reparametrization is inade-
quate.
Remark H.1 (Failure of the trivializing reparametrization). Given a DCL (fcvx, flft,�), it may
seem that one can avoid the dependence on �dz (r�) with the following trivializing reparametriza-
tion obtained by (a) augmenting the lifted parameters (x, ⇠) with the convex parameter z and (b)
defining a new candidate DCL (fcvx, eflft, e�) given by eflft(x, ⇠, z) = flft(x, ⇠) and e�(x, ⇠, z) =
z. Note then that �dz (e�) = 1 since e� just projects onto the z-coordinates, so this would cir-
cumvent the dependence on �dz (r�). In addition, (fcvx, eflft, e�) meets the first two DCL two
criteria: fcvx is convex and f(x) = min(⇠,z) eflft(x, ⇠, z). However, the candidate DCL does not
meet the third criterion of Definition 4.1 since the value of eflft(x, ⇠, z) does not depend on z, so
eflft(x, ⇠, z) 6= fcvx(z) = fcvx(e�(x, ⇠, z)) in general.

We now begin the proof. We first define a notion of descent direction for functions which strictly
generalizes the gradient:
Definition H.1 (Cauchy Directions). Let f : Rd ! R̄ be a proper function, and x 2 dom(f).

(a) We say g 2 Rd is an Cauchy direction of f at x if there exists constants "0 > 0 such, that
for all " 2 [0, "0], x� "g 2 dom(f) and lim"!0+

f(x�"g)�f(x)
"

 �kgk2
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(b) We say g 2 Rd is a generalized Cauchy direction of f at x if, for some "0 > 0
the exists a C 1 curve � := [0, "0] ! dom(f) such that �(0) = x, �0(0) = g, and
lim"!0+

f(�("))�f(x)
"

 �kgk2.

Observe that if f is C 1 at x, then the standard gradient rf(z) is a Cauchy direction at x; indeed,
our nomencalture is a tribute to the 1847 article in which Augustin-Louis Cauchy first described
gradient descent, justifying its use via the computation f(x� ⌘rf) = f(x)� ⌘krfk2 + o(⌘) (for
more in depth history, see e.g. Lemaréchal [2012]). The purpose of generalized Cauchy direction is
to accommodate functions whose domains may not contain the segment {x� "g}, but may contain
a curve � with the same slope.

Cauchy directions for convex functions. At all high level, we show weak-PL by first showing
that fcvx has a Cauchy direction at z of magnitude ⇡ fcvx(z) � inf(fcvx), and then subsequently
showing similar Cauchy directions for flft and f . For convex functions fcvx, we can usally construct
Cauchy directions using the subgradient at z, a vector g such that fcvx(z)� fcvx(z0)  g>(z� z0)
for all other z0 2 dom(fcvx). However, in certain pathological cases, the subgradient may not exist.

Hence, we take a more conservative approach by showing considering not the whole domain of fcvx,
but rather the line segment joining z to any minimizer z?, defining the function

 (t) = fcvx(z + t(z? � z)) (H.3)
This approach allows for pathological cases where the subgradient is “infinite” (in the sense of
h =1, in the sense of the proof below. )
Lemma H.1. Suppose that fcvx is a proper convex function, with z? 2 argminz fcvx(z) attained.
Then, for any z 2 dom>(fcvx), fcvx admits a Cauchy direction g satisfying

kgk � fcvx(z)� inf(fcvx)

kz � z?k (H.4)

Proof. Recall  (t) from Eq. (H.3), and define the secant-approximation function �(t) :=  (t)� (0)
t

for t 2 (0, 1]. From convexity, one can check that �(t) is non-increasing on t 2 (0, 1]. Hence, the
limit

h = lim
t!0+

�(t) = lim
t!0+

 (t)�  (0)
t

exists, and has h 2 {�1} [ (�1,�(1)], where again, since �(t) is non-increasing, we note that
h  �(1) = �(fcvx(z)� inf(fcvx)) (H.5)

Let us first assume h 6= �1. We now claim that g = �|h|(z?�z)/kz�z?k2 is a Cauchy direction
of f at x; this will conclude the proof since by Eq. (H.5)

kgk = |h|
kz � z?k �

|f(z)� f(z?)|
kz � z?k .

Let us show that g is a Cauchy direction. First, since f is convex, dom(f) is convex. Thus, since
z, z? 2 dom(f), the line seqment joining z, z? is contained in dom(f), and hence for " sufficiently
small, z � "g lies on this line segment, and is therefore also contained in dom(f).

Next, we compute

h = lim
t!0+

f(z + t(z? � z))� f(z)

t
= lim

t!0+

f(z � tkz � z?k2 g
|h|

)� f(z)

t

=
kz � z?k2

|h| · lim
t!0+

f(z � tg)� f(z)

t
.

Hence,

lim
t!0+

f(z � tg)� f(z)

t
=

h|h|
kz � z?k2 =

�h2

kz � z?k2 = �kgk2,

as needed. Now, consider the case where h = �1. Then, for any ⌘ > 0, we see that
limt!0+

f(z+t·⌘(z?
�z))�f(z))
t

= �1. Hence, g = ⌘ · (z? � z) is Cauchy direction for any ⌘ > 0.
In particular, taking ⌘ = f(z)�f(z?)

kz�z?k
satisfies the conclusion of the lemma.
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Smooth transformations preserve Cauchy directions. We show that the existence of a Cauchy
direction is preserved under smooth transformations.
Lemma H.2. Let f̄ be a proper function, z 2 dom(f), and g a Cauchy direction of f̄ at z. Let be
a C 1 mapping from a neighborhood Z containing z into a domain Y such that �dz (r (z)) > 0,
and let flft : Y ! R̄ satisfy f̄(z0) = flft( (z0)) for all z0 2 Z . Then, flft has a generalized
Cauchy direction eg at y =  (z) of norm

kegk � kgk
kr (z)kop

.

In particular, we take f̄ to be proper, convex function fcvx whose minimum is attained at some z?,
we can take

kegk � max
z?2argmin fcvx

fcvx(z)� inf(fcvx)

kz � z?k · kr (z)kop
.

Proof. We may assume without loss of generality that g 6= 0, for otherwise eg = 0 and the constant
curve �(") =  (z) = y satisfies the conclusion of the lemma. Fix a parameter ⌘ > 0 to be chosen
at the end of the proof, and define the curve �(") :=  (z � "

⌘
g). Then, for " sufficiently small,

flft(�(")) = f̄(z � "

⌘
g) <1,

since g is Cauchy direction of f̄ . Hence, �(") 2 dom(flft) for " sufficiently small. We compute

lim
"!0+

flft(�("))� flft(y)

"
= lim
"!0+

flft( (z � "

⌘
g))� flft(y)

"

= lim
"!0+

f̄(z � "

⌘
g)� f̄(z)

"

=
1

⌘
lim
"!0+

f(z � "g)� f̄(z)

"

 �kgk
2

⌘
. (H.6)

Furthermore,

�0(0) = �1

⌘
r (z)g.

Since we assume g 6= 0 (see above), and since �dz (r (z)) 6= 0 by assumption, we find that
k�0(0)k > 0. Thus, continuing Eq. (H.6),

lim
"!0+

flft(�("))� flft(y)

"
 �kgk

2

⌘
= �k�0(0)k2 · kgk2

⌘ · k�0(0)k2 = �k�0(0)k2 · ⌘ · kgk2
kr (z)gk2 .

In particular, if we set ⌘ = kr (z)gk2

kgk2 , we see that �(·) is valid for certifying that eg = �0(0) is a
generalized Cauchy direction. In this case, we have that

k�0(0)k = kr (z)gk · kgk
2

kr (z)gk2 = kgk · kgk
kr (z)gk �

kgk
kr (z)kop

.

Partial minimization preserves Cauchy directions. For our final lemma, recall the set up of
DCLs. Let y = (x, ⇠), and let f(x) := min⇠ flft(x, ⇠). As shorthand, we say y = (x, ⇠) is
admissible if x 2 dom(f) and ⇠ 2 argmin⇠0 flft(x, ⇠0). We show that if flft has a (generalied)
Cauchy direction eg at an admissible y, then the norm of the gradient of f must be at least as large
as kegk.
Lemma H.3. Suppose that f is proper, and that f(x) is C 2 at x for some x 2 dom(f). Let
y = (x, ⇠) be f -admissible, and suppose that flft has a generalized Cauchy direction eg at y. Then,

krf(x)k � kegk.
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Proof. Let � be a curve which certifies eg as a Cauchy direction of flft; namely �(0) = y, �0(0) =
eg, and

lim
"!0+

flft(�("))� flft(y)

"
 �kegk2.

We write �(") = (�1("),�2(")) in its (x, ⇠) components. Then,
f(�1(")) = min

⇠0
flft(�1("), ⇠

0)  flft(�1("),�2(")) = flft(�(")).

By admissibility of y = (x, ⇠), f(�1(0)) = f(x) = flft(y), so that
f(�1("))� f(x)  flft(�("))� flft(y).

Dividing by " and taking limits,

lim
"!0+

f(�1("))� f(x)

"
 lim
"!0+

flft(�("))� flft(y)

"
= �kegk2.

On the other hand, since f and �1 are both differentiable,

lim
"!0+

f(�1("))� f(x)

"
= hrf(�1(0)),�01(0)i = h(rf(x),0), egi,

where above (rf(x),0) 2 Rd+dy has a 0 in the remaining dy coordinates. Therefore,

h(rf(x),0), egi  �kegk2,
which requires krf(x)k = k(rf(x),0)k � kegk.

Concluding the proof of Theorem 3.

Proof of Theorem 3. Given x 2 dom(f), pick any z? 2 argmin(fcvx), and any ⇠ 2
argmin⇠0 flft(x, ⇠0). Set z = �(y), and note that f(x) = flft(y) = fcvx(�(y)) = fcvx(z),
so z 2 dom(fcvx) and y 2 dom(flft). Note that we cannot have z? = z, since x 2 dom>(f)
implies

fcvx(z) = f(x) > inf
x0

f(x0) = inf
y

flft(y) = inf
y

fcvx(�(y)) � fcvx(z
?).

By Lemma H.1, fcvx has a Cauchy direction g at z satisfying

kgk � fcvx(z)� inf(fcvx)

kz � z?k .

Next, from the DCL, the mapping� : Y ! Z is C 1 on an open neighborhoods containing y. Hence,
r�(y) is defined. We now claim that flft has a generalized generalized Cauchy direction eg of norm

kegk � fcvx(z)� inf(fcvx)

kz � z?k · �dz (r�(y)). (H.7)

Indeed, if �dz (r�(y)) = 0, eg = 0 suffices (the zero vector is always a generalized Cauchy di-
rection). Otherwise, if �dz (r�(y)) > 0, the fact that dy � dz and the implicit function the-
orem implies that � admits a C 1 right inverse  satisfying � �  (z0) = z0 and  (z) = y
on a neighborhood of z. This mapping must satisfy r (z) = r�(y)†, so that in particular,
kr (z)k�1

op = �dz (r�(y)) and �dz (r (z)) > 0. Hence, Lemma H.2 implies that

kegk � fcvx(z)� inf(fcvx)

kz � z?k · 1

kr (z)kop
=

fcvx(z)� inf(fcvx)

kz � z?k · �dz (r�(y)),

verifying Eq. (H.7). Finally, by Lemma H.3,

krf(x)k � kegk � fcvx(z)� inf(fcvx)

z
· �dz (r�(y)).

Lastly, using the DCL, we have fcvx(z) = f(x), inf(fcvx) = inf(f). Substituting in z = �(y) and
y = (x, ⇠),

krf(x)k � kegk � f(x)� inf(f)

k�(x, ⇠)� x?k · �dz (r�(x, ⇠)).

Since the above holds for any x? 2 argmin(fcvx) and any ⇠ 2 argmin flft(x, ·), Theorem 3
follows.
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H.3 Analysis of gradient descent and reconditioning under weak-PL

H.3.1 Proof of Proposition G.2

The first step of the proof is to ensure sufficiently small step sizes remain in the set K for which our
regularity conditions.
Claim H.4. Suppose that exk 2 K. Then,

f(exk � ⌘krf(exk))  f(exk)�
⌘k
2
krf(exk)k2 = f(xk)�

⌘k
2
krf(exk)k2. (H.8)

In addition, for all t 2 [0, ⌘k], exk � trf(exk) 2 K.

The proof of Claim H.4 is somewhat elementary, and deferred to the end of the broader argument.
We now argue recursively that exk 2 K for all k. We argue inductively, noting f(ex0) = f(x0) and
⇤(ex0) = In ensures the base case ex0 2 K. Now, if exk 2 K,

f(xk+1)
(i)
 f(exk � ⌘krf(exk))  f(xk)�

⌘k
2
krf(exk)k2, (H.9)

where (i) is an equality under Eq. (G.2), but may be an inequality under Eq. (G.3). Hence,
f(exk+1) = f(xk+1)  f(xk) = f(exk)  f(x0) (since exk 2 K). Hence, since exk+1 is re-
conditioned, exk+1 2 K as well.

Subtracting inf(f) from both sides of Eq. (H.9) and invokingthe ↵x0 -weak PL property of f , the
suboptimality gaps �k := f(xk)� inf(f) and minimal step ⌘ := mink{⌘k}satisfy

�k+1  �k �
⌘k↵2

x0

2
�2
k
 �k �

⌘↵2
x0

2
�2
k
. (H.10)

We solve this recursion following an argument described in Section 3.2 of Bubeck [2014]. Setting
! = ⌘ · ↵2

x0
/2, we have �k � !�2

k
+ �k+1, or equivalently, 1

�k+1
� ! �k

�k+1
+ 1

�k
. Since �k � �k+1,

this implies that 1
�k+1

� ! + 1
�k

. Hence, we find

1

�k+1
� 1

�k
� !.

Telescoping, we conclude that 1
�k+1

� !(k + 1), whence

f�(xk)� inf(f) = �k 
1

!k
=

2

↵2
x0
⌘k

.

Proof of Claim H.4. Define x̄(⌧) := exk�⌧rf(exk), noting x̄(0) = xk. The key subtlety in proving
the claim is ensuring that the entire line segment {x̄(⌧) : ⌧ 2 [0, ⌘k]} lies in the set K under which
relevant regularity conditions on f hold. To start, we may assume without loss of generality that
rf(exk) 6= 0, for otherwise the bound follows trivially. We make two observations

1. since f is �x0 -upper-smooth on K, there is an open set containing exk on which f is C 2.
Then, there exist some ⌧1 such that, for all ⌧ 2 [0, ⌧1], f(x̄(⌧)) = f(xk)� ⌧krf(exk)k2+
o(⌧) < �(0). Note further that = f(recond⇤(xk)) = f(xk)  f(x0) (since exk 2 K by
assumption.)

2. Since ⇤(ex) = I and ⇤ is L-Lipschitz on K, there exist some ⌧2 such that, for all ⌧ 2 [0, ⌧2],
k⇤(x̄(⌧))� Inkop  1

2 .

Let us choose ⌧0 as the largest real satisfying the above two constraints:

⌧0 := sup

⇢
⌧  ⌘k : 8⌧ 0 2 [0, ⌧), f(x̄(⌧ 0))  f(exk) and k⇤(x̄(⌧ 0))� Inkop 

1

2

�
,

and observe that x̄(⌧) 2 K for all ⌧ 2 [0, ⌧0] by construction.
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First, we show that ⌧0 > 0. Indeed, by assumption, there is any open set containing K on which f
is C 2, and hence, on this open set f is finite. In particular, there is an open set U ⇢ dom(f) with
exk 2 U , f is C 2 on U . Since f is C 2 on U and rf(exk) 6= 0, there exists some ⌧0 > 0 for such
that, for all ⌧ 0 2 [0, ⌧0), f(x̄k(⌧ 0)) = f(exk � ⌧ 0rf(exk)) < f(exk), and since ⇤ is continuous on
dom(f) � U and ⇤(x̄k) = In, we can shrink ⌧0 if necessary to ensure that k⇤(x̄(⌧ 0)) � Inkop =
k⇤(exk � ⌧ 0rf(exk)))� Inkop  1

2 .

Further, observe that by �x0 -smoothness of f on K, a Taylor expansion along the segment parame-
terized by x̄(⌧) yields

f(x̄(⌧))  f(exk)�
✓
⌧ � ⌧2�x0

2

◆
· krf(exk)k2 8⌧ 2 [0, ⌧0]

 f(exk)�
⌧

2
· krf(exk)k2 8⌧ 2


0,min

⇢
⌧0,

1

�x0

��
. (H.11)

To conclude, it suffices to show ⌧0 � ⌘k. For the sake of contradiction, suppose instead that ⌧0 <
⌘k  min{ 1

�x0
, 1
2Lf,x0Lcond,x0

}. By (a) continuity of f and ⇤ on K (b) continuity of ⌧ 7! x̄(⌧) 2 K,
and (c) the assumption that K is closed, it must be the case that, either (a) f(x̄(⌧0)) = f(exk)
or (b) k⇤(x̄(⌧)) � Inkop = 1

2 . To see that (a) cannot hold, we have that ⌧0  ⌘k  1
�

and
Eq. (H.11) implies that f(x̄(⌧)) < f(exk). To see that (b) cannot hold, we use ⇤(exk) = In and
Lcond-Lipschitzness of ⇤ in the k · k2 ! k · kop norm, Lf,x0 Lipschitzness of f , and the bound
⌧0  ⌘k  1

2Lf,x0Lcond,x0
to attain

k⇤(x̄(⌧0))� Inkop = k⇤(x̄(⌧0))�⇤(exk)kop

 Lcond,x0kx̄(⌧0)� exkk  Lcond,x0Lf,x0⌧0 
1

2
.

H.3.2 Proof of Proposition G.4

We assume without loss of generality that x0 /2 argmin(f).
Claim H.5. Fix ⌘ > 0 consider the iterates xk and exk produced by the updates in Eq. (G.2) with
⌘k = ⌘, ⌘ satisfies the step-size conditions of Proposition G.2. Then x0 is in the same connected
component of dom(f) as exk for all k.

Proof. Since ⇤(·) is a connected reconditiong operator, each xk and exk lie in the same path-
connected component of dom(f) for all k. Moreover, by Claim H.4, the line segment exk �
trf(exk), t 2 [0, ⌘] lies entirely in K, so exk and xk+1 = exk � ⌘rf(exk) lie in the same connected
component of dom(f). Since path-connectedness is an equivalence relation, the result follows.

Now, since K(x0) is compact, and exk 2 K(x0) for all k � 0, there exists a convergent subsequence
exki ! x̄ 2 K(x0). Since f is continuous on K(x0), limi!1 f(exki) = f(x̄), so by Proposi-
tion G.2, f(x̄) = inf(f), i.e. x̄ 2 argmin(f) \ K(x0). Since x̄ 2 K(x0) is contained in an open
set U , which is in turn contained in dom(f), there is an open ball of radius r, Br(x̄), contained
in dom(f). Since for some i? sufficiently large, exk? 2 Br(x̄), exk? is in the same path-connected
component as x̄. But by Claim H.5, it is also in the same path-connected component as x0. Since
path-connectedness is an equivalence relation, the result follows.

I DCL for Output Estimation (Proposition 4.2)

In this section, we establish the weak-PL property of our regularized loss function L�(·) = LOE(·)+
�Rinfo(·). Our strategy is to show that L�(·) admits a DCL, which leads to a weak-PL constant ↵(K)
for each K, whose parameters are themselves bounded in terms of L�(·). Before continuing, we
recall that n denotes the dimension of the system state x (and internal state x̂), m of the observation
y, and p the output z, and that polyop(X1,X2, . . . ,) denote a (universal) polynomial function of
operator norm of matrix, arguments kX1k, kX2k, . . . , and a polynomial in scalar argument . We
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use I1 to denote the 1-1 indicator, i.e. for some event E , I1{E} = 1 if E is true, and I1{E} = +1
otherwise.

All proofs of the lemmas that follow are deferred to Appendix I.1. To proceed, we need to invoke
Theorem 3 by specifying the DCL of the function

L�(K) = LOE(K) + �Rinfo(K) = lim
t!1

E[kz(t)� ẑ(t)k2] + �tr[Z�1
K ].

Throughout, given a matrix ⌃ � 0 partitioned in 2⇥ 2 blocks, we more generally define

Z(⌃) := ⌃12⌃
�1
22 ⌃

>

12. (I.1)

With the above notation, we can express

L�(K) = lim
t!1

E
h
kGx(t)�CKx̂(t)k2

i
+ � · tr

⇥
Z�1

K

⇤

= lim
t!1

tr

"
[G �CK]E

"
x(t)
x̂(t)

� 
x(t)
x̂(t)

�># 
G>

�C>

K

�#
+ �tr

⇥
Z(⌃K)

�1
⇤

= tr


[G �CK]⌃K


G>

�C>

K

��
+ �tr

⇥
Z(⌃K)

�1
⇤
. (I.2)

This leads to the following notion of the lifted function.
Definition I.1 (The lifted function). We define the lifted function on the space of parameters
(K,⌃) 2 Kinfo ⇥ S2n as follows

flft(K,⌃) =

✓
tr


[G �CK]⌃


G>

�C>

K

�
+ � · tr

⇥
Z(⌃)�1

⇤�◆
· I1{(K,⌃) 2 Clft, } (I.3a)

Clft :=

8
>><

>>:
(K,⌃) :

(i) ⌃ � 0, Z(⌃) � 0 (ii) A⌃11 +⌃11A> +W1 = 0

(iii)

✓
A 0

BKC AK

◆
⌃+⌃

✓
A 0

BKC AK

◆>

+

✓
W1 0
0 BKW2B>

K

◆
� 0

9
>>=

>>;
.

(I.3b)

We extend flft(K,⌃) to the space of all (unconstrained, even possible unstable) filters K =
(AK,BK,CK) by setting the lifted function to be infinte when K /2 Kinfo: flft(K,⌃) =
flft(K,⌃)I1{K 2 Kinfo}.7

Step 1. Verifying the lifting. We first verify that flft is indeed a lifted function of L�.
Lemma I.1. For any feasible K 2 Kinfo,

L�(K) = min
⌃2S2n

flft(K,⌃),

and this minimum is attained for ⌃ = ⌃K.

Step 2. Convex reparametrization. Next, we introduce the transformation �:
Definition I.2. We define the convex parameter ⌫ := (L1,L2,L3,M1,M2) and the transformation

⌫> = �(K,⌃) :=

0

BBB@

U(AKV> +BKC(⌃)11) + (⌃�1)11A(⌃)11
UBK

CKV>

(⌃�1)11
(⌃)11

1

CCCA
, (I.4a)

where
✓
U
V

◆
:=

✓
(⌃�1)12
(⌃)12

◆
. (I.4b)

7This formalism is just to accomodate for the fact that we encode constraints on domains in the function in
general DCL framework.
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We let d⌫ denote the dimension of the parameter ⌫ and let dy denote the dimension of the parameters
(K,⌃), both as Euclidean vectors. One can then verify that d⌫  dy; that is, the lifted function
indeed has more parameters than the convex one. The following shows that there exists a convex
function fcvx, which completes the DCL:
Lemma I.2. There exists a convex function fcvx : Rd⌫ ! R̄ such that

flft(K,⌃) = fcvx(�(K,⌃)). (I.5)

The transformation � and associated convex function fcvx was first developed by Scherer et al.
[1997], cf. also Masubuchi et al. [1998] for contemporaneous independent work.

Step 3. Controlling the weak-PL constant. Lastly, we show that the DCL lends itself to a
bounded PL constant by invoking Theorem 3. To do this, we need to show that the image of�(K,⌃)
is not too large, and thatr�(·) has rank at least d⌫ . We establish both in sequence. Let UK and VK

be corresponding to Eq. (I.4b) with ⌃ = ⌃K, i.e.

UK = (⌃�1
K )12, VK = (⌃K)12. (I.6)

Lemma I.3 (Parameter compactness). Consider (K,⌃K), where ⌃K is the stationary covariance
associated with K. Then,

k�(K,⌃)k`2  (max{n,
p
nm}+

p
LOE(K)) · polyop(A,C,W�1

2 ,⌃K,⌃
�1
K ), (I.7)

where k⌫k`2 :=
qP3

i=1 kLik2F +
P2

j=1 kMik2F denotes the Euclidean norm of the parameter ⌫.
Moreover, if UK and VK are invertible, then the filter parameters are bounded by

max {kAKk, kBKk}  polyop(A,C,W�1
2 ,⌃K,⌃

�1
K ,U�1

K ,V�1
K ), kCKkF 

q
LOE(K)/k⌃�1

K k.

Lemma I.4 (Conditioning of r�). Suppose that K 2 Kinfo. Then, � is differentiable in an open
neighborhood of (K,⌃K), and if UK and VK are invertible,

1

�d⌫ (r�(K,⌃K))
 polyop

�
A,C,⌃K,⌃

�1
K ,AK,BK,CK,U

�1
K ,V�1

K

�

 polyop
�
A,C,W�1

2 ,⌃K,⌃
�1
K ,U�1

K ,V�1
K ,LOE(K)

�
,

where the last line is a consequence of Lemma I.3.

To conclude, we eliminate dependencies on UK and VK:
Lemma I.5. If Z = Z(⌃) is invertible, the matrices U = (⌃�1)12 and V = ⌃12 are invertible,
and their inverses are bounded in operator norm as

kU�1k 
p
kZ�1kk⌃�1k, kV�1k  k⌃k

p
k⌃�1k3kkZ�1k.

As a consequence of Lemmas I.3 and I.4,

max

⇢
kAKk, kBKk,

1

�dy (r�(K,⌃K))

�
 polyop

�
A,C,W�1

2 ,⌃K,⌃
�1
K ,Z�1

K ,LOE(K)
�
. (I.8)

The conclusion of Eq. (I.8) and the bound kCKkF 
q

LOE(K)/k⌃�1
K k from Lemma I.3 are pre-

cisely the conclusions of Proposition 4.2.

I.1 Supporting proofs for Proposition 4.2

I.2 Proof of Lemma I.1

Recall from Eq. (I.2) that

L�(K) = [G �CK]⌃K


G>

�C>

K

�
+ �tr

⇥
Z(⌃K)

�1
⇤
.
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Since ⌃K satisfies the constraint in Eq. (I.3b) with equality, and since ⌃K � 0 and ZK � 0 for any
⌃K 2 Kinfo by Lemma G.7, we see that (K,⌃K) 2 Clft, and therefore

L�(K) =
⇢
[G �CK]⌃K


G>

�C>

K

�
+ �tr

⇥
Z(⌃K)

�1
⇤�

I1{(K,⌃K) 2 Clft} := flft(K,⌃K).

Next, let ⌃ be any other matrix such that (K,⌃) 2 Clft. Examining flft, it suffices to show that

(a) ⌃ ⌫ ⌃K and (b) Z(⌃) � Z(⌃K).

We show (a) and (b) hold as follows.

Proof of point (a). Recall the matix Acl,K and Wcl,K

Acl,K :=


A 0

BKC AK

�
, Wcl,K :=


W1 0
0 BKW2B>

K

�
⌫ 0.

Then, ⌃K is the solution to the Lyapunov equation

Acl,K⌃K +⌃KA
>

cl,K +Wcl,K = 0. (I.9)

Since ⌃ 2 Clft, Eq. (I.3b) part (iii) implies

Acl,K⌃+⌃A>

cl,K +Wcl,K � 0. (I.10)

Subtracting these equations gives

0 ⌫ Acl,K(⌃�⌃K) + (⌃�⌃K)A>

cl,K.

In other words, there exists a matrix Q ⌫ 0 such that

A>

cl,K(⌃�⌃K) + (⌃�⌃K)A>

cl,K +Q = 0. (I.11)

Since it is assumed K 2 Kinfo ⇢ Kstab, then Acl,K is Hurwitz. Therefore, the uniqueness of
solutions to Lyapunov equations with stable matrices shows that the unique solution to Eq. (I.11) is
some matrix ⌃�⌃K = e⌃ ⌫ 0, as needed.

Proof of point (b). We build on ⌃ ⌫ ⌃K. Recall that ⌃K � 0 as noted above, so that we can
invert ⌃�1 � ⌃�1

K . Taking the bottom-right block and using the block inversion formula,

(⌃11 � Z(⌃))�1 � (⌃11 � Z(⌃K))
�1,

which is equivalent after inversion to

⌃11 � Z(⌃) ⌫ ⌃11,K � Z(⌃K). (I.12)

Next, observe that since ⌃11 = ⌃11,K = ⌃11,sys for (K,⌃) 2 Clft (this follows from the unique-
ness of solutions to Lyapunov equations with Hurwitz matrices and constraint (ii) of Eq. (I.3b)).
Therefore, Eq. (I.12) simplifies to Z(⌃K) ⌫ Z(⌃), as needed.

I.3 Proof of Lemma I.2

Consider the parametrization ⌫ = (L1,L2,L3,M1,M2) = �(K,⌃). We can then write

flft(K,⌃) =

0

BBBB@
tr


[G �CK]⌃


G>

�C>

K

��

| {z }
ef1(K,⌃)

+� · tr
⇥
Z(⌃)�1

⇤
| {z }

ef2(K,⌃)

1

CCCCA
· I1{(K,⌃) 2 Clft}.

We show that

(a) Whenever (K,⌃) 2 dom(flft) (that is, (K,⌃) 2 Clft), then there are affine matrix-valued
functions eC(·) 2 Rp⇥2n and eX(·) 2 S2n with eX(⌫) � 0 of ⌫ such that

ef1(K,⌃) = tr[eC(⌫)> eX(⌫)�1 eC(⌫)].
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(b) Whenever (K,⌃) 2 dom(flft) (that is, (K,⌃) 2 Clft), then M1 � 0 and M2 � M�1
1 .

One can further express ef2(K,⌃) = tr[(M2 �M�1
1 )�1].

(c) There exists a convex set Ccvx such that (K,⌃) 2 Clft if and only if ⌫ 2 Ccvx.

We turn to the verification of points (a)-(c) momentarily. Presently, let us conclude the proof. Points
(a)-(c) directly imply that flft(K,⌃) = fcvx(�(K,⌃)), where

fcvx(⌫) :=
⇣
tr[eC(⌫)> eX(·)�1 eC(⌫)] + � · tr[(M2 �M�1

1 )�1]
⌘
I1{⌫ 2 Ccvx}.

To conclude, it remains to show that fcvx(·) is convex. Since Ccvx is convex by point (c), it suffices
to show that the functions (i) ⌫ 7! eC(⌫)> eX(⌫)�1 eC(⌫) and (ii) that (M1,M2) 7! tr[(M2 �
M�1

1 )�1] are both convex. Since eC(·) and eX(·) are affine in ⌫ (and affine composition preserves
convexity), point (i) follows from the following lemma:
Lemma I.6. The function g(eC, eX) = tr[eC> eX�1 eC] is convex on the domain (eC, eX) 2 Rep⇥en ⇥
Sen
++.

Point (ii) follows from the following lemma:
Lemma I.7. The function h(M1,M2) = tr[(M2 � M�1

1 )�1] is convex on the domain
{(M1,M2) 2 Sn++ ⇥ Sn++ : M2 �M�1

1 }.

The proof of these lemmas is defered to Appendix I.7.

Proof of point (a). Introduce

eC(⌫) := [GM2 � L3 G]
>
=
⇥
GM2 �CKV> G

⇤>
, eX(⌫) :=

✓
M2 I
I M1

◆
.

It is shown in the proof of part (c) below that eX(⌫) � 0. We compute (noting that M2 is symmetric)
that

eC(⌫)> eX(⌫)�1 eC(⌫) =
⇥
GM2 �CKV> G

⇤ M2 I
I M1

��1 
(GM2 �CKV>)>

G>

�

= [G �CK]


M2 V
I 0

�> 
M2 I
I M1

��1 
M2 V
I 0

� 
G
�CK

�

(i)
= [G �CK]


M2 V
V> �U�1M1V

� 
G>

�C>

K

�

(ii)
= [G �CK]⌃


G>

�C>

K

�
= ef1(AK,BK,CK,⌃).

Here, equality (i) uses the block matrix inversion formula, and the facts that M1,M2 are invertible,
and I = M1M2 + UV> as to be shown in Claim I.8; Equality (ii) is given by the following
calculation, whose steps follow from Claim I.8.

⌃ =


I 0

M1 U

��1 
M2 V
I 0

�
Eq. (I.13a)

=


I 0

�U�1M1 U�1

� 
M2 V
I 0

�
=


M2 V

�U�1(M1M2 � I) �U�1M1V

�

=


M2 V
V> �U�1M1V

�
. Eq. (I.13c)

Proof of point (b). To show point (b), we have
tr
⇥
Z(⌃)�1

⇤
= tr[(⌃12⌃

�1
22 ⌃

>

12)
�1]

= tr[
�
�(⌃11 �⌃12⌃

�1
22 ⌃

>

12) +⌃11

��1
]

= tr[
�
�(⌃�1)�1

11 +⌃11

��1
] = tr[(M2 �M�1

1 )�1].

In addition, M1 = �(⌃�1)11 � 0 since ⌃ � 0 (see the definition of the constraint set Clft in
Eq. (I.3b)). Lastly, since Z(⌃) � 0 from the definition of Clft, it must be the case that M2 �M�1

1 .
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Proof of point (c). We first remark that, as in the specification of the lifted constraint set Clft,
specification of the convex constraint set Ccvx does not invole the parameter CK at all. We first show
that ⌫ = �(K,⌃) satisfies some useful identities, using the convex parameterization in [Scherer
et al., 1997, Masubuchi et al., 1998].
Claim I.8. ⌫ = �(AK,BK,CK,⌃) satisfies the identities

X =

✓
M2 V
I 0

◆�1✓
I 0

M1 U

◆
⌃ = X�1 =

✓
I 0

M1 U

◆�1✓
M2 V
I 0

◆
(I.13a)

(AK BK) =
�
U�1 0

�✓L1 �M1AM2 L2

0 0

◆✓
V> 0
CM2 I

◆�1

, (I.13b)

I = M1M2 +UV>. (I.13c)

Proof of Claim I.8. To satisfy Eqs. (I.13a) and (I.13c), one uses the variables (written in terms of X)
✓
M1 M2

U V

◆
=

✓
(X)11 (X�1)11
(X)12 (X�1)12

◆
=

✓
(⌃�1)11 (⌃)11
(⌃�1)12 (⌃)12

◆
. (I.14)

Next, by Eq. (I.13b) we have
✓
L1

L2

◆
=

✓
U(AKV> +BKCM2)

UBK

◆
+

✓
M1AM2

0

◆
.

Hence, combining with Eq. (I.14) and setting L3 = CKV>, these identities are satisfied for

⌫> =

0

BBB@

L1

L2

L3

M1

M2

1

CCCA
=

0

BBB@

U(AKV> +BKC(⌃)11) + (⌃�1)11A(⌃)11
UBK

CKV>

(⌃�1)11
(⌃)11

1

CCCA
, where

✓
U
V

◆
:=

✓
(⌃�1)12
(⌃)12

◆
.

To conclude, we use Claim I.8 to check that (AK,BK,CK,⌃K) 2 Clft if and only if
�(AK,BK,CK,⌃K) 2 Ccvx for some convex constraint set Ccvx. Recall the definition of Clft
in Eq. (I.3b). Via a Schur complement argument, we can express (AK,BK,CK,⌃) in Clft if and
only if AK,BK and X := ⌃�1 satisfy

2

664
X


A 0

BKC AK

�
+


A 0

BKC AK

�>
X X


I 0
0 BK

�


I 0
0 BK

�>
X �


W�1

1 0
0 W�1

2

�

3

775 � 0 (I.15a)

X � 0 (I.15b)

A(X�1)11 + (X�1)11A
> +W1 = 0. (I.15c)

Substituting Eq. (I.13a)-Eq. (I.13b), we see that Eqs. (I.15a) to (I.15c) are (respectively) equivalent
to the following constraints

2

4
eA(⌫)> + eA(⌫) eB(⌫)

eB(⌫)> �

W�1

1 0
0 W�1

2

�
3

5 � 0, (I.16a)

where eA(⌫) :=

✓
AM2 A
L1 M1A+ L2C

◆
, eB(⌫) :=

✓
I 0

M1 L2

◆
,

eX(⌫) � 0, where eX(⌫) :=

✓
M2 I
I M1

◆
(I.16b)

AM2 +M2A
> +W1 = 0. (I.16c)
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Here, the equivalence between Eq. (I.15a) and Eq. (I.16a) invokes the following identity, derived
similarly to the expression for ⌃ derived in part (a) above:

X = ⌃�1 =


M2 V
I 0

��1 
I 0

M1 U

�
=


M1 U
U> �V�1M2U

�
.

The equivalence between Eq. (I.15b) and Eq. (I.16b) can be verified via the Schur complement. It is
clear that Eqs. (I.16a) to (I.16c) determine a convex constraint set.

I.4 Proof of Lemma I.3

Fix (K,⌃K) for K 2 Kinfo, and ⌫ = (L1,L2,L3,M1,M2) be the associated convex parameter,
⌫ = �(K,⌃K) defines the matrix ⇤ as in Eq. (I.16a)

⇤ :=

2

4
eA> + eA eB
eB> �


W�1

1 0
0 W�1

2

�
3

5 , where eA :=

✓
AM2 A
L1 M1A+ L2C

◆
, eB :=

✓
I 0

M1 L2

◆
.

Since (K,⌃K) 2 dom(flft), ⌫ 2 dom(fcvx), and hence Eq. (I.16a) implies ⇤ � 0.

We begin our argument by bounding the operator norms of the matrices L1 and L2, which we
ultimately translate into bounds on AK and BK. Our arguments use the following Schur complement
test for negative semidefinite matrices:

Lemma I.9. Let X =


X11 X12

X>
12 X22

�
satisfy X � 0 and X22 � 0. Then, kX12k2/kX22k  kX11k.

Proof. Since X � 0, �X ⌫ 0. By the PSD Schur complement test applied to �X,

0 � �X11 � (�X12)(�X�1
22 )(�X12)

> = �X11 + (X12X
�1
22 X

>

12).

Hence, �X12X
�1
22 X

>
12 � �X11. Now, observe that X � 0 implies that �X11, �X�1

22 ,
�(X12X

�1
22 X

>
12) are all PSD. Thus, kX12X

�1
22 X

>
12k  kX11k, so that kX12k2�min(X

�1
22 ) 

kX11k (where �min denotes minimal singular value). Noting �min(X
�1
22 ) = 1/kX22k con-

cludes.

We begin bounding kL2k.
Claim I.10. We have the bound

kL2k  2kCkkW�1
2 k+

q
2kM1kkAkkW�1

2 k.

Proof. Let ⇤(2,4) denote the submatrix of ⇤ corresponding to the 2nd and 4th rows/columns:

⇤(2,4) :=


L2C+ (L2C)> +M1A+ (M1A)> L2

L>
2 �W�1

2

�
.

Since ⇤ � 0, ⇤(2,4) � 0. Lemma I.9 gives

kL2k2/kW�1
2 k  2kL2kkCk+ 2kM1kkAk.

Hence, x := kL2k2 satisfies a quadratic inequality ax2 � bx � c  0, a = 1/kW�1
2 k, b = 2kCk

and c = 2kM1kkAk. Solving the quadratic equation, using a, b, c � 0 and taking the positive root,
and using

p
x+ y 

p
x+
p
y for x, y � 0,

x  b+
p
b2 + 4ac

2a
 2b+ 2

p
ac

2a
 b

a
+
p
c/a,

that is,

kL2k  2kCkkW�1
2 k+

q
2kM1kkAkkW�1

2 k.
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Next, we bound kL1k in terms of kL2k:
Claim I.11.

kL1k  2
p
kAkkM2k (kkAkkM1k+ kCkkL2k) + kAk.

Proof. Observe that ⇤ � 0 implies eA+ eA> � 0. That is,
✓
AM2 + (AM2)> A+ L>

1
L1 +A> W3

◆
� 0, where W3 := M1A+ (M1A)> + L2C+ (L2C)>.

Now, we know that W3 � 0, but to invoke a Schur complement, we need strict inequality. To this
end, for some � > 0 to be choosen larger, we know that W3 � �I � 0, and

✓
AM2 + (AM2)> A+ L>

1

L1 +A> W3 � �I

◆
� 0.

Using Lemma I.9

AM2 + (AM2)
> � (A+ L>

1 )(W3 � �I)�1(L1 +A>) � 0,

(A+ L>

1 )
>(�I�W3)

�1(L1 +A>) � �
�
AM2 + (AM2)

>
�
,

and hence
kA+ L>

1 k2
kW3 � �Ik

 2kAkkM2k.

Since W3 � 0, kW3 � �Ik = �+ kWk. Hence,

kA+ L>

1 k2  2kAkkM2k  (�+ kW3k) · 2kAkkM2k.
Since this is irrespective of � > 0,

kA+ L>

1 k2  2kAkkM2kkW3k
 4kAkkM2k (kAkkM1k+ kCkkL2k) .

Hence,

kL1k  2
p
kAkkM2k (kAkkM1k+ kCkkL2k) + kAk.

Lastly, let us bound L3.

Claim I.12. We have that kCKkF 
q
LOE(K)/k⌃�1

K k and kL3kF  k⌃Kk
q
LOE(K)/k⌃�1

K k.

Proof. As follows from the proof of Lemma I.1,

LOE(K) = tr

✓
[G �CK]⌃K


G>

�C>

K

�◆
� �min(⌃K)(kGk2F + kCKk2F) � �min(⌃K)kCKk2F,

which gives the desired bound on kCKkF. Since L3 = CKV>, and since V is a submatrix of ⌃K,

kL3kF  kVkkCKkF  k⌃KkkCKkF.
The lemma follows.

Summarizing the previous three claims,

kL2k  kL2k  2kCkkW�1
2 k+

q
2kM1kkAkkW�1

2 k = polyop(M1,A,C,W�1
2 )

kL1k  2
p
kAkkM2k (kkAkkM1k+ kCkkL2k) + kAk

= polyop(M1,M2,A,C,L2) = polyop(M1,M2,A,C,W�1
2 )

kL3kF  k⌃Kk
q
LOE(K)/k⌃�1

K k = polyop(⌃
�1
K ,⌃K)

p
LOE(K).
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This suffices to bound k⌫k`2 :

k⌫k`2 =

vuut
2X

i=1

�
kMik2F + kLik2F

�
+ kL3kF

 kL3kF +
2X

i=1

�
kMikF + kLikF

�

(i)
 max{n,

p
nm}

 
2X

i=1

�
kMik+ kLik

�
!

+ kL3kF

(ii)
 max{n,

p
nm} · polyop(A,C,W�1

2 ,M1,M2) + polyop(⌃
�1,⌃�1

K )
p
LOE(K)

(iii)
= max{n,

p
nm} · polyop(A,C,W�1

2 ,⌃K,⌃
�1
K ) + polyop(⌃

�1
K ,⌃K)

p
LOE(K)

= polyop(A,C,W�1
2 ,⌃K,⌃

�1
K )(max{n,

p
nm}+

p
LOE(K)).

Above, (i) uses M1,M2,L1 2 Rn⇥n, and L2 2 Rn⇥m, (ii) uses the bounds on kLik developed
above, and (iii) uses kM1k = k(⌃�1

K )11k  k⌃�1
K k and similarly, kM2k  k⌃Kk.

Next, we bound kAKk and kBKk. From the definition of the transformation �, and recalling UK =
(⌃�1

K )12 and VK = (⌃K)12, we have

L1 = UK(AKV
>

K +BKC(⌃)11) + (⌃�1)11| {z }
=M1

A (⌃)11| {z }
=kM2k

, L2 = UKBK. (I.17)

Hence, if UK and VK are invertible,

kBKk  kU�1
K kkL2k = polyop(M1,A,C,W�1

2 ,U�1
K ),

kAKk  kV�1
K kkU

�1
K k (kM1kkAkkM2k+ kL1k) + kBKkkCkkV�1

K kkUKk
= polyop(M1,M2,A,C,W�1

2 ,UK,V
�1
K ,U�1

K )

Again, we note that kM1k = k(⌃�1
K )11k  k⌃�1

K k and similarly, kM2k  k⌃Kk. Similarly,
kUKk = k(⌃�1

K )12k  k⌃�1
K k, hence, we conclude

max {kAKk, kBKk}  polyop(A,C,W�1
2 ,⌃K,⌃

�1
K ,U�1

K ,V�1
K ), (I.18)

as needed.

I.5 Proof of Lemma I.4

We establish the differentiability and conditioning of � for any (K,⌃) 2 Clft; the lemma cor-
responds to the special case when ⌃ = ⌃K. We let ⌫ = �(K,⌃K), where we recall ⌫ =
(L1,L2,L3,M1,M2) is given by

0

BBB@

L1

L2

L3

M1

M2

1

CCCA
:=

0

BBB@

U(AKV> +BKC(⌃)11) + (⌃�1)11A(⌃)11
UBK

CKV>

(⌃�1)11
(⌃)11

1

CCCA
, (I.19a)

where
✓
U
V

◆
:=

✓
(⌃�1)12
(⌃)12

◆
. (I.19b)

To see that � is differentiable, we see that Phi is a polynomial function in AK,BK,CK and ⌃
and ⌃�1, and is therefore differentiable in an open neighborhood of any (K,⌃) for which ⌃ is
invertible.

Let’s turn to the condition of r�. We then fix a target perturbation �cvx :=
(�L1 ,�L2 ,�L3 ,�M1 ,�M2) such that its `2-norm as an Euclidean vector (equivalently, the sum
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of Frobenius norms of its parameters) is

k�cvxk2`2 =
3X

i=1

k�Lik2F +
2X

j=1

k�Mjk2F = 1.

Our strategy is to compute a perturbation �lft = (�A,�B,�C,�⌃) of the parameters (K,⌃)
such that

d

dt
�((K,⌃) + t�lft)

��
t=0

= �cvx. (I.20)

Noting the identity
r�(y) ·�lft = �cvx,

it thus suffices to compute uniform upper bound on k�lftk2`2 = k�Ak2F + k�Bk2F + k�Ck2F +
k�⌃k2F for which Eq. (I.20) holds. For convenience, let j 2 {1, 2} (resp i 2 {1, 2, 3} ) �Mj (resp
�Li ) denote the restriction of �’s image to the Mj (resp. Li) coordinate.

Handling the Mj-blocks. We proceed to choose �lft by first ensuring d
dt�Mj ((K,⌃) +

t�lft)
��
t=0

= �Mj for j 2 {1, 2}, and then continue to show the same for the Li-coordinates.
Since �Mj are functions of ⌃, it suffices for now to choose perturbations of ⌃; abusing notation,
we shall simply write �Mj (⌃) to express this fact. We consider a perturbation of the form

�⌃, where �⌃ =


�11 �12

�>
12 0

�
. (I.21)

Since �M2(⌃) = ⌃11, we have d
dt�M2(⌃+ t�⌃)

��
t=0

= �11, so it suffices to choose
�11 = �M2 . (I.22)

Next, we consider the M1-block. For convenience, we define the curve ⌃̄(t) = ⌃+ t�⌃. Then
d

dt
�M1(⌃+ t�⌃)

��
t=0

=
d

dt
�M1(⌃̄(t))

��
t=0

=
d

dt
(⌃̄(t)�1)11

��
t=0

=
d

dt
(⌃̄11 � ⌃̄12⌃̄

�1
22 ⌃̄

>

12)
�1
��
t=0

= (⌃̄11 � ⌃̄12⌃̄
�1
22 ⌃̄

>

12)
�1
��
t=0| {z }

=M1

·
✓

d

dt
(⌃̄11 � ⌃̄12⌃̄

�1
22 ⌃̄

>

12)
��
t=0

◆
· . . .|{z}
=M1

= M1

�
�11 ��12⌃

�1
22 ⌃12 � (�12⌃

�1
22 ⌃12)

>
�
M1.

Hence, we can take

�12 =
1

2

�
�M2 �M�1

1 �M1�
�1
11

�
⌃�1

12 ⌃22

=
1

2

�
�M2 �M�1

1 �11�
�1
11

�
V�1⌃22 (I.23)

Some directional derivatives. To handle the Li blocks, we extend the “bar” notation to the vari-
ables M̄1(t), M̄2(t), Ū(t),V(t) to denote the matrices corresponding to ⌃̄(t) = ⌃+ t�⌃, i.e.

M̄1(t) = (⌃̄�1(t))11, M̄2(t) = ⌃̄11(t), V̄ = ⌃̄12(t), Ū = (⌃̄(t)�1)12.

Since ⌃̄(0) = ⌃, the above matrices are evaluated to their “non-barred” counterparts when t = 0.
Moreover, by choice of �⌃, we have

M̄0

1(0) = �M1 , M̄0

2(0) = �M2 , V̄0(0) = �12.

Using the block matrix inversion formula, we have
Ū = (⌃̄)�1

12 = �(⌃̄�1)11⌃̄12⌃̄
�1
22 = �M̄1⌃̄12⌃

�1
22 ,

where above we use M̄1 = (⌃̄�1)11 and ⌃̄�1
22 (t) = ⌃�1

22 is constant for all t. Therefore,
Ū0(0) = �M̄0

1(0)⌃̄12(0)⌃
�1
22 � M̄1(0)⌃̄

0

12(0)⌃
�1
22

= ��M1⌃12⌃
�1
22 �M1�12⌃

�1
22

= ��M1V(⌃22)
�1 �M1�12⌃

�1
22 . (I.24)
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Handling the Li-blocks. Let us also define B̄K(t) = B + t�B and ĀK(t) = A + t�A. Using
the “bar”-notation, we can compute

d

dt
�L2(⌫ + t�cvx)

��
t=0

=
d

dt
(B̄KŪ)

��
t=0

= B̄0

K(0)U+BKŪ
0(0) = �BU+BKŪ

0(0).

Hence, we set

�B = (�L2 �BKŪ
0(0))U�1 (I.25)

Similarly, we can select

�C = V�>(�L3 �CK(V̄
0(0))>). (I.26)

Finally, we compute

d

dt
�L1(⌫ + t�cvx)

��
t=0

=
d

dt

�
Ū(ĀKV̄

> + B̄KCM̄2) + M̄1AM̄2

� ��
t=0

= UĀ0

K(0)V + Ū0(0)(AKV +KKCM2) +U
�
AV̄0(0) + B̄0

K(0)CM2 +BKCM̄0

2(0)
�

+ M̄0

1(0)AM2 +M1(0)AM̄0

2(0)

= U�AV + Ū0(0)(AKV +BKCM2) +U (A�12 +�BCM2 +BKC�M2)

+�M1AM2 +M1A�M2 .

Hence, we select

�A = U�1�L1V
�1 �U�1Ū0(0) (AK +BKCM2)V

�1

� (A�12 +�BCM2 +BKC�M2)V
�1 �U�1 (�M1AM2 +M1A�M2)V

�1.
(I.27)

Bounding the norm of �cvx. We begin with some useful bounds:

max{kM1k, kUk, k(⌃22)
�1k, kM�1

2 k}  k⌃�1k (I.28a)

max{k⌃22k, kM�1
1 k, kM2k, kVk}  k⌃k. (I.28b)

Eq. (I.28a) uses the fact that M1 and U are submatrices of ⌃�1, and the fact that for any positive-
definite matrix, k⌃�1

11 k (which is just kM�1
2 k) and k⌃�1

22 k are both at most k⌃�1k (as can be
verified by the block-matrix inverse formula). Finally, Eq. (I.28b) follows from similar reasoning.

Notational aside. In what follows, we apply our polyop(·) notation, which denotes a universal
polynomial in the operator norms of its matrix arguments, and in the values of its scalar arguments.
We let polyop(·) include universal constant terms (e.g. 1 + kXk is polyop(X)).

From Eq. (I.23), we can bound

k�12kF = polyop(M
�1
1 ,⌃22,V

�1) · (k�M1kF + k�M2kF).

In light of Eq. (I.28b),

k�12kF = polyop(⌃,V�1) · (k�M1kF + k�M2kF), (I.29)

which means that

k�⌃kF
(i)
=
q
k�M2k2F + 2k�12k2F  polyop(⌃,V�1) · (k�M1kF + k�M2kF),

where (i) uses Eq. (I.21) and Eq. (I.22), and the second inequality calls Eq. (I.29).

Next, from Eq. (I.24) and Eqs. (I.28a) and (I.28b),

kŪ0(0)kF  k�M1kFkVkk⌃�1
22 k � kM1kk�12kk(⌃22)

�1k
= polyop(⌃,⌃�1) (k�M1kF + k�12kF)

= polyop(⌃,⌃�1,V�1)

0

@
2X

j=1

k�MjkF

1

A .
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Continuing,

k�BkF = kU�1k
�
k�L2kF � kBKkkŪ0(0)kF

�

 polyop(⌃
�1,⌃,V�1,U�1,BK)

0

@
2X

j=1

k�MjkF + k�L2kF

1

A ,

and similarly, since V̄0(0) = �12 bounded as in Eq. (I.29),

k�CkF = kV�1k
�
k�L3kF � kCKkkV̄0(0)kF

�

 polyop(⌃
�1,⌃,V�1,U�1,CK)

0

@
2X

j=1

k�MjkF + k�L3kF

1

A .

Finally,

k�AkF = polyop
�
A,C,U,V,M1,M2,AK,BK,U

�1,V�1
�

⇥

0

@kŪ0(0)kF + k�L1kF + k�BkF +
2X

j=1

k�MjkF

1

A

= polyop
�
A,C,⌃,⌃�1,AK,BK,U

�1,V�1
�
0

@
2X

j=1

k�MjkF + k�L1kF

1

A .

In sum,

k�lftk2`2 = k�Ak2F + k�Ck2F + k�Ck2F + k�⌃k2F

= polyop
�
A,C,⌃,⌃�1,AK,BK,CK,U

�1,V�1
�
·

0

@
2X

j=1

k�Mjk2F +
3X

i=1

k�Lik2F

1

A .

The bound follows.

I.6 Proof of Lemma I.5

Let Z = ⌃12⌃
�1
22 ⌃

>
12. Then,

kZ�1k = k⌃�>

12 ⌃22⌃
�1
12 k � k⌃

�1
12 k2�min(⌃22)

� k⌃�1
12 k2�min(⌃22)

� k⌃�1
12 k2�min(⌃).

Hence,

kV�1k = k⌃�1
12 k 

s
kZ�1k
�min(⌃)

=
p
kZ�1kk⌃�1k.

Next, from the block matrix inversion identity, we have

U := (⌃�1)12 = �(⌃�1)11⌃12⌃
�1
22 = �(⌃�1)11V⌃�1

22 .

Hence,

kU�1k = k⌃22V
�1(⌃�1)�1

11 k 
k⌃22k

�min((⌃�1)11)
kV�1k

 k⌃k
�min(⌃�1)

kV�1k = k⌃kk⌃�1kkV�1k

 k⌃k
p
k⌃�1k3kkZ�1k.

The conclusion invokes Lemma I.4.
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I.7 Proof of convexity lemmas

Here we prove Lemmas I.6 and I.7, restated below for convenience. Both proofs use the fact that
convexity is preserved under partial minimization.

Fact I.1 (Chapter 3.2.5 of Boyd et al. [2004]). Let e�(x,y) be a convex function in two arguments
such that �(x) := miny e�(x,y) is finite and attained for each x. Then �(x) is convex.

Lemma I.6. The function g(eC, eX) = tr[eC> eX�1 eC] is convex on the domain (eC, eX) 2 Rep⇥en ⇥
Sen
++.

Proof. Observe that we can express

g(eC, eX) = min
E2Sn

eg(eC, eX,E), eg(eC, eX,E) =

✓
tr(E) · I1

⇢
E ⌫ 0,


E eC
eC> eX

�
⌫ 0

�◆
.

(I.30)

Indeed, since eX � 0 on the domain of g, the Schur complement test implies that

E eC>

eC eX

�
⌫ 0 if

and only if E ⌫ eCeX�1 eC>. Hence, the minimal value of tr(E) is attained with E = eCeX�1 eC>.
Observing that eg(eC, eX,E) is convex (affine function with a convex constraint), Fact I.1 implies that
its partial minimization g is convex.

Lemma I.7. The function h(M1,M2) = tr[(M2 � M�1
1 )�1] is convex on the domain

{(M1,M2) 2 Sn++ ⇥ Sn++ : M2 �M�1
1 }.

Proof. Introduce the function

eh(M1,M2,E) = tr[E�1] · I1
⇢

M2 �E In
In M1

�
⌫ 0, E � 0, M1 � 0

�
.

Since the function E 7! tr[E�1] is convex for E � 0, the function eh is also convex. The constraint
in eh is equivalent to M1 � 0, E � 0, and M2�E�M�1

1 ⌫ 0. Rearranging that is E �M2�M�1
1 ,

or equivalently, E�1 ⌫ (M2 �M�1
1 )�1. Hence, eh can be written as

eh(M1,M2,E) = tr[E�1] · I1
�
E�1 ⌫ (M2 �M�1

1 )�1, E � 0, M1 � 0
 
.

From the above form, it is clear that minE eh(M1,M2,E) = eh(M1,M2), which is finite and at-
tained by E = M2 �M�1

1 on the domain of h.

J Bounds on Solutions to Closed-Loop Lyapunov Equations
(Proposition 4.3)

The following proposition gives a more granular statement of Proposition 4.3 in the main text.
Proposition J.1. Let k · k� denote either the operator, Frobenius, or nuclear norm, and let clyap
denote the integral in Eq. (J.1), which corresponds to the continuous Lyapunov opertor when its
argument is Hurwitz. Then, for any matrix Y 2 S2n,

kclyap(Acl,K,Y)k�  Clyap(K) · kYk�,

where Clyap(K) = poly
�
k⌃Kk, k⌃�1

K k, kZ
�1
K k, kW

�1
1 k, kW

�1
2 k, kCk

�
. More precisely,

Clyap(K) :=
8t?(K)2k⌃Kk2k⌃11,sysk2kCk2

�min(⌃K)�min(W2)�min(⌃22,K)�min(ZK)
·max

⇢
1,

4k⌃22,Kk
�min(⌃11,sys)

�
, where

t?(K) :=
k⌃11,sysk
�min(W1)

log

✓
k⌃11,sysk2
�min(W1)

max

⇢
2

�min(⌃11,sys)
,

4k⌃11,sysk
�min(⌃11,sys)�min(ZK)

�◆
.

The following corollary is also useful for establishing compact level sets.
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J.1 Preliminaries on Lyapunov solutions

As a shorthand, we let clyap denote the following limit, if it converges:8

clyap(X,Y) = lim
t!1

Z
t

0
exp(sX)Y exp(sX)>ds =

Z
1

0
exp(sX)Y exp(sX)>ds. (J.1)

We also define a “finite-time version”, which is defined for all X 2 Rd⇥d and Y 2 Sd:

clyap
[t](X,Y) =

Z
t

0
exp(sX)Y exp(sX)>ds, clyap

[>t](X,Y) =

Z
1

t

exp(sX)Y exp(sX)>ds.

The name clyap is short for “continuous Lyapunov”, and is motivated by the following lemma:
Lemma J.2. Suppose that X is Hurwitz stable. Then, � = clyap(X,Y) exists and is the unique
solution to the Lyapunov equation

X�+ �X> +Y = 0.

In addition, if there exists a sequence t1, t2, . . . such that limk!1 k exp(tkX)kF ! 0, then X is
Hurwitz stable.

J.2 Proof of Proposition J.1

J.2.1 Setup.

Recall that ⌃K = clyap(Acl,K,Wcl,K) and ⌃11,sys = clyap(A,W1) solve the equations


A 0
BKC AK

�

| {z }
=Acl,K

⌃K +⌃K


A 0

BKC AK

�>
+


W1 0
0 BKW2B>

K

�

| {z }
Wcl,K

= 0, A⌃11,sys +⌃11,sysA
> +W1 = 0.

Define the matrix ⌃w = clyap(Acl,K,W0) and ⌃v = clyap(AK,BKW2B>

K ) as the solutions to
the Lyapunov equations

Acl,K⌃w +⌃wA
>

cl,K +


W1 0
0 0

�

| {z }
:=W0

= 0, AK⌃v +⌃vA
>

K +BKW2B
>

K = 0. (J.2)

We recall the following closed-form expression for the solution to Lyapunov equations.

In particular,

⌃K =

Z
1

0
exp(⌧Acl,K)Wcl,K exp(⌧Acl,K)

>d⌧

⌃w =

Z
1

0
exp(⌧Acl,K)W0 exp(⌧Acl,K)

>d⌧

⌃v =

Z
1

0
exp(⌧AK)BKW2B

>

K exp(⌧AK)
>d⌧

⌃11,sys =

Z
1

0
exp(⌧A)W1 exp(⌧A)>d⌧.

Throughout, we use the following decompositions

⌃K = ⌃[t]
K +⌃[>t]

K , ⌃w = ⌃[t]
w

+⌃[>t]
w

, ⌃v = ⌃[t]
v

+⌃[>t]
v

, ⌃11,sys = ⌃[t]
11,sys +⌃[>t]

11,sys,

where we define

⌃[t]
K :=

Z
t

0
exp(⌧Acl,K)Wcl,K exp(⌧Acl,K)

>d⌧, ⌃[>t]
K :=

Z
1

t

exp(⌧Acl,K)Wcl,K exp(⌧Acl,K)
>d⌧,

and where ⌃[t]
w ,⌃[>t]

w ,⌃[t]
v ,⌃[>t]

v ,⌃[t]
11,sys,⌃

[>t]
11,sys are all defined analogously. The following com-

putations are useful.
8That is, if lim1

t=0 k exp(sX)Y exp(sX)>kF ds is finite.

62



Lemma J.3 (Computations of exponentials). The following characterizes the exponentials of Acl,K:

(a) Defining M(t) =
R
t

0 exp((t� s)AK)BKC exp(sA)ds, one has

exp(tAcl,K) =


exp(tA) 0
M(t) exp(tAK)

�
.

(b) The following computation holds

exp(tAcl,K)


W1 0
0 0

�
exp(tAcl,K)

> =


exp(tA)W1 exp(tA)> exp(tA)W1M(t)>

M(t)W1 exp(tA)> M(t)W1M(t)>

�
.

Proof. Part (b) follows directly from part (a) and a straightforward computation. To prove part (a),
we observe that the desired identity holds at time t = 0. To prove it holds for all t, it suffices to
equate derivatives. First, we compute

d

dt
M(t) =

d

dt

Z
t

0
exp((t� s)AK)BKC exp(sA)ds

= exp((t� s)AK)BKC exp(sA)
��
s=t

+

Z
t

0

d

dt
exp((t� s)AK)BKC exp(sA)ds

= BKC exp(tA) +

Z
t

0
AK exp((t� s)AK)BKC exp(sA)ds = BKC exp(tA) +AKM(t).

Therefore,

d

dt


exp(tA) 0
M(t) exp(tAK)

�
=


A exp(tA) 0

BKC exp(tA) +AKM(t) AK exp(tAK)

�
= Acl,K


exp(tA) 0
M(t) exp(tAK)

�
.

Similarly, d
dt exp(tAcl,K) = Acl,K exp(tAcl,K). The identity follows from uniqueness of solutions

to ODEs.

The following lemma is straightforward to verify using the previous one.
Lemma J.4 (Useful identitities). The following identities hold:

(a) One has the decompositions

⌃K = ⌃w +


0 0
0 ⌃v

�
, ⌃[t]

K = ⌃[t]
w

+


0 0

0 ⌃[t]
v

�
(J.3)

(b) ⌃[t]
11,K = ⌃[t]

11,w = ⌃[t]
11,sys and similarly, ⌃[>t]

11,K = ⌃[>t]
11,w = ⌃[>t]

11,sys, and ⌃11,K =
⌃11,w = ⌃11,sys.

As a consequence, we find that ⌃[t]
11,w is invertible for all t. Lastly, we show ⌃[t]

11,w � 0.

Lemma J.5. ⌃[t]
11,K = ⌃[t]

11,w = ⌃[t]
11,sys � 0 for all t > 0.

Proof. The equivalence ⌃[t]
11,K = ⌃[t]

11,w = ⌃[t]
11,sys is given by Lemma J.4. Using the formula

⌃[t]
11,sys =

R
t

0 exp(⌧A)W1 exp(⌧A)>d⌧ , we see that we can ⌃[t]
11,sys =

R
t

0 N(⌧)d⌧ , where N(·) is
a continuous matrix valued function with N(0) = W1 � 0. Hence, for all vectors v 6= 0, the func-
tion f(·;v) = v>N(·)v is continous and has f(0;v) = 0. Thus, v>⌃[t]

11,sysv =
R
t

0 f(⌧ ;v)d⌧ > 0
for all nonzero v.

J.2.2 A Lyapunov argument

In this section, we show that if there is a finite t for which �min(⌃
[t]
K ) is strictly positive, then one can

bound the solutions to clyap(Acl,K,Y) in terms of this t and other problem-dependent quantities.
We begin with a general lemma that bounds the decay of matrix exponentials, with their finite-time
Gramians.

63



Lemma J.6. Fix a matrix X 2 Rd⇥d, and matrix Y0 2 Sd, and suppose that the solution �0 =

clyap(X,Y0) exists. Define �[t]
0 = clyap

[t](X,Y0), and �[>t]
0 analogously. Then, for all s, t � 0,

(a) P0(t) = �[>t]
0 , where P0(t) := exp(tX)�0 exp(tX)>.

(b) P0(s+ t) � ⇢0(s) ·P0(t), where ⇢0(s) := 1� �min(�
[s]
0 )

k�0k
.

(c) In particular, if �0 � 0, then X is Hurwitz stable.

Proof. Part (a). We see that

�[>t]
0 :=

Z
1

t

exp(⌧X)Y0 exp(⌧X)>d⌧

= exp(tX)

✓Z
1

t

exp((⌧ � t)X)Y0 exp((⌧ � t)X)>d⌧

◆
exp(tX)>

= exp(tX)

✓Z
1

0
exp(⌧X)Y0 exp(⌧X)>d⌧

◆
exp(tX)>

= exp(tX)�0 exp(tX)> := P0(t).

Part (b). We use the decomposition

�0 = �[t]
0 + �[>t]

0 = �[t]
0 +P0(t).

For a fixed t and s � 0, we have

P0(s+ t) = exp(tX) · exp(sX)�0 exp(sX)> · exp(tX)>

= exp(tX) · (�0 � �[s]
0 ) · exp(tX)>

= exp(tX) · �1/2
0 (In � ��1/2

0 �[s]
0 ��1/2

0 )�1/2
0 · exp(tX)>

 �max(In � ��1/2
0 �[s]

0 ��1/2
0 ) · exp(tX) · �1/2

0 �1/2
0 · exp(tX)>

| {z }
=P0(t)


 
1� �min(�

[s]
0 )

k�0k

!

| {z }
=⇢0(s)

·P0(t).

Part (c). Suppose that �0 � 0. Then, since �[s]
0 is monotone, there exists a finite s such that

�[s]
0 � 0. Thus, ⇢0(s) < 1. Then, by iterating part (b), we have that for any finite k 2 N

P0(ks+ t) � ⇢0(s)k ·P0(t),

so that limk!1 P0(ks+t) = limk!1 exp((ks+t)X)�0 exp((ks+t)X)> = 0. Since �0 � 0, this
implies that limk!1 k exp((ks + t)X)k = 0. By Lemma J.2, this can only occur if X is Hurwitz
stable.

By integrating Lemma J.6, we bound kclyap(X,Y)k� in terms of �min(�
[t]
0 ).

Lemma J.7. Consider the setup of Lemma J.6, and suppose that t > 0 is such that �min(�
[t]
0 ) > 0.

Then, for any Y 2 Sd, and for k · k� denoting either operator, Frobenius, or nuclear norm,

kclyap(X,Y)k� 
tk�0k2

�min(�0)�min(�
[t]
0 )

· kYk�.
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Proof. Using Lemma J.2, we write ⌃̄ explicitly and bound it as follows

kclyap(X,Y)k� =

����
Z

1

0
exp(⌧X)Y exp(⌧X)>d⌧

����
�


Z

1

0

��exp(⌧X)Y exp(⌧X)>
��
�
d⌧

(i)
 kYk�

Z
1

0
kexp(⌧X)k2 d⌧

= kYk�
Z

1

0

��exp(⌧X) exp(⌧X)>
�� d⌧

 kYk�k��1
0 k ·

Z
1

0
k exp(⌧X)�0 exp(⌧X)>kd⌧

= kYk�k��1
0 k ·

1X

k=0

Z
t(k+1)

tk

k exp(⌧X)�0 exp(⌧X)>kd⌧

= kYk�k��1
0 k ·

1X

k=0

Z
t(k+1)

tk

kP0(⌧)kd⌧.

Here, (i) uses that kX1X2k  min{kX1kkX2k�, kX1k�kX2k} for any � denoting either the oper-
ator, Frobenius, or trace norms (or more generally, any Schatten norm). From Lemma J.6, P0(⌧) is
non-increasing in the PSD order and kP0(tk)k  kP0(0)k⇢0(t)k. Hence, noting that P0(0) = �0,

Z
t(k+1)

tk

kP0(⌧)kd⌧  tkP0(tk)k  tkP0(0)k⇢0(t)k = tk�0k⇢0(t)k.

Thus, if �min(�
[t]
0 ) > 0, then ⇢0(t) < 1, so we can sum

kclyap(X,Y)k�  kYk�k��1
0 k · tk�0k ·

1X

k=0

⇢0(t)
k

= kYk�k��1
0 k · tk�0k ·

1

1� ⇢0(t)

= kYk�k��1
0 k · tk�0k ·

k�0k
�min(�

[t]
0 )

.

Hence,

kclyap(X,Y)k�  kYk� · t
k��1

0 kk�0k2

�min(�
[t]
0 )

= kYk� ·
tk�0k2

�min(�0)�min(�
[t]
0 )

.

Specializing with X Acl,K, Y0  Wcl,K, �0  ⌃K, we arrive at the following lemma:

Lemma J.8. Suppose that t > 0 is such that �min(⌃
[t]
K ) > 0. Then, for any Y 2 S2n, and for k · k�

denoting either operator, Frobenius, or nuclear norm,

kclyap(Acl,K,Y)k�  C[t](K) · kYk�, where C[t](K) :=
tk⌃Kk2

�min(⌃K)�min(⌃
[t]
K )

.

Thus, it remains to show that, for any appropriate choice of t

C[t](K)  Clyap(K). (J.4)
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J.2.3 Lower bounding finite-time covariance in terms of diagonal blocks

In order to upper bound C[t](K) from Lemma J.8, we must lower bound �min(⌃
[t]
K ). Recall that

from Lemma J.4,

⌃[t]
K = ⌃[t]

w
+


0 0

0 ⌃[t]
v

�
. (J.5)

Leveraging this form, we show that it suffices to lower bound �min(⌃
[t]
v ), that is, the finite-time

covariance introduced by the observation noise into the policy.

Lemma J.9. Suppose that t is large enough such that k⌃[<t]
11,sysk  1

2�min(⌃11,sys), then

�min

⇣
⌃[t]

K

⌘
� 1

2
�min(⌃

[t]
v
)min

⇢
1,
�min(⌃11,sys)

4k⌃22,Kk

�
.

Proof. Applying Lemma J.14 to the decomposition Eq. (J.5), we have

�min

⇣
⌃[t]

K

⌘
� 1

2
�min(⌃

[t]
v
)min

(
1,

�min(⌃
[t]
11,w)

2k⌃[t]
22,w +⌃[t]

v k

)
.

Substituing in ⌃[t]
11,w = ⌃[t]

11,sys, and bounding k⌃[t]
22,w + ⌃[t]

v k = k⌃[t]
22,Kk  k⌃22,Kk in view

of Lemma J.4. Moreover, we have �min(⌃
[t]
11,w) � �min(⌃11,sys) � k⌃[>t]

11,sysk � 1
2�min(⌃11,sys),

where the last step holds under the assumption on t in the lemma. With these simplifications, we
arrive at the desired bound:

�min

⇣
⌃[t]

K

⌘
� 1

2
�min(⌃

[t]
v
)min

⇢
1,
�min(⌃11,w)

4k⌃22,Kk

�
.

J.2.4 Lower bounding the contribution of output noise

From Lemma J.9, we have to lower bound �min

⇣
⌃[t]

v

⌘
. This step involves the two most original

insights of the proof:

• First, ⌃[t]
v ⌫ C

t
⌃[t]

22,w, for some system-dependent constant C. Here, ⌃[t]
v represents the

part of the internal-state covariance excited by the full-rank observation noise W2, and
⌃[t]

22,w the part of the covariance excited by the observations ey(t) = Cx(t). Essentially,
we argue that the covariance excited by any stochastic process ey(t) cannot be much greater
than the excitation by Gaussian noise v(t).

• Second, if ZK � 0 and if ⌃[>t]
11,sys is small, then we can lower bound �min(⌃

[t]
22,w) in terms

of ZK. Intuitively, ⌃[t]
22,w describes how much of the process noise w(t) excites the internal

filter state x̂(t), and ZK measures the correlation between x̂(t) and x(t). This argument
therefore uses the insight that, if x̂(t) and x(t) have nontrivial correlation, some of the
process noise w(t) must be exciting the filter state x̂(t).

Lemma J.10. For all t, we have

⌃[t]
22,w �

tkCk2k⌃11,sysk
�min(W2)

·⌃[t]
v
.

In particular, ⌃[t]
22,K � 0 if and only if ⌃[t]

v � 0.9

9Note that this lemma and its conclusion only requires Assumption 2.3. It does not even require stability of
AK.
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Proof. From Lemma J.3, we have that

⌃[t]
22,w

=

Z
t

0

�
M(⌧)W1M(⌧)>

�
d⌧

=

Z
t

0

✓Z
⌧

0
exp((⌧ � s1)AK)BKC exp(sA)ds1

◆
W1

✓Z
⌧

0
exp((⌧ � s2)AK)BKC exp(sA)ds2

◆>

d⌧

=

Z
t

0
⌧2
✓
1

⌧

Z
⌧

0
exp((⌧ � s1)AK)BKC exp(sA)W1/2

1 ds1

◆✓
1

⌧

Z
⌧

0
exp((⌧ � s2)AK)BKC exp(sA)W1/2

1 ds2

◆>

d⌧

(i)
�
Z

t

0
⌧2 · 1

⌧

Z
⌧

0

⇣
exp((⌧ � s)AK)BKC exp(sA)W1/2

1

⌘⇣
exp((⌧ � s)AK)BKC exp(sA)W1/2

1

⌘>
dsd⌧

=

Z
t

0

Z
⌧

0
⌧ exp((⌧ � s)AK)BKC exp(sA)W1 exp(sA)>C>B>

K exp((⌧ � s)AK)
>dsd⌧

� t

Z
t

0

Z
⌧

0
exp((⌧ � s)AK)BKC exp(sA)W1 exp(sA)>C>B>

K exp((⌧ � s)AK)
>dsd⌧.

Here, inequality (i) invoked Lemma J.15. Using the integral re-arrangment
Z

t

⌧=0

Z
⌧

s=0
N(⌧ � s, s)dsd⌧ =

Z
t

s=0

Z
t

⌧=s

N(⌧ � s, s)d⌧ds

=

Z
t

s=0

Z
t�s

⌧=0
N(⌧, s)d⌧ds

�
Z

t

s=0

Z
t

⌧=0
N(⌧, s)d⌧ds

for any PSD-matrix valued function N(·, ·) : [0, t]2 ! Sn+, we obtain that

⌃[t]
22,w � t

Z
t

0

Z
t

0
exp(⌧AK)BKC exp(sA)W1 exp(sA)>C>B>

K exp(⌧AK)
>dsd⌧

= t

Z
t

0
exp(⌧AK)BK

✓
C

✓Z
t

0
exp(sA)W1 exp(sA)>ds

◆
C>

◆
B>

K exp(⌧AK)
>d

= t

Z
t

0
exp(⌧AK)BK

⇣
C⌃[t]

11,sysC
>

⌘
B>

K exp(⌧AK)
>d⌧

= t

Z
t

0
exp(⌧AK)BKW

1/2
2

⇣
W�1/2

2 C⌃[t]
11,sysC

>W�1/2
2

⌘
W1/2

2 B>

K exp(⌧AK)
>d⌧.

We render the above integral as

t

Z
t

s2=0

Z
t

s1=0
exp(s1AK)BKC exp(s2A)W1 exp(s2A)>C>B>

K exp(s1AK)
>ds1ds2.

Bounding kW�1/2
2 C⌃[t]

11,sysC
>W�1/2

2 k  kCk
2
k⌃11,sysk

�min(W2)
 kCk

2
k⌃11,sysk

�min(W2)
, we have

⌃[t]
22,w �

tkCk2k⌃11,sysk
�min(W2)

·
Z

t

0
exp(⌧AK)BKW2B

>

K exp(⌧AK)
>d⌧

=
tkCk2k⌃11,sysk
�min(W2)

·⌃[t]
v
.

The last point follows from ⌃[t]
22,K = ⌃[t]

22,w +⌃[t]
v by Lemma J.4.

Lemma J.11. Suppose that t is sufficiently large such that

k⌃[>t]
11,sysk 

�min(⌃22,K)�min(ZK)

4k⌃22,Kk
.
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Then, it holds that

�min

⇣
⌃[t]

22,w

⌘
� �min(⌃22,K)�min(ZK)

4k⌃11,sysk
.

Therefore, in view of Lemma J.10,

�min

⇣
⌃[t]

v

⌘
� �min(W2)�min(⌃22,K)�min(ZK)

4tk⌃11,sysk2kCk2
.

Proof. We assume that �min(ZK) � 0 for otherwise the lemma is vacuous. We compute

�min(⌃12,K)
2 = �min(⌃12,K⌃

>

12,K) �
1

k⌃�1
22,Kk

�min

⇣
⌃12,K⌃

�1
22,K⌃

>

12,K

⌘
= �min(⌃22,K)�min(ZK),

(J.6)

and take t sufficiently large that

k⌃[>t]
12,wk 

1

2

q
�min(⌃22,K)�min(ZK) 

1

2
�min(⌃12,K). (J.7)

Now invoking Eq. (J.3) on the (1, 2)-block of ⌃K, then if Eq. (J.7) holds,

⌃12,K = ⌃12,w = ⌃[t]
12,w +⌃[>t]

12,w, so that �min

⇣
⌃[t]

12,w

⌘
� �min(⌃12,K)� k⌃[>t]

12,wk �
1

2
�min(⌃12,K).

Next, since ⌃[t]
w ⌫ 0, the Schur complement test implies that

⌃[t]
22,w ⌫ ⌃[t]>

12,w

⇣
⌃[t]

11,w

⌘�1
⌃[t]

12,w

⌫ 1

k⌃[t]
11,wk

⌃[t]>
12,w⌃

[t]
12,w

⌫ 1

k⌃11,wk
⌃[t]>

12,w⌃
[t]
12,w =

1

k⌃11,sysk
⌃[t]>

12,w⌃
[t]
12,w,

where above we use ⌃[t]
11,w � ⌃11,w, and ⌃11,w = ⌃11,sys in view of Eq. (J.3). Here, invertibility

of ⌃[t]
11,w is guaranteed by Lemma J.5. Therefore, if Eq. (J.7) holds,

�min

⇣
⌃[t]

22,w

⌘
� 1

k⌃11,sysk
�min(⌃

[t]
12,w)

2 � 1

4k⌃11,sysk
�min(⌃12,K)

2 � �min(⌃22,K)�min(ZK)

4k⌃11,sysk
,

where the last inequality applies Eq. (J.6). Lastly, we simplify the condition k⌃[>t]
12,wk 

1
2

p
�min(⌃22,K)�min(ZK) in Eq. (J.7). We have

k⌃[>t]
12,wk2

(i)
 k⌃[>t]

11,wk · k⌃
[>t]
22,wk

(ii)
 k⌃[>t]

11,wk · k⌃22,wk
(iii)
 k⌃[>t]

11,sysk · k⌃22,Kk,

where (i) uses Lemma J.13, (ii) uses ⌃[>t]
22,w � ⌃22,w, and (iii) uses both that ⌃22,w � ⌃22,K by

Eq. (J.3) and that ⌃[>t]
11,w = ⌃[>t]

11,sys by Lemma J.4 part (b). Therefore, the condition k⌃[>t]
12,wk 

1
2

p
�min(⌃22,K)�min(ZK) is met as soon as

k⌃[>t]
11,sysk 

�min(⌃22,K)�min(ZK)

4k⌃22,Kk
.

J.2.5 Bounding the decay of the true system

Recall that both Lemma J.9 and Lemma J.11 require us to bound the decay of k⌃[>t]
11,sysk. This is

achieved in the following lemma.
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Lemma J.12. For any t > 0, we have

k⌃[>t]
11,sysk  e

�t�min(W1)
k⌃11,sysk · k⌃11,sysk2

�min(W1)
.

Proof. Define N(s) = exp(tA)⌃11,sys exp(tA)>. We compute
d

dt
N(s) = exp(tA)A⌃11,sys exp(tA)> + exp(tA)⌃11,sysA

> exp(tA)>

= exp(tA)
�
A⌃11,sys +⌃11,sysA

>
�
exp(tA)>

= exp(tA) (�W1) exp(tA)>

� ��min(W1)

k⌃11,sysk
· exp(tA)⌃11,sys exp(tA)> =

��min(W1)

k⌃11,sysk
·N(s).

Applying Lemma J.16,

exp(tA)⌃11,sys exp(tA)> = N(t) � N(0) · e
�t�min(W1)
k⌃11,sysk = ⌃11,sys · e

�t�min(W1)
k⌃11,sysk .

As a consequence,

⌃[>t]
11,sys =

Z
1

s=t

exp(sA)⌃11,sys exp(sA)>ds �
Z

1

s=t

✓
⌃11,sys · e

�s�min(W1)
k⌃11,sysk

◆
ds

= ⌃11,sys ·
k⌃11,sysk
�min(W1)

· e
�t�min(W1)
k⌃11,sysk .

The bound follows by taking the operator norm of both sides.

J.2.6 Concluding the argument

It remains to bound C[t](K)  Clyap(K), where C[t](K) := tk⌃Kk
2

�min(⌃K)�min(⌃
[t]
K )

was given in
Lemma J.8. Consolidating Lemma J.9 and Lemma J.11, we have that if

k⌃[<t]
11,sysk  min

⇢
1

2
�min(⌃11,sys),

�min(⌃22,K)�min(ZK)

4k⌃11,sysk

�
. (J.8)

Then,

�min

⇣
⌃[t]

K

⌘
� �min(W2)�min(⌃22,K)�min(ZK)

8tk⌃11,sysk2kCk2
·min

⇢
1,
�min(⌃11,sys)

4k⌃22,Kk

�
.

Or by inverting,
1

�min

⇣
⌃[t]

K

⌘  8tk⌃11,sysk2kCk2
�min(W2)�min(⌃22,K)�min(ZK)

·max

⇢
1,

4k⌃22,Kk
�min(⌃11,sys)

�
.

Hence, if t satisfies Eq. (J.8), then

C[t](K) 
8t2k⌃Kk2k⌃11,sysk2kCk2

�min(⌃K)�min(W2)�min(⌃22,K)�min(ZK)
·max

⇢
1,

4k⌃22,Kk
�min(⌃11,sys)

�
. (J.9)

It remains to select t large enough to satisfy Eq. (J.8). From Lemma J.12, it is enough to take

t = t?(K) =
k⌃11,sysk
�min(W1)

log

✓
k⌃11,sysk2
�min(W1)

max

⇢
2

�min(⌃11,sys)
,

4k⌃11,sysk
�min(⌃11,sys)�min(ZK)

�◆
.

Substituing t?(K) into Eq. (J.9) yields the desired upper bound Clyap(K). To see that Clyap(K) is at
most polynomial in

�
k⌃Kk, k⌃�1

K k, kZ
�1
K k, kW

�1
1 k, kW

�1
2 k, kCk

�
, we observe that C[t](K) and

t?(K) are at most polynomial in
k⌃11,sysk,�min(W1)

�1, k⌃11,sysk,�min(⌃11,sys)
�1, k⌃11,sysk,

�min(⌃22,K)
�1,�min(ZK)

�1, k⌃Kk, kCk,�min(⌃K)
�1,�min(W2)

�1.
(J.10)

Noting that ⌃11,sys and ⌃22,K are submatrices of ⌃K, so that �min(⌃11,sys),�min(⌃22,K) �
�min(⌃K) and k⌃11,sysk, k⌃22,Kk  k⌃Kk, C[t](K) and t?(K) are polynomial in

k⌃11,sysk,�min(W1)
�1,�min(⌃K)

�1,�min(ZK)
�1, kCk,�min(⌃K)

�1,�min(W2)
�1,

Replacing �min(·)�1 with k(·)�1k verifies the simplification.
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J.3 Supporting technical tools

We first begin with two linear algebra matrices, both of which pertain to partitioned matrices

⇤ =


⇤11 ⇤12

⇤>
12 ⇤22

�
2 S2n+ . (J.11)

Lemma J.13. Let ⇤ 2 S2n+ be PSD be partioned as in Eq. (J.11). Then k⇤12k 
p
k⇤11kk⇤22k.

Proof. Let v = (v1,v2) 2 R2n, then

v>⇤v = v>

1 ⇤11v1 + v>

2 ⇤22v2 + 2v>

1 ⇤12v2 � 0.

By considering the same inequality with the vector ev = (v1,�v2), we have that for all v =
(v1,v2) 2 R2n,

|v>

1 ⇤12v2| 
1

2

�
v>

1 ⇤11v1 + v>

2 ⇤22v2

�
.

By considering scalings v↵ := (↵1/2v1,↵�1/2v2) 2 R2n for ↵ > 0, we have

|v>

1 ⇤12v2| 
1

2
inf
↵>0

�
↵v>

1 ⇤11v1 + ↵�1v>

2 ⇤22v2

�

=
q
v>
1 ⇤11v1 · v>

2 ⇤22v2


p
k⇤11k⇤22kkv1kkv2k,

which completes the proof.

Lemma J.14. Let ⇤ 2 S2n+ be PSD and be partitioned as in Eq. (J.11). Then any given ⇤0 2 Sn+,
we have

�min

✓
⇤+


0 0
0 ⇤0

�◆
� 1

2
�min(⇤0)min

⇢
1,

�min(⇤11)

2k⇤22 +⇤0k

�
.

Proof. Without loss of generality, may assume ⇤0,⇤11 � 0 since otherwise the lemma is vacuous.
For compactness, denote

⇤̄ := ⇤+


0 0
0 ⇤0

�
.

It suffices to exhibit � such that �min(⇤̄) � �. From the Schur complement test, we have that
�min(⇤̄) � � as long as ⇤̄11 ⌫ �In and

⇤̄22 � �In ⌫ ⇤̄>

12(⇤̄11 � �In)�1⇤̄12,

so, substituing in the form of ⇤̄, we have ⇤11 ⌫ �In and

⇤22 +⇤0 � �In ⌫ ⇤>

12(⇤11 � �In)�1⇤12.

If we take � = ↵�min(⇤) for some ↵ < 1, then

⇤>

12(⇤11 � �In)�1⇤12 � (1� ↵)�1⇤>

12(⇤11)
�1⇤>

12 � (1� ↵)�1⇤22,

where the last step applies the Schur complement test to ⇤. Thus, it is enough

⇤22 +⇤0 � �In ⌫ (1� ↵)�1⇤22,

so that, with rearranging and substituing in the definition of �, it suffices to choose ↵  1/2 and

⇤0 ⌫
↵

1� ↵⇤22 + ↵�min(⇤11).

Thus, it is enough that ↵ � 0 satisfies

�min(⇤0) ⌫ ↵ (2k⇤22k+ �min(⇤11)) , ↵  1/2.
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Hence, choosing the maximal ↵ which satisfies the above display,

�min(⇤̄) � ↵�min(⇤11) = min

⇢
1

2
�min(⇤11),

�min(⇤0)�min(⇤11)

(2k⇤22k+ �min(⇤11))

�

(i)
� min

⇢
1

2
�min(⇤11),

1

2
�min(⇤0),

�min(⇤0)�min(⇤11)

4k⇤22k

�

(ii)
� min

⇢
1

2
�min(⇤11),

1

2
�min(⇤0),

�min(⇤0)�min(⇤11)

4k⇤22 +⇤0k

�

(iii)
= min

⇢
1

2
�min(⇤0),

�min(⇤0)�min(⇤11)

4k⇤22 +⇤0k

�
.

Here (i) used that a

b+c
� min{ a

2b ,
a

2c}, (ii) that since ⇤0,⇤22 ⌫ 0, we can replace k⇤0 +⇤22k �
k⇤22k, and (iii) that �min(⇤0)

k⇤22+⇤0k
 1 (again, for ⇤22,⇤0 ⌫ 0). The bound follows by factoring.

Lemma J.15. For any continuous matrix valued function X(s) 2 Rn⇥n,⇣R 1
0 X(s1)ds1

⌘⇣R 1
0 X(s1)ds1

⌘>
�
R 1
0 X(s)X(s)>ds.

Proof. It suffices to show that for any vector v0 2 Rn, the function v(s) = X(s)>v0 satisfies
����
Z 1

0
v(s)ds

����
2


Z 1

0
kv(s)k2ds.

We can view both integrals as expectations over a random vector ev = v(s), where s is drawn
uniformly on [0, 1]. With this interpretation, it suffices that kE[ev]k2  E[kevk2], which is precisely
Jensen’s inequality.

Lemma J.16. Let N(·) : [0,1) ! Sn+ be continuously differentiable PSD-matrix-valued function
satisfying

d

dt
N(t) � �↵N(s), for some ↵ > 0.

Then, N(t) � e�↵tN(0) for all t > 0.

Proof. For fixed v 6= 0, define f(·;v) = v>N(·)v. Then, f(·;v) � 0 and d
dtf(t;v)  �↵f(t;v)

for all t. Hence, by a scalar ODE comparison inequality, v>N(t)v = f(t;v)  e�↵tf(0;v) =
e�↵t · v>N(·)v. The lemma follows.

K Smoothness (Proof of Proposition G.5)

This section bounds the first and second derivatives of L�(K), and of K 7! ⌃K, for K 2 Kinfo.

Specification of Derivative Norms. To prove Proposition G.5, we formally define the norms of the
relevant derivatives. Let �K = (�A,�B,�C) denote a perturbation of filter K = (AK,BK,CK),
with

k�Kk`2 =
q
k�Ak2F + k�Bk2F + k�Ck2F.

Definition K.1 (Euclidean Norm of Derivatives). We define Euclidean norms of the gradient
rL�(K), operator-norm of the Hessian r2L�(K), and `2 ! op-norm of the gradients of ⌃K as

kr2L�(K)k`2!`2 := sup
�K:k�Kk`2=1

h�K,r2L�(K) ·�Ki

krL�(K)k`2 = sup
�K:k�Kk`2=1

h�K,rL�(K)i

kr⌃Kk`2!op := sup
�K:k�Kk`2=1

kr⌃K ·�Kkop
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We shall compute these bounds by considering directional derivatives, using that

kr2L�(K)k`2!`2 := sup
�K:k�Kk`2=1

����
d2

dt2
L�(K+ t�K)

��
t=0

����

krL�(K)k`2 = sup
�K:k�Kk`2=1

����
d

dt
L�(K+ t�K)

��
t=0

����

kr⌃Kk`2!op := sup
�K:k�Kk`2=1

����
d

dt
⌃(K+t�K)

��
t=0

����
op

Stability preliminaries. For any K 2 Kinfo (and thus K 2 Kstab), Acl,K is Hurwitz stable, and
the solution to the Lyapunov equation Acl,K⌃K,Y +⌃K,YA>

cl,K +Y = 0 for any Y 2 S2n+ can be
written as

Z
1

0
exp(sAcl,K)Y exp(sAcl,K)

>ds,

which recall from Proposition 4.3 that satisfies

k⌃K,Yk�  Clyap(K) · kYk�,
for k · k� denoting either operator, Frobenius, or nuclear norm. The explicit form of Clyap(K) is
given in Proposition J.1.

Covariance derivatives. We start with derivatives of ⌃K. Define

⌃0

K[�K] :=
d

dt
⌃K+t�K

����
t=0

, ⌃00

K[�K] :=
d2

dt2
⌃K+t�K

����
t=0

.

We first compute these derivatives. In what follows, given a symmetric matrix Y 2 Sn, we define
its nuclear norm as kYknuc :=

P
n

i=1 |�i(Y)|.
Lemma K.1 (Bounding derivatives of ⌃K). For any K 2 Kstab, we have that K ! ⌃K is C 2 in a
neighorhood containing K, and ⌃0

K[�K] and ⌃00

K[�K] solve the Lyapunov equations

Acl,K⌃
0

K[�K] +⌃0

K[�K]A
>

cl,K +Y1[�K] = 0, Acl,K⌃
00

K[�K] +⌃00

K[�K]A
>

cl,K +Y2[�K] = 0,

where

Y1[�K] =


0 0

�BC �A

�
⌃K +⌃K


0 0

�BC �A

�>
+


0 0
0 �BW2B>

K +BKW2�>

B

�

Y2[�K] =


0 0

�BC �A

�
⌃0

K[�K] +⌃0

K[�K]


0 0

�BC �A

�>
+


0 0
0 �BW2�>

B

�
.

Hence,

k⌃0

K[�K]kF  Clyap(K) · poly(k⌃Kk, kBKk, kCk, kW2k) · k�Kk`2
k⌃00

K[�K]knuc  Clyap(K)
2 · poly(k⌃Kk, kBKk, kCk, kW2k) · k�Kk2`2 .

Proof. The existence of the derivatives ⌃0

K[�K] and ⌃00

K[�K] in open neighbrhoods is standard (see
, e.g. [Tang et al., 2021, Lemma B.1]). We compute the derivatives by implicit differentiation.

⌃K+t�K = Acl,K+t�K⌃K+t�K +⌃K+t�KA
>

cl,K+t�K
+


W1 0
0 (BK + t�B)W2(BK + t�B)>

�
.

Differentiating both sides with respect to t and evaluating at t = 0, we have

⌃0

K[�K] = Acl,K⌃
0

K[�K] +⌃0

K[�K]A
>

cl,K

+


0 0

�BC �A

�
⌃K +⌃K


0 0

�BC �A

�>
+


0 0
0 �BW2B>

K +BKW2�>

B

�

| {z }
:=Y1[�K]

.
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Differentiating twice (and notice that d2

dt2Acl,K+t�K

��
t=0

= 0), and evaluating at t = 0, we have

⌃00

K[�K] = Acl,K⌃
00

K[�K] +⌃00

K[�K]A
>

cl,K

+


0 0

�BC �A

�
⌃0

K[�K] +⌃0

K[�K]


0 0

�BC �A

�>
+


0 0
0 �BW2�>

B

�

| {z }
:=Y2[�K]

.

To prove the second part of the lemma, we use Proposition J.1. Since K 2 Kinfo and thus K 2 Kstab,
we know the solutions to the Lyapunov equations above, i.e., ⌃0

K[�K] and ⌃00

K[�K], can be written
as kclyap(Acl,K,Y1[�K])k� and kclyap(Acl,K,Y2[�K])k�, and can be bounded by

k⌃0

K[�K]kF  Clyap(K)kY1[�K]kF

 Clyap(K) ·
✓
2k⌃Kk

����


0 0

C�B �A

�����
F

+ 2k�BkFkBKkkW2k
◆

 Clyap(K) · poly(k⌃Kk, kCk, kBKk, kW2k) · k�Kk`2 .
Using the above computation and recall that Clyap(K) � 1,

k⌃00

K[�K]knuc  Clyap(K) · kY2[�K]kF

 Clyap(K) ·
✓
2k⌃0

K[�K]kF
����


0 0

C�B �A

�����
F

+ 2k�Bk2FkW2k
◆

 Clyap(K)(1 + kCk)k⌃0

K[�K]kFk�Kk`2 + Clyap(K)kW2kk�Kk2`2
 Clyap(K)

2poly(k⌃Kk, kCk, kBKk, kW2k) · k�Kk2`2 + Clyap(K)kW2kk�Kk2`2
 Clyap(K)

2 · poly(k⌃Kk, kCk, kBKk, kW2k) · k�Kk2`2 ,
which completes the proof.

Derivatives of OE loss and regularizer. Next, we compute the derivatives of LOE(K) and tr[Z�1
K ]

in terms of the above derivatives.
Lemma K.2 (Bounding derivatives of LOE(K)). We have that LOE(·) is C 2 in the neighborhood of
any K 2 Kstab and
����
d

dt
LOE(K+ t�K)

���
t=0

���� 
p
n · Clyap(K) · poly(kGk, kCKk, k⌃Kk, kBKk, kCk, kW2k) · k�Kk`2

����
d2

dt2
LOE(K+ t�K)

���
t=0

����  Clyap(K)
2 · poly(kGk, kCKk, k⌃Kk, kBKk, kCk, kW2k) · k�Kk2`2 .

Proof. Recall from the computaton in Eq. (I.2) that

LOE(K) = tr


[G �CK]⌃K


G>

�C>

K

��
= tr


G>G �G>CK

�C>

KG C>

KCK

�
·⌃K

�
.

Since Lemma K.1 verifies K 7! ⌃K is C 2 in an open neighborhood around K, we readily see LOE(K)
is as well. Thus,
d

dt
LOE(K+ t�K)

���
t=0

= tr


G>G �G>CK

�C>

KG C>

KCK

�
·⌃0

K[�K] +


0 �G>�C

��>

CG �>

CCK +C>

K�C

�
·⌃K

�
.

Thus,����
d

dt
LOE(K+ t�K)

���
t=0

����  poly(kGk, kCKk)k⌃0

K[�K]knuc + poly(kGk, kCKk)k�Kk`2k⌃K[�K]kF


p
npoly(kGk, kCKk) (k⌃0

K[�K]kF + k�Kk`2k⌃K[�K]k)
(i)

p
n · poly(kGk, kCKk)

⇣
Clyap(K) · poly(k⌃Kk, kBKk, kCk, kW2k)

· (k�Kk`2 + k�Kk`2k⌃K[�K]k)
⌘

(ii)

p
n · Clyap(K) · poly(kGk, kCKk, k⌃Kk, kBKk, kCk, kW2k) · k�Kk`2
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where (i) uses Lemma K.1, and (ii) uses Clyap(K) � 1. Next,

d2

dt2
LOE(K+ t�K)

���
t=0

= tr
h 

G>G �G>CK

�C>

KG C>

KCK

�
·⌃00

K[�K]

+


0 �G>�C

��>

CG �>

CCK +C>

K�C

�
·⌃0

K[�K] +


0 0
0 �>

C�C

�
·⌃K

i
.

Using Matrix Holder’s inequality, it follows that
����
d2

dt2
LOE(K+ t�K)

���
t=0

���� 
�
poly(kGk, kCKk)k⌃00

K[�K]knuc + poly(kGk, kCKk)k�Kk`2k⌃0

K[�K]kF + k⌃Kkk�Ck2F
�
.

Again, invoking Lemma K.1 and appropriate simplifications, we have
����
d2

dt2
LOE(K+ t�K)

���
t=0

����  Clyap(K)
2 · poly(kGk, kCKk, k⌃Kk, kBKk, kCk, kW2k) · k�Kk2`2 .

Next, we turn to controlling the derivatives of the regularizer. Here, we require that K 2 Kinfo, not
just K 2 Kstab as above. Introduce Z0

K[�K] =
d
dtZBK+t�K

���
t=0

, and define Z00

K[�K] analogously.

Lemma K.3 (Bounding derivatives of ZK). ZK is C 2 in a neighborhood of any K 2 Kinfo, and

kZ0

K[�K]kF  Clyap(K) · poly(k⌃�1
22,Kk, k⌃Kk, kBKk, kCk, kW2k) · k�Kk`2

kZ00

K[�K]knuc  Clyap(K)
2 · poly(k⌃�1

22,Kk, k⌃Kk, kBKk, kCk, kW2k) · k�Kk2`2 .

Proof. Using (⌃12,K⌃
�1
22,K⌃

>

12,K) and the facts that (a) K 7! ⌃K is C 2 on some neighborhood, and
X 7! X�1 is C 2 on Sn++, we see ZK is C 2.

To compute derivatives, let us partition the derivatives ⌃0

K[�K] and ⌃00

K[�K] into two-by-two blocks
⌃0

ij,K[�K] and ⌃00

ij,K[�K] in the obvious way. We have

Z0

K[�K] =
d

dt
ZBK+t�K

��
t=0

=
d

dt
(⌃12,K+t�K⌃

�1
22,K+t�K

⌃>

12,K+t�K
)
��
t=0

= ⌃0

12,K[�K]⌃
�1
22,K⌃12,K +⌃12,K⌃

�1
22,K+t�K

(⌃0

12,K[�K])
>

+⌃12,K⌃
�1
22,K⌃

0

22,K[�K]⌃
�1
22,K+t�K

⌃>

12,K.

Thus,

kZ0

K[�K]kF  poly(k⌃12,Kk, k⌃�1
22,Kk)(k⌃

0

12,K[�K]kF + k⌃0

22,K[�K]kF)
 poly(k⌃12,Kk, k⌃�1

22,Kk)k⌃
0

K[�K]kF
 poly(k⌃Kk, k⌃�1

22,Kk)k⌃
0

K[�K]kF.

Thus, the intended bound on kZ0

K[�K]kF follows from Lemma K.1. By the same token, more
tedious computations reveal,

kZ00

K[�K]knuc = k
d2

dt2
(⌃12,K+t�K⌃

�1
22,K+t�K

⌃>

12,K+t�K
)
��
t=0
knuc

= poly(k⌃12,Kk, k⌃�1
22,Kk)

�
k⌃0

12,K[�K]k2F + k⌃0

12,K[�K]kFk⌃0

22,K[�K]kF + k⌃00

12,K[�K]knuc + k⌃00

22,K[�K]knuc
�

 poly(k⌃Kk, k⌃�1
22,Kk)

�
k⌃0

K[�K]k2F + k⌃00

K[�K]knuc
�
.

Thus, the intended bound on kZ00

K[�K]knuc follows from Lemma K.1.

Lemma K.4 (Bounding derivatives of Rinfo(K)). Recall Rinfo(K) := tr[Z�1
K ]. We have

����
d

dt
Rinfo(K+ t�K)

���
t=0

���� 
p
nClyap(K) · poly(kZ�1

K k, k⌃
�1
22,Kk, k⌃Kk, kBKk, kCk, kW2k) · k�Kk`2

����
d2

dt2
Rinfo(K+ t�K)

���
t=0

����  Clyap(K)
2 · poly(kZ�1

K k, k⌃
�1
22,Kk, k⌃Kk, kBKk, kCk, kW2k) · k�Kk2`2 .

74



Proof. We compute

d

dt
Rinfo(K+ t�K)

���
t=0

=
d

dt
tr[Z�1

K+t�K
]
���
t=0

= �tr[Z�1
K Z0

K[�K]Z
�1
K ].

Thus, invoking Lemma K.3,
����
d

dt
Rinfo(K+ t�K)

��
t=0

����  kZ
�1
K k

2kZ0

K[�K]knuc 
p
nkZ�1

K k
2kZ0

K[�K]kF


p
nClyap(K) · poly(kZ�1

K k, k⌃
�1
22,Kk, k⌃Kk, kBKk, kCk, kW2k) · k�Kk`2 .

Next,

d2

dt2
Rinfo(K+ t�K)

��
t=0

= tr[2Z�1
K Z0

K[�K]Z
�1
K Z0

K[�K]Z
�1
K + Z�1

K Z00

K[�K]Z
�1
K ],

so again applying Lemma K.3,
����
d2

dt2
Rinfo(K+ t�K)

��
t=0

����  2kZ�1
K k

3kZ0

K[�K]k2F + kZ�1
K k

2kZ00

K[�K]knuc

 Clyap(K)
2 · poly(kZ�1

K k, k⌃
�1
22,Kk, k⌃Kk, kBKk, kCk, kW2k) · k�Kk2`2 ,

we complete the proof.

Concluding the proof We now turn to the proof of Proposition G.5.

Proof of Proposition G.5. Combining Lemmas K.2 and K.4,
����
d

dt
L�(K+ t�K)

���
t=0

���� 
����
d

dt
LOE(K+ t�K)

���
t=0

����+ � ·
����
d

dt
Rinfo(K+ t�K)

���
t=0

����

 (1 + �)
p
n · Clyap(K) · poly(kGk, kCKk, k⌃Kk, kBKk, kCk, kW2k, kZ�1

K k) · k�Kk`2
and
����
d2

dt2
L�(K+ t�K)

���
t=0

���� 
����
d2

dt2
LOE(K+ t�K)

���
t=0

����+ � ·
����
d2

dt2
Rinfo(K+ t�K)

���
t=0

����

 (1 + �)Clyap(K)
2 · poly(kGk, kCKk, k⌃Kk, kBKk, kCk, kW2k, kZ�1

K k) · k�Kk2`2 .

These verify the first two bounds of the proposition. The derivative bound for ⌃K is proven in
Lemma K.1,noting that

sup
�K:k�Kk`2=1

k⌃0

K[�K]kF � sup
�K:k�Kk`2=1

k⌃0

K[�K]kop � sup
�K:k�Kk`2=1

k⌃0

22,K[�K]kop = kr⌃22,Kk`2!op.

Lastly, we have shown above that LOE(K) and ZK is C 2 in a neighborhood of any K 2 Kinfo. Since
ZK is invertible on K 2 Kinfo, this implies that L� = LOE(K) + �tr[Z�1

K ] is C 2 in a neighborhood
of any K 2 Kinfo.
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