A Notation Summary and Organization

A.1 Organization

After establishing notation below, the rest of the appendix is organized as follows. Appendix B
provides additional algorithm details, including extension to backtracking and discussion of oracle
complexity. Appendix C sketches implementation via finite-sample, finite-horizon oracles; notably,
Appendix C.2 describes implementation with an oracle which does not require direct access to sys-
tem states, but which rather “subsamples” outputs at various time steps.

Appendix D provides further discussion on the somewhat-nonstandard controllability assumption,
Assumption 2.4, and demonstrates it holds generically. Appendix E contains assorted results about
our assumptions and various other control-theoretic considerations. Appendix E also contains the
proofs of various other supporting results, mainly on the characterization of optimal policies and
their informativity. It also shows that random (continuous) initializations are informative with prob-
ability one. Finally, Appendix F provides further details for the various counterexamples presented
in Section 3.

Part IT turns to the proof of our main result, Theorem 2, as well as its more qualitative statement, The-
orem 1. The high level proofs are given in Appendix G, with the following appendices establishing
the main constituent results. Specifically, Appendix H establishes the proofs for the DCL framework
and gradient descent for general objective functions. Appendix I substantiates the framework, and
exhibits a DCL for our regularized loss for the OE problem, using a convex reformulation due to
Scherer [1995]. Appendix J then establishes that informativity translates into bounds on the norm of
the solutions to Lyapunov equations involving the closed loop matrix A k. This is one of our most
technically innovative arguments. Finally, Appendix K upper bounds the norms of various first- and
second-order derivatives, via somewhat standard arguments.

A.2 Notation

We let lower case variables in script font (x,y, z) denote abstract parameters for optimization;
standard vectors (x,y,z) are reserved for random variables and/or dynamical quantities. Matrices
are denoted in bold, e.g X, Y, Z. For vectors, ||x|| denotes the Euclidean norm, ||X|| denotes the
matrix operator norm and || X||r, the Frobenius norm.

We let S"~! denote the unit sphere in R”. We denote the set of symmetric n x n matrices as S™; the
set of nonstrictly positive semidefinite (PSD) matrices as S'!, strictly positive definite (PD) matrices
as ST, and invertible matrices as GIL(n). Given X, X, € S”, we let X; < X denote nonstrict
PSD inequality, with X; < X, denoting strict inequality. Given a square matrix A € R"*",
exp(A) denotes the matrix exponential. For A with real eigenvalues, A\;(A),i = 1,...,n denotes
its eigenvalues in descending order, with Apax(A) = A\ (A) and Apin(A) = A, (A); when A has
complex eigenvalues, \;(A) are arranged in an arbitrary order. For general rectangular matrices
A € R™*" ¢;(A),i = 1,...,n denotes its singular values in descending order. We use I,, to
denote the identity matrix with dimension n X n, and omit n when the dimension is clear from
context.

We use parentheses to denote parameter concatenation: e.g. X = (X, Xy, X3) € RMXm x
Rnr2xm2 x RsX™ms for X, € R™*™i and we define Euclidean norms of concatenation in the

natural way (e.g. [|X||¢, = v/, [|X;[| for the previous example X = (X1, X2, X3)).

A.3 Further Notational Review

In this section, we review some of the key notation used throughout.

System Variables | Definition

x(t) system state, dimension n

y(t) system observation, dimension m
z(t) system output, dimension p

w(t) process noise, dimension n

v(t) observation noise, dimension m
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System Parameters

Definition

A system state transition matrix, X(t) = Ax(t) + w(t)
C system observation matrix, z(t) = Cx(t) + e(t)

G system output matrix, z(t) = Gx(t)

W, process noise covariance, w(t) ~ N (0, W7)

W, output noise covariance, v(t) ~ N (0, W)

Nominal System Quantitites

Definition

steady-state system covariance

Tty ((1, 1)-block of any X, see below)
P, Solution to Riccati equation (Eq. (2.5))
Amin (P* )
T (strictly positive due to Lemma 3.3)
L, Optimal Kalman Gain (Eq. (2.9))
C Upper bound on relevant problem parameters, Eq. (3.3)
sys

max { | A, |CIL, |G|, [Wall, W3 I, W], [B11sysl, 02}

Policy Parameters

Definition

K = (A, Bk, Ck)

parametrization of policy
GX(t) = Akx(t) + Bry(t), (1) = CkX(t)

cannonical realization of optimal policy

Ky K,=(A-L,C, L,, G)
Loe(K) output estimation loss (Eq. (1.3))
Sims (K) Similarity transform
S (AK,BK7CK) = (SAKS_l,SBK,CKS_l).
Ak closed-loop system matrix (Eq. (2.1))
Kk steady state covariance (Eq. (2.2))
Wk closed-loop noise matrix (Eq. (2.2))

211 5ysy 212,K, 222K

block-parition of Xk (Eq. (2.3))
(note 311 ¢ys does not depend on K.)

Y typical variable name for matrix X € S7"
31, 212, 222 block-parition of arbitrary 3 (Eq. (2.3))
Policy Classes Definition
K class of all stabilizing policies
stab (Kstap := {K € Kstap : Acik is Hurwitz})
K class of all controllable policies
errd (’Cctrb = {K = ’Cstab : 222,K > 0} )
class of all informative policies
Kinto (Kingo := {K € Kstab : I‘ank(zlllK) = n} )
(alternately, KCinso := {K € Ketrp : rank(Zx = n})
Kops class of all optimal policies

(similarity transforms of K, )

Informativity & Reconditioning

Definition

Informativity Matrix

Zx (Zk = B2k 55, T, )
K Informativity Regularizer,
Rinto(K) (= tr[ZEl] if K € Kinto, 00 otherwise)
LA(K) Regularized Loss
? (LA(K) = Loe(K) + A - Rinso(K))
Reconditioning matrix, Eq. (3.2)
recond(K)

recond(K) := Simg(Ak, Bk, Ck), where S = 22_21(2
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DCL Notation | Definition
R extended reals, R U {oo}
function in question for DCL, argument
! takes argument & € R?
dom(f) given f : R - R {z : f(z) # o}
16 )
K typical notation for X C R?
E*(K) functions k-times differentiable on open set containing K
convex function in DCL
Fevr takes in argument z € R%:
lifting function in DCL
free takes in argument (x, £) € R? x R
) Reparametrization R9+9¢ — R4
(P, fevx, fr£1) | triple defining a DCL (Definition 4.1)
Qper, weak-PL constant for DCL (Theorem 3)

B Additional Algorithmic Details

B.1 Backtracking

In general, the smoothness constants may be difficult to compute in a model free fashion. We show
that simple modification of our algorithm based on backtracking line search also inherits provable
convergence guarantees. To this end, let Sy be finite set of step sizes (to ensure the algorithm is
always well defined, we assume that Sy contains 0.) It is common practice to choosen Spy to
contain geometrically decreasing sizes (see,e.g. Wright et al. [1999, Chapter 3]). To choose the step
sizes 7, we search over Sy to find the step which minimizes the objective subject to the constraint
that 325 k remains well-conditioned, i.e.

Ker1 = K, — 15 Vs, where V, = VL,\(RS) and (B.1)
3 -
Ns € arg min {ﬁ)\(K) : %In <X 3ok X -1,, where K:=K,; — nVS} . (B.2)
NESbkt 2

Note that since 0 € Sy and K = RS has ¥, k = I,,, the backtracking condition is at the very least
met with 1y = 0. The following modifies Theorem 2, and is proven in Appendix G.4.

Theorem 2a. Fix A > 0, Ky € Kinso. There are terms C1,Co > 1, which are at most polynomial in
n,m, Csyss A, \™1 and L (Ko) such, if Spit contains a step size > 0 satisfying stepsize n < é
then the iterates produced by Algorithm 2 satisfy

®w | =

Loe(Ks) — mKinﬁoE(K) < La(Kg) — mKinﬂA(K) < % =, Vs>1.

Algorithm 2 IR-PG with backtracking
1: Imput: Initial Kg € KCiys,, Step size > 0, regularization parameter A > 0
s Define Ly(K):= Log(-) + Atr[Z ']
2: for each iteration s = 0,1,2,... do
3 Recondition K, = recond(K,), where recond(-) is defined in Eq. (3.2).
4: Compute V; = VL,\(RS).
5 Update K, + Rs — ns Vs, where 7, is the backtracking step from Eq. (B.2).

B.2 Oracle Complexity

At each iteration, one can compute the derivative of £ using one call to oracey,) (Which evaluates
Loe(Ks) and k), and one call to oracgrad, Which computes the gradients of these quantities. This
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is true because Vtr[Z, 1] admits a closed form in terms of 3 and its gradient. The balancing step
also requires only evaluation 3, and can use an evaluation query called for the gradient. Thus,
gradient descent variant (Algorithm 1) calls one evaluation and one gradient oracle per iteration.
With backtracking (Algorithm 2), the backtracking step requires an evaluation query for all |Spyt|

filters of the form K, — V. In total, therefore, each iteration uses 1 call to oracgrad, and [Spit| + 2
calls to oraceya-

C Further Details on Evaluation Oracle

Given that our primary focus is on understanding the landscape properties of the OE problem, we
leave the precise details of finite sample considerations to future work. In this section, we pro-
vide brief remarks on how one might approximate the cost and gradients from finitely-many, finite-
horizon samples. Subsequently, we describe how to implement cost and gradient evaluations without
direct access to the state covariance matrix 3k assumed in the body of the work.

C.1 Finite-sample considerations

Gradient descent with inexact gradients. In the finite-sample regime, one uses statistical ap-
proximations to the gradients and, in the case where the stepsize is determined by line search, func-
tion evaluations. A straightforward modification of our generic analysis of gradient descent under
weak-PL, Proposition G.2, can establish robustness to these inexact queries. Robustness of gradient
descent to error is well-known in the literature, even in generic problem settings (see Scaman and
Malherbe [2020]; this is also related to the stability properties established in Hardt et al. [2016]).

Time discretization. Using digital controllers, one must implement the filter in discrete time.
Given a discretization incremement O, the (Euler) discretized filter dynamics for filter K =
(AK7 BK7 CK) is

Zk:s = CkXis,  Xit1s = (In + 0AK)Xk:s + Bry(k8), %05 = 0. (C.1)

Finite-horizon, finite-sample losses. Given independent trials indexed by ¢ = 1,2,..., N,and T
such that H = T/ is integral, we set

N
. 1 ; N?
Loz (K) := 5 > 129 (H8) — 2 |
i=1
. . T
1 L [xO @S] [xO(HS)
Y=+ 2 (i) )

Using stability of the filter and nominal system and well-known properties of the Euler discretiza-
tion,

|E[Log(K)] — Log(K)| = + O (5 n e,g(m))
> (C.2)
IE[EK] — =k = O (5 " e—sz(st)) 7

which can be made arbitrarily close to being unbiased as 6 — 0 and 6H — oo. Here, the term
O () comes from a standard error analysis of the Euler discretization (c.f. e.g Iserles [2008, Theo-
rem 1.1]), and the exponentially decaying term e ~*(®") from standard mixing time arguments Yu
[1994]. Above, we surpress various problem dependent constants, including terms polynominal in
dimension. By standard concentration inequalities (e.g. Tropp [2015]), we can obtain finite-sample
concentration with high probability:

[oe (K) — Lox(K)| = O (54 ¢~ 1+ & (jﬁ)
|E[Zk] — =] = O (5 + e—Q(ZSH)) Lo (\;N) -

(C.3)
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In particular, for & sufficiently small and 8.V sufficiently large, invertibility of 3os k (i.e. K € Kcerp)
implies that 2227}( is invertible with high probability. We may then define:
Rinco(K) i= tr(Z12 k(a2 k)~ By ),
which yields the estimated regularized loss
LA(K) := Log(K) 4+ X - Rineo(K).

Note that, since K passes nonlinearly into ﬁinfo(K) and £ A(K), these losses are in general biased
estimates of Rinso(K) and £ (K). Invoking Eq. (C.3), together with some standard matrix (and
matrix-inverse) perturbation arguments,

1L5(K) — LA(K)|
= [Lox(K) = E[Log(K)] + A+ (t1(B12,k(B22.k) " Bak) — tr(S12 kB0« S12k)) |

<0 (5 T e—Q(BH)) +0 (\/1]V> + (lower order terms).

Cost evaluations. In light of the above discussion, £ (K) can be used to evaluate £ (K) provided
the step size § is sufficiently small, horizon H sufficiently large, and sample size N sufficiently
large. This minimics the findings of Fazel et al. [2018], Mohammadi et al. [2021], Malik et al.
[2019] in various related settings.

Gradient evaluations. To estimate gradients of the L), two strategies are possible. One can use
the zeroth-order gradient estimator [Flaxman et al., 2005], where one estimates the gradient by
evaluating

M

A 1 1, N

VLA (K) = i E N(r)c’\(K + ruHuW),
Jj=1

where UW) = (Ufg), Ug)7 U g)) are i.i.d. parameter perturbations from a suitable, zero-mean dis-
tribution parameters (e.g. uniform on perturbation on the unit-Frobenius ball (|[U|Z2 + |Ug||Z +
|[Ucl|lZ = 1)), r a user-defined smoothing parameter that scales the perturbation, and ﬁ a nor-
malization constant. As in previous work, (Fazel et al. [2018], Malik et al. [2019], Mohammadi
et al. [2021]), one can argue that this yields an estimator of the gradient with polynomial sample
complexity. As in prior work, r must be chosen sufficiently small so that the perturbations do not
render A unstable.

Because we consider a filtering problem, rather than a control problem, it is possible to directly com-
pute the gradients of £ (K) by differentiating through the discretizated filter dynamics in Eq. (C.1)

(provided 222’[( > 0, so that the loss is defined and differentiable). Similar concentration techniques
can be deployed to establish the accuracy of this estimator as well.

C.2 Implementation without access to system states

We now turn to the implementation of our algorithm without direct access to system states. For
simplicity, this example considers continuous-time, infinite-horizon, and infinite-sample cost eval-
uations (and gradients). In essence, we provide a reduction to the oracle described in the main
text.

Subsampled covariance matrix. In the subsampling oracle, we have access to evaluations and
gradients of the following subsampled covariance matrix:

ygt+t1g ygt—ktl; T
) 1 T |y(t+ta)| |y(t+ta
Sk = lim —E / .. . dt| . € READnx(kt)n (C.4)
0 ly(t+tr)| |y(t+tk)
xk(t) Xk (t)
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Here, t = (t1,t2,...,t;) is a vector of increasing sampling times 0 = t; < t3 < -+ < tg.
Introduce, for the sake of analysis, the observability matrix

Cexp(t1A)

V, = Cexp(taA)

Cexp(trA)

where exp(+) denotes the matrix exponential. We make the following assumption.

Assumption C.1. We assume that t is selected so that the observability matrix is full-rank:
rank(Vy) = n.

Importantly, Assumption C.1 holds generically when (A, C) is observable, as per Assumption 2.2.
The following lemma makes this precise:

Lemma C.1. Suppose (A, C) is observable, and that k > n. Then, the {t € R¥ : rank(Vy) < n}
has Lebesgue measure zero. In particular, if t are drawn from a distribution with density with respect

to the Lebesgue measure (e.g., drawn k points uniformly [0, 1], and order them in increasing order),
then Plrank(Vy) = n] = 1.

‘We establish the lemma at the end of the section.

Subsampled losses. One can compute that X ¢ can be partitioned in the following form

< Sktil Bkt * Vi¥k 12
Skt = a1 o | = ’ C.5
Kt |:E;<r,t,12 EK,MJ [EI,QVZ Yk |’ €5
where * is immaterial to the following discussion. We define
ZK = 2K,t,122|271t’222—|(r,t’12 € Sik. (C.6)
We define the subsample regularized loss as follows:
l:)\,sub(K) - [/DE(K) + )\Rsub(K)y Rsub(K) = Z /\i(ZK)_l- (C7)
i=1

Notice that R sy (K) is reminiscent of the regularizer Ripns, (K) uses the state covariance oracle. It
is clear that Rey,(K), and thus £ su(K) can be evaluated for any K. These quantities to do need
knowledge of V to be evaluated.

Differentiability of R, (K). We now show that Ry (K) is €2 for K € Kingo. Introduce the
matrix P to be any orthogonal projection matrix from the space spanned by the image of V¢ (which
is rank n) to R™. Define V and Zg by

V =PVy, Zx=PLP' .

Since the row (and hence column) space of the symmetric matrix Z is equal to the column space
of Vi, which is precisely the row space of P, we see that

Mi(Zk) = Ni(Zk), i € [n],
so that
Rew(K) = tr[Z1]. (C.8)
From Eq. (C.5), we can compute that Z is related to Z via conjugation by V:
Zx = VZxV',
so that
Reuw(K) = tr[(VZcV )71,

showing that Ry (K) is 42, Thus, the subsampled oracle model affords both evaluations and
derivatives of £ su(K). Note that Ry (K) can be evaluated without knowledge of P and Vy by
using the original definition in Eq. (C.7).
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Remark C.1. A similar approach to the computation above can be used to derive a closed-form
expression for the derivative of Ry, (K) in terms of the derivatives of only Xk t, and not in terms
of the observation matrix V (which we do not have access to in this model).

In view of the identity Reu, (K) = tr[zg !] established above, we see that optimizing

L:A’Sub(K) = EDE(K) + tr[z;l] (Cg)

is equivalent to optimizing the state-covariance oracle loss £ (K) on the following similarity-
transformed realization of the dynamics

4%(t) = AX() + %(0), y() = GR() +v(0), =(t) = GR(1), (0)=0,
w(t) N0, W), v(t) 'K N(0, W),
where A = VAV~ C = CV-!, G = GV, and W; = VW, (it follows from Assump-

tion C.1 and the definition of the projection P that Vis nonsingular). Indeed, Log(K) is invariant

under similarity transformation of the true system, and if 3k is the associated covariance matrix
(partitioned in the standard way), then we can verify

7 s s-1 §7T
Zk = Tk 125g 55K 10

(C.10)

Therefore, via this similarity-transformation, optimizing £ su(K) on the dynamics Eq. (1.1) inher-
its all the guarantees of optimizing the loss £ (K) on the tilde-dynamics in Eq. (C.10).

We complete the section by providing the proof of Lemma C.1.

Proof of Lemma C.1. The proof is divided into two steps. First, we exhibit a t for which
rank(Vy¢) = n; then we use an analytic continution argument to establish that, if such a t exists,
then rank(Vy) = n Lebesgue almost everywhere.

Existence of a t for which rank(Vy) = n.  Without loss of generality, we may assume that
k =n. Fix d > 0, and consider ¢; = (¢ — 1)5. Expanding the matrix exponential, we have

L,
exp(dA)
Vy:=C- exp(20A)

exp((n — 1)5A)

ITYL 0 C 0
82 ot SA)
L, 5L, phe o Gole CA CY,, B8
= |L, 28I, S CA? |+| CY,., @A)
n—1)5)* n—1)8)""! CA"! (n—1)5A)
L, (n—1sL, =0y, eobiep [ 20 (o, Ak
O,
7’7,,,5 Rn,é

We show below that 7, 5 is invertible, so it suffices to show that for some & > 0,
7:1_,51Vt =0, + 7;;‘,—,172”,5 has rank n.

Since (A, C) is observable , rank(O) = n (c.f. Zhou et al. [1996, Theorem 3.3]). Therefore, since
the set of full-rank matrices is an open set, it suffices to show that lims_,¢ 7:,517%,5 = 0. Since

[R5l = O (8™) as & — 0, it suffices to show that || T, || = O (51 To this end, we factor

In 0 9 o 0 I, O 0o ... 0
I7n IYVL ?IWL . WI’,” 0 I 0 0
2 n— m Tt
Tns = I, 21, %Im . ﬁ]:m 0 0 5L, ... 0
n—1)2 n_1)n—1 n—1
L, (n—-1L, @301, . Cbiogp L0 0 0 S
DA Dn,s
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Using row elimination, it is easy to observe that I,, is invertible for any > 0. In addition, D, s is
invertible, with | D, § || = 571 Note that the invertibility of U, and D,, 5 establish the invertibility
of 7}75, as promised. To conclude, we observe that since U, does not depend on 9J,

1 _ o
— U]t =0 (577

[ 2 Ry o

Proof for Lebesgue-almost-every t. Having established the result for a fixed t, define the function
f(t) := det(V{ Vi), with domain t € R¥> Then f(t) is defined and analytic on all of R*.
Moreover, f(t) = 0 if and only if rank(Vy) # n. Therefore, the previous part of the lemma
establishes that there exists at least some t € R¥ for which f(t) # 0. The lemma is now a direct
consequence of the identity theorem for analytic functions (Fact D.1). O

Part I
General Control-Theoretic Proofs

D Discussion of Controllability Assumption 2.4

D.1 Remarks of Assumption 2.4
Lemma D.1. The following conditions are equivalent to Assumption 2.4:

(a) There exists at least one K, € Kopy for which (Ax, , B, ) is controllable.
(b) (A —L,C,L,) is controllable.
(¢) (A,L,) is controllable.

Proof. Point (a) follows since controllability is invariant under similarity transform; point (b) fol-
lows by taking (A, , Bk, ) to be the the canonical realization of the optimal filter; point (c) follows

since maps of the form (A, B) — (A + KB, B) preserve controllability. O
Proposition D.2. Fixany n,m > 1, W, € S |, Wy € ST, and suppose that (A, C) are drawn

from a distribution with density with respect to the Lebesgue measure, such that with probability 1,
A is Hurwitz stable. Then P[Assumption 2.4 holds for (A, C, W1, W3)] = 1.

Proposition D.2 is proven in Appendix D.4.

D.2 A strictly smaller problem set

Assumption 2.4 states that any optimal (Ak, Bx) must be controllable, which implies that 39 k =
0, cf. Appendix E.1. This in turn ensures that Z, = 2127K22_21,K21FZ,K and the regularizer tr[Z:l]
are well-defined at optimality. Not all OE instances satisfy this property, as the following example
demonstrates:

Example D.1. Consider the OE problem instance given by

48 —36

—-36 48

A:[_Ol _02], c-[ 1, le{

| Wt

It is readily verified that this instance satisfies Assumptions 2.1 to 2.3. The optimal policy (up to
similarity transformations) is given by

-5 —4 4 16 —12
AK*{O —2}’ BK*L*M’ P*{—u 12}

>Observe that, while we only select strictly increasing t, this lemma does not need such a restriction.
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Recall that the optimal policy is independent of G, the value of which is irrelevant for this example.
Straightforward calculations reveal that

24 —-12 8 0
4 =20 —-12 12 0 O

[BK* AK*BK*] = |:0 0 :| ) EK* = 8 0 8 0f:
0 0 0 0

confirming that (A, , Bk, ) is not controllable and X, is rank-deficient.

D.3 Implications for the convex reformulation

In this subsection, we discuss the implications of Assumption 2.4 and Example D.1 for the convex
reformulation of OE developed in Scherer et al. [1997]. In particular, it is natural to wonder whether
the breakdown of the change of variables at the optimal policy for problems such Example D.1 pose a
problem for the methods of Scherer et al. [1997]. Fortunately, they do not. The LMI formulations of
Scherer et al. [1997] circumvent these degeneracies in the landscape by employing strict inequalities.
As we detail below, one can always perturb the decision variables to satisfy these strict inequalities,
even at points where X3 k is rank deficient, resulting in arbitrarily tight upper bounds on the true
cost Log(K).

Specifically, given the decision variables S, X, Y, K, L, M, and defining

. _[AY+BM A } . l w2 o | - oY
A = ,B: Le 121, C=[GY -M G], X=
K AX +LC le/ LW, / I
the approach of Scherer et al. [1997] proposes solving the following semidefinite program (SDP)
min  tr(S) (D.1)
S C A+AT B

which minimizes a convex upper bound on the OE cost. At optimality, to achieve tr(S) = Loe(Ky),
the above linear matrix inequalities (LMIs) must be tight. Moreover, X can then be interpreted
as Egl, subject to a specific congruence transformation, cf. Scherer et al. [1997]. However, for
problem instances such as Example D.1, Y, is rank deficient and thus 3 ! does not exist. The
convex reformulation circumvents this problem by through the use of strict LMIs at optimality, the
above inequalities remain strict, and tr(S) > Loe(Ky). In fact, for Example D.1, if one approximates
the strict LMIs F > 0, for generic F, with non-strict F > <I for e = 108, then Eq. (D.1) returns a
solution satisfying tr(S) — Loe(K,) ~ 8 x 1076.

D.4 Proof of Proposition D.2

Our argument relies on the identity theorem for real-analytic functions. ©

Fact D.1. Let U/ be an open, connected subset of R* and F : U/ — R be an analytic function which
is not identically zero. Then the set {x € U : f(x) = 0} has Lebesgue measure zero.

Give W, € S, W, € ST, Let Hur,, := {A € R"*™ : \;(A) <0, Vi € [n]} denote the set of
Hurwitz matrices. We consider (A, C) € Upsm := Hur, X R™*™ U, is open and connected as a
consequence of the following claim, due to Duan and Patton [1998]:

Claim D.3. The set of Hurwitz matrices Hur,, := {A : \;(A) < 0} is a connected, open subset of
RTLX"L‘

We define our candidate function f,s, as follows. Given (A, C) € Upagm, let

n—1
fasm(A, C) = det(d>  A'L,L,A")., (D.2)
=0
*For a proof, see e.g. https://math.stackexchange.com/questions/1322858/

zeros—of—-analytic-function-of-several-real-variables.
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where L, solves is the associated optimal gain for (A, C, W1, W) (this exists for all Hurwitz A).
From Zhou et al. [1996, Theorem 3.3]), (A, L,) is controllable if and only if rank[L, | AL, |
A%L, | ... A" 'L,] = n, which holds if and only if fsm (A, C) # 0. Hence, by Lemma D.1, we
conclude

Claim D4. (A, C) € Hur,, x R™*" satisfies Assumption 2.4 if and only if fasm (A, C) # 0, which
holds if and only if (A, L,) is controllable.

To conclude, we must argue that (1) fasm is analytic on Uysy,, and (2) fasm i not identically zero on
Uasm; 1.e. there exists some (A, C) € Upnsm for which (A, L,) .

Analyticity of f,5,,. For the first point, we have the following claim.

Claim D.5. Fix matrices W1 = 0, Wy = 0. Then, the mapping Fp : (A, C) — P, to the solution
P, to the Riccati equation below, as well as the map Fy, : (A, C) — L, given below, are both real
analytic on Upgm,.

AP, +P,AT - P,C"W,!'CP, + W, =0, L, =P,C"W; (D.3)

As a consequence, fasm is real analytic on Uygpy

Proof. Since W1, Wy, are fixed, the map Fy : (P,,C) — L, is polynomial, and thus analytic.
Hence, F;, = Fj o Fp is analytic whenever Fp is. Similarly, fasm is analytic whenever F7, is
analytic, and hence whenever F'p is analytic.

To see that Flp is analytic, let us use the implicit function. Fp(A, C) is define by the zero of the
equation

G(A,C,P)=AP +PA" —PC'"W,'CP + W,.

The total derivative of G is then
dG(A,C,P)
=dAP +PdA" - Pd(C"W,'CP) + W, + (A - C'W,'CP)dP +dP(A - C'"W,'CP)"
=dAP +PdAT —Pd(C"W,'CP)+ W, + (A - L,C)dP +dP(A - L,C)".
We see that a solution to dG(A, C,P) = 0 must have that dP satisfies the following Lyapunov
equation for Y := dAP + PdAT — Pd(CTW,'CP) + W:

AdP + AdP +Y = 0. (D.4)
Since the Since A := (A — L,C) is Hurwitz for a solution L, to Eq. (D.3), the solution dP to
Eq. (D.4) is unique. Hence, dG(A, C, P) satisfies the conditions of the implicit function theorem.
In addition, G is analytic. This means that, in a neighborhood around any (A, C) € Hur, x R™*",

there is an analytic function corresponding to (A, C) — P,. By definition, this function coincides
with F'p on that neighborhood, meaning F'p is also analytic. O

fasm is not identically zero. To conclude, it suffices to show the existence of some (A, C) € Uasm
for which f,sn doesn’t vanish; i.e., some (A, C) € Upsm for which (A, L,) is controllable. The
following lemma is useful in our construction.

Lemma D.6. Fix W, € ST, W, € ST, (A,C) € Uasm, and let P, be the solution to the
Lyapunov equation with (A, %C, Wi, Wy). Then, limy_, o Py = Py oo, where P, o solves

AP+PAT + W, =0.

Proof. The sequence P, j, are the solution to the Ricatti equation 7y (P) = 0, where
T:(P) := AP + PAT - PC/W,'CP + W,

Since A is stable, P, ; also the unique solution P to the Lyapunov equation Te (P) = 0 constructed
by fixing P = P, j, in the third term in 75 (P):

~ —~ — 1
E(P) = AP + PAT + Wl,k» Wl,k = (Wl - kP*ka;—WQICP*’k> .
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Since lek =< W, we have that P, ;, < P, . In addition, P, ; > 0 for all k. Thus, P, j lie
in the compact set P := {P € S" : 0 = P » P*,Oo}, and hence it suffices to show that for any

convergent subsequence (P, ,) which converges to a limit P eP, P= P, . To show show this,
observe T (-) = Too(+) uniformly on the compact set P, and since T is continuous, it follows that

0= lim Tp,(Peg,) = lim Too(Pyi,) = Tao(P).
1—> 00 11— 00

Since 7o (+) is a Lyapunov equation with A stable, the solution to 7o () = 0 is unique, and hence
P =P, , as needed. O

Claim D.7. Fix W € S, Wy € ST, Then, there exists an (A, C) € Uasm, for which (A, L,)
is controllable, where Ly is as in Eq. (D.3). In particular, for this (A, C), fasm(A, C) # 0.

Proof. By a change of basis of R"™ and R, we may assume without loss of generality that W; =
I, and Wy = I,,. Let A = Diag(1,2,...,n), and let C; := [1 0, ... On]T, and set
C, = %Cl. It P, i, (resp. L, ;) solve the Ricatti equation (resp. be the optimal gain) matrix for
(A, Cy). We show that for all k sufficiently large, (A, L, 1) is controllable (indeed, this establishes
existence.)

It suffices to show that, for all k sufficiently large, (A, fl*, 1) is controllable where f%k = kLy k.
From Eq. (D.3), the definition of Cy, and assumption Wy =1,,,,

L, = kL, = kP, ;W;'C] =P, ,C]
Since the set of controllable matrices is an open set, and since limy 0o Pr . = Py oo by
Lemma D.6, we see that (A, L, 1) is controllable for all k sufficiently large as long (A, P, . C)
is controllable. Since A is diagonal, one can verify that P, ., = —%A‘l. In particular,
P,C{ = [-3A7'1 0, ... 0,]; hence the first column of P, .oC{ does not lie in any

A-invariant subspace, so (A, P, ..C{) = (A, fl*, 1) is controllable for all k large. As noted above,
this implies (A, L, ;) is controllable, so that by Claim D.4, fasm (A, Ci) # 0. O

Conclusion. Hence, we have established that f,,, is analytic, but not identically zero, on the open
and commented domain Uy, . The proof follows. O

E Control Proofs

E.1 Controllability, stability, and nonsingularity of internal-state covariance

In Section 2, we restricted our attention to policies K € Kgiap, that is, where the filter transition
matrix Ak was Hurwitz stable. This is equivalent to stability of A k, as shown by the following
lemma.

Lemma E.1. Ay is stable if and only if Aq k is stable, and 3 is given by the solution of the
Lyapunov equation Eq. (2.2).

Proof. The equivalence of the stability of Ak and A k comes from the fact that, due to the block-
triangular form of A k with blocks A and Ak, the eigenvalues of A k are just the union of those
of Ak and those of A. All eigenvalues of A have negative real part by Assumption 2.1, so the
non-negative real part of the eigenvalue of A k are equal to those of Ak. Thus, stability of Ak
and A k are equivalent. That X is given by the solution of the Lyapunov equation is standard, cf.
[Zhou et al., 1996, Theorem 3.18]. O

Next, we show the equivalence between g k > 0 and controllability of (Ak,Bk). We define
controllability for (possibly unstable) A as follows, cf., e.g., [Zhou et al., 1996, Theorem 3.1].
Definition E.1. The pair (A, Bk) is controllable if and only if there exists some ¢ > 0 such that
t
QﬁﬂntyK = / exp(sA)BkBy exp(sA T )ds
0

is strictly positive definite.
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Lemma E.2. Suppose that Assumptions 2.1 and 2.3 hold. Then the following statements are equiv-
alent.

(a) The limiting covariance 393 , defined below, exists, and has X2 x = 0,

Yook = tlgglo]E (XK (t)%k (t) "] € S

(b) A is stable, and (Ak, Bk) is controllable.
(c) Ak is stable and 395 k > 0.

Moreover, these equivalent conditions imply the limiting covariance X is well-defined and given
by the solution to Eq. (2.2).

Proof. The “moreover” statement is a consequence of Lemma E.1. We establish the equivalences
of (a), (b), and (c).

(a) implies (b). We compute that
t
YooKk = flim 2[22 k> Wwhich is the bottom-diagonal block of EE] = / exp(sAc,k) Wl k exp(sAcl,K)Tds.
’ t— 00 ’ 0

First, we show that (Ak, Bk) are controllable. Indeed, since ¥os k > 0 and lim;_, 2[2% K exists

and is finite, we have that for this 7, 2[272] k > 0. Thus by Lemma J.10, it follows that for some finite

T,
/OT exp(sAk)BkW2By exp(sAk) ' ds = 0. (E.1)
Since W5 > 0 by Assumption 2.3, it therefore follows that
QE)],M = /T exp(sAk)BkBy exp(sAk) " ds = 0.

0

Next, we show stability. Since exp(sA k)We k exp(sAak)’ = 0, existence of the limiting
322 k implies that for any vector of the form v = (0,vo) € R2?" for v, € R™,

o)
/ v’ exp(sAcl’K)Wil{iHst < 0.
0

Note the (2, 2)-bock of exp(sAc k) is exp(sAk) (see Lemma J.3), and that, since W g is block-
diagonal,

Wy 0 0 0
Wak = [ 0 BKWQBI} = [o BKWQBﬂ

Thus, considering a vector v of the form (0, vo), for vy € R”,

t
lim v; eXp(SAK)BKWQB—Kr exp(sAk)vads < oo,

t—o0 0

which shows that the following limiting integral is well defined
Iy exp(sAk)BkW:BY exp(sAk)T. On the other hand, by Eq. (E.1), we must have that
the following limiting integral is well-defined and strictly positive definite

/ exp(sAK)BKWQBI exp(sAk)ds > 0.
0

Thus, Lemma J.6 implies that Ak is Hurwitz stable. This (together with stability of A) implies
Hurwitz stability of A k (see below), and Lemma J.2 therefore guarantees that X is the solution
of the appropriate Lyapunov equation, given in Eq. (2.2).
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(b) implies (c). From the computation in part (a), one can check that

cont,K*

Yook = lim / exp(sAK)BkW2Bg exp(sAk)ds = Amin(W2) lim gt
t—o0 0 t—o00

Thus, controllability of (Ak, Bk) implies G [t >~ 0 for some finite ¢, which implies 325 k > 0.

cont,

(c) implies (a). From Lemma J.2, stability of Ak implies stability of A , which implies that the
limiting covariance ¥k exists. In particular, the limiting (2,2)-block covariance exists. O

E.2 Characterization of optimal policies

We begin by reviewing some well-known properties of the optimal solution to the OE problem.

Lemma E.3. Under Assumptions 2.1 to 2.3, the unique (up to similarity transformations) optimal
solution to the OF problem is given by the policy

A, =A-P,C'"W,;'C, Bk, =P,C'W;' Cg =G, (E.2)

where P, = 0 is the solution to the algebraic Riccati equation Eq. (2.5).

Proof. A proof of this classical result can be found, e.g, in [Doyle et al., 1989, §IV.D]. We note
that strict positive definiteness of P, is implied by the controllability of (A, W), cf. [Doyle et al.,
1989, §11.B]. Controllability of (A, W) follows from W7 > 0, cf. Assumption 2.3. O

Fact E.1. The optimal solution to the OE problem is independent of G, and optimal for all values
of G.

Proof. The optimal policy given in Eq. (E.2) and the Riccati equation Eq. (2.5) are both independent
of G. Moreover, there are no restrictions placed on G (beyond the requirement that the number of
columns matches the dimension of the state of the true system). O

E.3 Informativity of optimal policies

We begin with the following useful fact.

Fact E.2. Let K, € Ky denote the realization of the optimal policy given in Eq. (E.2), i.e. with
Ck, = G. Then, under Assumptions 2.1to 2.3, Z13k, = Xaa K, -

Proof. All optimal policies K € Kope must satisty

OLoe(K)
0Ck
In particular, for the realization of the optimal policy in Eq. (E.2) with Ck, = G, this implies that

G(XZa2k, — X12,k,) = 0. By Fact E.1, this must hold for all G, which implies that Xa5 k, =
2K, - O]

= 20Kk — 2GT1ok = 0. (E.3)

Lemma 3.1. Under Assumptions 2.1 to 2.4, Kopt C Kingto C Ketrn, and Kingo is an open set.

Proof. We prove each part in sequence.

Inclusion Koy C Kinso. Let K, € Kqpe denote the realization of the optimal policy given in
Eq. (E.2). By Assumption 2.4, all optimal policies are controllable, and so 322 k, > 0. By Fact E.2,
we have 2ok, = XYook, > 0, which implies that 315 i, is full-rank. The rank of 35k is
invariant under similarity transformations of the policy; hence, 31 k is full-rank for all K € Kope.

Inclusion Kinro C Kegrpe Recall that Kepp := {K € Kgrap : a2,k > 0}. Hence, it suffices to
show that if K € Ksyap has rank (312 k) = n, then Xgg > 0. This follows since Xk > 0.
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Openness. To see that Cs,¢, is open, we observe that KCgap, is open (this follows from Claim D.3),
and that K — 3 is continuous on g4 (this is standard, and follows, for example, from arguments
inAppendix E.7), Hence, the map f : K — det(312,«) is continuous on Ksiap, and thus Kineo -
{K € Kstap @ det(Baz k) # 0}, being the inverse-image of the open set R \ {0} under f, is
open. O

E.4 Maximality of Z,

Lemma 3.2 (Existence of maximal Zg). Under Assumptions 2.1 to 2.3, there exists a unique Z, > (
such that 7, = Zg if and only if K € Kope, and Z, = Zy for all K € Keerp \ Kopt. Consequently,
Kopt € arg ming i, . Rinto(K).

ctrb

Proof. We restrict our attention to K € K.y, oOtherwise Xoo  is not invertible and Zx =
12k D5y kB1o k is not well-defined. Recall that Zg is independent of the realization of K, i.e.
Z is invariant under similarity transformations of K.

First, observe that the OE cost can be written as

Lee(K) =tr |[G —Ck] =k [G chﬂ = tr[GE1] 4ysG '] —2t1[GE 12 K Ci | +tr[Cr X2 K Ci ],

(E4)
where X satisfies the Lyapunov equation in Eq. (2.2). Minimizing Eq. (E.4) w.r.t. Ck (keeping
Ak, Bk fixed) gives

tr[G(Z11 655 — D12k By kSla k)G '] = min Loe((Ak, Bk, Ck)). (E.5)
~ / K
=Zk
Let K, € Kopt, and denote Z, = 2127K*22_217K*21r2’|(*. Then by optimality of K, we have
tr[G(Z1169s — Zk)G ] > t1[G(B116ys — Zx)G '] = tr[G(Z, — Zk)G'] > 0, (E.6)

with equality if and only if K € Koy, due to uniqueness (of the transfer function) of the optimal
policy, cf. Lemma E.3. By Fact E.1, this holds for all G, which implies that Z, — Zx > 0, again
with equality if and only if K € Kop¢. This completes the first part of the proof.

To show that K, minimizes Rineo (K) = tr[Z, 1], we distinguish between two cases: those in which
Z is invertible, and those in which it is not. Consider the former, and assume K is such that Zg
is invertible. Observe that Z, is always invertible: by Assumption 2.4 we have that o5k, > 0,

and by Lemma 3.1 we have that 35 g, is full-rank. Therefore, Z, = Elg’K*E;;K*EIZK* is also
full-rank. We then have the following:

Z, = Ik = Z;' =27 = w[Z '] > tr[Z;] = Rinto(K) > Rinto(Ky), (E.7)

with equality if and only if K € KCop. This implies that K, € Kopy minimizes Ringo(-) over all
K € Kcirp such that Zy is invertible.

Next, we consider the case in which K is such that Zk is not invertible. In this case,
Rinto(K) := 00, and s0 Rinso(K) > Rinso(Ky) holds trivially. This completes the proof that
RinfO(K) Z Rinfo(K*) for 3.11 K c Kctrbo D

E.5 Positivity and characterization of o,

Lemma 3.3. Let P, be the solution to the Riccati equation in Eq. (2.5). Then under Assumptions 2.1
10 2.3, 04 = Amin(P4) is strictly positive. Moreover, P, = 311 g5 — Z,.

Proof. Strict positivity of o, := Apin(P) follows directly from Lemma E.3, which states that
P, > 0.

To show that P, = 311 s — Z,, we will first show that P, = 31 o5 — 222 k, , Where K, denotes
the realization given in Eq. (E.2). Let Xk, be given by the solution to the Lyapunov equation
Aak, Xk, + ZK*A;K* + Wk, =0, asin Eq. (2.2). The (2,2) block of this Lyapunov equation
is given by

Ak, Zook, + Zook, Ay, + Bk, CZiak, + 2127K*CTBI* + Bk, WoBy_ = 0. (E.8)
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Substituting Ak, = A — P,CT W, 'C and Bk, = P,CTW, " into Eq. (E.8) gives
(A-P,.C"W;'C)Snk, + Bk, (A-P,C'W;'C) + P,CTW;'CS 5k, + 2], C'W;'CP,
+P,C"W,'CP, =0. (E.9)

Subtracting the (1,1) block of the Lyapunov equation Eq. (2.2), given by A3 gy + Ell,SySAT +
W, =0, from Eq. (E.9) and collecting terms leads to

A(Zook, — Bi1sys) + (Book, — Diieys)AT + PL,CTW,'C(B1ak, — Bazk,)
+ (212K, — Ba2k,) CTWL!CP, + P,C"W,'CP, - W, =0. (E.10)

Next, from Fact E.2 we have 35k, = 329, for this particular realization of K,, given in
Eq. (E.2). Making this substitution, and adding the Riccati equation Eq. (2.5) to Eq. (E.10) gives

AP, + ook, — Di1ays) + (Py + ook, — Zi199)AT = 0. (E.11)

Clearly, P, 4 322 k, — X11,sys = 0is a valid solution to Eq. (E.11). As A is stable, the solution to
the Lyapunov equation Eq. (E.11) is unique, and hence P, = X1 5,5 — X922 k, . Recall once more
that due to Fact E.2 we have X15 k, = Y22k, , With X3 , being symmetric. Therefore,

-1 T .
222,K* = Z:12,K* = ElQ,K* 2227K*212,K* = Z*a

and so P, = 311 oys — o2k, = B11,sys — Lx. Though we arrived at this conclusion via a specific
realization Eq. (E.2) of the optimal policy K,, both X1 sy and Z, are independent of the realization
of the optimal policy. O

E.6 Information-theoretic interpretation of Zy

Y X(t)| x(t)
2=l B ch(t)] [fc(t) :
Since (x(t),%(t)) are jointly Gaussian with zero mean, (x(t),%(t)) converge in distribution to a
limiting Gaussian distribution

Xoo o 211,Sys 212,K
|:)A(oo:| N(Oa EK)? EK = [EIQ,K 222,K:| .

Recall that

The conditional covariance of X, given X is then given by the formula
. -1
Cov[Xeo | Koo] = X118y — Yok Bgs kB12,K = Bi1sys — Zk-

In other words, Zk describes the reduction in covariance of x, provided by the information in X .

E.7 Random Stable Initializations Are Informative

Lemma E4. Fix Ck, and suppose that the (A, Bk) is chosen from some probability distribution P
with density with respect to the Lebesgue measure on R"*™ x R™"*™ satisfying P[Ak is Hurwitz) =
1. Then, IP[K S ICj_nfo} =1

Proof. Let Hur,, denote the set of Hurwitz matrices in R™ x n. Note that if (Ak,Bk) € Hur,, x
R™™ then K € Kipg, if and only if rank(X¥es k) = n and rank(3q12 k) = n. In fact, since
3k = 0, The Schur complement test implies that K € /Cip¢, if and only if rank (3215 k) = n (as this
also implies rank (395 k) = n). Thus, if f(Ak, Bk) is the mapping from (Ak, Bk) to det(X12 k),
then, given (Ak, Bk) € Hur,, x R"*™ K &€ K¢, if and only if f(Ak,Bk) # 0.

As shown in Claim D.3, the set Hur,, is open and connected, so the I/ := Hur,, x R™*™. Moreover,
f does not identically vanish on ¢/: indeed, for any (Ak, , Bk, ) corresponding to some K, € Kop,
we have rank(X12 k, ) = n by Lemma 3.1, so f(Ak,,Bk,) # 0.

Therefore, to prove our result, it suffices to show that f is an analytic function of (Ak, Bk), and
apply the identity theorem (Fact D.1). In fact, we show f(Ak,Bk) is an rational function. The
following claim is useful.
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Claim E.5. Let F : Hurg, x S** — S2" be the map for which F(A, W) is the solution to the
Lyapunov equation AT +TA+W = 0. Then F is a rational function with no poles on Hura,, x S*™.

Proof. Since this solution to the Lyapunov equation is unique for j& € Hura,,, we see that the map
Ta :T'— AT + T A is invertible, and hence F'(A, W) = ’Tgl(W). It follows that F/(A, W) is a
rational function (notice the entries of 74 are linear in A, and thus the inverse is a rational function

of T4 using the adjugate formula for matrix inverses). It has no polls because 73 is invertible for
A € Hury, O

By composing the rational F'(-,-) in the above claim with the polynomial-function (A, Bk) ~
(A, Wei k), we see that (Ak, Bk) — X is a rational function function on Hur,, x R™"*™_ In
particular, (Ak, Bk) — X is an analytic function. Thus, f(Ak, Bk), being a polynomial in X,
is also rational. This concludes the proof. O

F Details for examples in Section 3

F.1 Details for Example 3.1
That Ky,,q is a suboptimal stationary point follows from [Tang et al., 2021, Theorem 4.2], as OEis

a special case of LQOG. Nonetheless, it is straightforward to verify that Ky,,q is indeed a stationary
point. Specifically, one can readily verify that the controllability Gramian

_ le,sys 0
2—{ 0 0

satisfies the Lyapunov equation

A 0 ][Bugs 0], [Bug. 0][A 0 T+ wi o] _,
0 Ap.g 0 0 0 0| |0 Ay 0 o

and that the observability Gramian

satisfies the Lyapunov equation

A 0 T0110+0110A 0],[GGT o] _,
0 Apa| |0 O 0 0/|0 Apu o o "

It is then straightforward to confirm that

OLoe(Kpa
%{;d) =20,815 + 205,39,
=2x0x0+2x0x0=0,
OLoe(K
ﬁ = 2(01T2211,syscT + 022EIQCT + 02:BpaaW2)
:2(0T X Ell,sysCT-i-O x0T xCT+0x0 x W3) =0,
K
9Loe(Kbaa) _ 2(CpaaZoa — GX12)
0Cpad

=20x0-Gx0)=0.
Moreover, TBy,,q = 0 and Cp,qT~! = 0 for all similarity transformations T. Given that B, and

C,. are nonzero, it is clear that K,q4 is not equivalent to K, under any similarity transformation.
Hence, Ky,,q is suboptimal.
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F.2 The perils of enforcing minimality

A classical result due to Brockett [1976] states that the set of minimal n-th order single input-single
output transfer functions is the disjoint union of n + 1 open sets. Moreover, it is impossible for
a continuous path through parameter space to pass from one of these open sets to another without
entering a region corresponding to a non-minimal transfer function. This implies that if one were to
regularize so as to ensure minimality of the filter at every iteration, the search will remain confined
in the open set in which it is initialized, unable to reach the set containing the optimal filter, unless
there is some mechanism (e.g. sufficiently large step size) by which to “hop” over the boundary of
non-minimality, from one region to another. We now illustrate the possibility of this phenomenon
(of remaining trapped in such a region) on a simple second-order (n = 2) example. We begin by
characterizing the three open sets that partition the space of minimal second-order transfer functions;
cf. [Brockett, 1976, §1I] for derivation.

Fact F.1. Every strictly proper second-order transfer function with no pole-zero cancellations be-
longs to exactly one of the following three open sets, characterized as follows:

1. Both poles are real, and both residues are positive. This set is simply connected.

2. Poles are complex, or if both poles are real, then the residues have opposite signs. This set
is not simply connected.

3. Both poles are real, and both residues are negative. This set is simply connected.

For the purpose of the following example, we shall refer to these sets as regions 1 to 3.

Example F.1. Consider OE instance given by:

—0.2626 —0.2814

3.0940 —1.5716
—1.5716  1.2422

A= {_1'2901 _0'2626], C=[0.5710 —0.5093], G =C,

wi— | | wa

It may be verified by straightforward calculations that the optimal filter K, for this instance belong
to region 1. Let K denote the filter from which policy search is initialized. K; is given by:

-9.863 —20.19

—1.499
Ax, = { b _4_143}, By, = { } Ck, = [11.56 —2.97].

—16.44

Similarly, it may be readily verified that K belong to region 2.
We apply policy search to Example F.1, using four different regularization strategies:

a. No regularization, i.e. gradient descent on Log(K).

b. Regularization for controllability, i.e. gradient descent on Lgg(K) + ARctr(K), where
Retr(K) == || Yetrk — Y;j’KH% and Yy k is the controllability Gramian for (Ak, Bk)
satisfying the Lyapunov equation Ak Y ¢ty k + thmKAI + BKBI =0.

c. Regularization for minimality, i.e. gradient descent on Log(K) + A(Retr(K) + Robs(K)),
where Robs(K) = || Yobsk — Y;bls’KH% and Yops k is the observability Gramian for
(Ak, Ck) satisfying the Lyapunov equation AIYObS,K + Yobs kAk + CICK =0.

d. The proposed algorithm IR-PG.

The results are presented in Fig. 1 below. Observe that while all other methods eventually cross from
region 2 (containing the initial Ky) to region 1 (containing K, ), the method regularized to preserve
minimality at each iteration remains “trapped” in region 2.
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Figure 1: Suboptimality, region of parameter space, and controllability/observability as a function of
iteration for Example F.1 and four different regularization strategies. All searches are initialized at
the same filter in region 2 of parameter space; the optimal filter is located in region 1. A backtracking
line search is used in all instances. (a) with no regularization, the iterate crosses from region 2 to
region 1 with a loss of controllability. (b) regularizing for controllability, the iterate now crosses
from region 2 to region 1 with a loss of observability instead. (c) regularizing for minimality, the
iterate never crosses from region 2 to region 1. (d) under the proposed method, IR-PG, the iterate
crosses from region 2 to region 1 with a loss of observability, and quickly converges to the global
optimum.
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F.3 Insufficiency of controllability

Consider the OE instance given by

A= {01 _01], C=1,, W,=3xI,, W,=IL, (F.1)
and the filter Ky,,q given by
-2 0 1 0 1 0
Apaq = {7 —’y} ,  Bbaa = {0 O] ;v Cpaa = [0 O] . (F2)

The following shows that the true system Eq. (F.1) satisfies all our assumptions, and that the filter
Eq. (F.2) is a critical point, but, because 312 k, ., is not full rank, it is a strictly suboptimal first-order
critical point of Lgg(K). The following proposition is proven in Appendix F.4.

Proposition F.1. For the OE instance Eq. (F.1) and any v > 0, and any filter Ky,q of the form
Eq. (F.2), the following are true:

i. Eq. (E.1) satisfies Assumptions 2.1 to 2.4.

ii. Kpad € Kstap.
iii. Kpaq is a first-order critical point: VLog(Kpaa) = 0.
iv. The filter is strictly suboptimal: Kpag & Kopt.

V. Kpaq is controllable: Kpag € Kegrp, 2ky,,q,22 > 0.

Vi. 319K, IS not full rank.
Moreover, Log(K) does not depend on ~y, showing that Lo does not have compact level sets.

A proof of Proposition F.1 is given in Appendix F.4. Here, let us briefly describe the intuition be-
hind this construction. To see that K},.4 is suboptimal, first notice that the true system in Eq. (F.1)
comprises two independent, first-order subsystems. As the second row of By,,q is zero, the output
of the second subsystem will never enter the policy Ky.q4. In particular, the state of the policy will
contain no information about the state of the second subsystem, resulting in suboptimal predictions
concerning the second subsystem. To see that Ky,,q4 is controllable, notice that the non-zero (2, 1)
entry of Ayp,q allows the first component of the state of Ky,,q to excite the second component. This
ensures controllability of Ky,,q, even though the second state of Ky, 4 is not excited directly by the
input to the policy (as the second row of By,.q is zero). To see that Ky,.q4 is a stationary point, first
observe that the first row of the matrices comprising the policy Kpaq in Eq. (F.2) corresponds to
the optimal policy (filter) for the first subsystem in Eq. (F.1), i.e. these are the optimal parameters
that will provide the best possible prediction of the output of the first subsystem. Any single per-
turbation to one of these parameters will result in worse predictions and higher cost. Next, notice
that the second row of Cy,,q is zero; as such, any single perturbation to any parameter in the second
row of Ayp,q or By,q will not change the output of the policy, and therefore not change the cost.
Finally, because the internal state of the policy contains no information about the state of the second
subsystem in Eq. (F.1), any single perturbation to Cy,q Will simply inject uncorrelated noise into
the prediction for the second subsystem, thereby increasing the cost.

Moreover, as shown in Fig. 2 below, the minimum eigenvalue of the Hessian V2£0E(Kbad) can be
made arbitrarily close to zero by taking « in Eq. (F.2) to be arbitrarily large. Existing results suggest
that first order methods may take take Q2(poly(e))-iterations to escape an approximate saddle point
with minimum-Hessian eigenvalue ¢ [Jin et al., 2017, 2018, Carmon et al., 2018, Agarwal et al.,
2017]; hence, these large-y examples may prove challenging for first-order methods designed to
escape approximate saddles. In addition, the non-compactness of the level sets for the OE objective
may also lead to a number of pathologies.

Before closing, we note that one can similarly construct examples of policies that are observable, but
not controllable, that correspond to suboptimal first-order critical points. For example, the policy

-2 0 1 0 1
Abad = |: 0 _,7:| ) Bbad = |:0 0:| ; Cbad = |:0 ’OY:| ’ (F3)
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is observable for v > 0, yet corresponds to a suboptimal first-order critical point of the OE loss for
the true system Eq. (F.1). The intuition behind this construction is similar to that of Eq. (F.2) above.
In particular, lack of controllability (notice that the (2,1) entry of Ay,q is now zero) implies that
the second component of the policy state decays to zero in steady state. As such, the non-zero (1, 2)
entry of Cp,q does not disturb the optimal prediction for the first subsystem of Eq. (F.1). It does,
however, ensure that (Cpad, Apad) is observable.
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Figure 2: Spectral properties of the Hessian V2 Lgg(Ky,,q) in Proposition F.1 for various values 7, cf.
Ay.q in Eq. (F2). Here Gt,p denotes the controllability Gramian associated with (Apaq, Bpad)-

F.4 Proof of Proposition F.1

Part i. Assumptions. The matrix A is Hurwitz stable, with eigenvalues —1 (repeated), meeting
Assumption 2.1. The pair (A, C) is observable, as C = I, meeting Assumption 2.2. W7 and Wy
are also clearly positive definite, meeting Assumption 2.3. Lastly, one can show that

(Ak, Bk, Ck) = (213,15, 1)
is an optimal filter. Clearly (Ak, Bk) is controllable, so Assumption 2.4 is met.
Part ii. Stability. As Ay.q is lower diagonal, the eigenvalues are easily seen to be (—2, —v).
Hence Ay .4 is Hurwitz stable.
Part iii. First-Order Critical Point. Decompose
Log(K) = E[[|x — 2*] = E[x[1] — 2k [1]|*] + E[|x[2] — 2[2]|], (F4)

L1(K) L2 (K)

where (x, 2k ) are jointly distribution as A(0, Xk). We show K = Ky,,q is a critical point of both
L1(K) and L5(K). We start with £ (K).

Claim F.2. We have VK[’l(K)|K:Kb, =0

Proof. 1t suffices to show that K = Ky,,q is global minimizer of £4(-). This can be checked by
showing that (a,bk,ck) = (—2,1,1) is the optimal solution to the one-dimensional scalar OE
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problem with (a, ¢, wy,ws) = (=1,1,3,1) and z = 1. Solving the scalar Continuous Algebraic
Riccati Equation, we see that an optimal filter is of the form (ak,bk,ck) = (a — ¢,1,1), where

{=wy Yep = p, and p > 0 solves the continuous Algebriac Ricatti Equation
Ozap+pa+p2b2w51 +wy =-2p—p°+3

Taking the positive solution to the quadratic 0 = p? + 2p — 3 = (p + 3)(p — 1), we have p = 1.
Hence, the optimal filter has I = w; 'cp = 1. Hence, (a — ¢,1,1) = (=1 —1,1,1) = (=2,1,1) is
an optimal solution to the scalar OE problem, as needed. O

Next, we address L£2(K). We begin with a lemma establishing the structure of 35 k for K = Kpaq,
proven in Appendix F.5.

Lemma F.3. For K = Ky,.q, we have

1 _ 7
Yok = [(2) 2(16”’)} .

We can now conclude by checking that Ky,,4 is a criticial point of Lo(+).
Claim F4. We have VkL2(K)|, . =0.

Proof. For simplicity, we drop the subscripts involving K.
La(K) = E[|x[2] - 2[2]|] = E[|x[2] - e; Ckx[?]
= E[x[2]?] — 2e, E[xx ' |Cg ez + e; Ck 2E[%%x "|e; Ck 2
= E[x[2)%] — 2e5 Z12kCkea + e; CxEaa kCy €2
E[x[2]?] —2e5 (Z12.k — Z12.bad)(Ck — Chad) €2 + €9 (Ck — Chaa) ' Z22.k(Ck — Crad) ' €2,

=L2(Kbad)

where above we use C]Iadeg = 0 and, as shown in in Lemma F.3, eQTZ]lg,bad = 0. In particular, for
a perturbation Ax = (A4, Ap, Ag),

L2(Kpad + tAK) — L2(Kbad)

= —tey (B1akpuattax — S12bad) Ades + 17€5 AcToo K, t1acAb€2

_ T T 2 T T 2 T T 3
= —te, 212,badAce2 —t%ey A12A062 +t7eq AczggﬁbadACEQ + O(t )

d
= —t’e; (EKbadHAmm’t_o) Ales +t°e; AcTorpaaAles + Ot?),

de
where again we use €5 312 paa = 0 by Lemma E3. Thus, %EQ(Kbad + tAk) = 0, showing

VLK), =0 O

Part vi. Suboptimality. By solving the continuous algebraic Ricatti equation (in the spirit of
Claim F.2), one can show that

(AKa BKa CK) = <_2I2712a1n)

is an optimal filter. It is clear that there is no similarity transformation which relates this filter to
Kbad = (Abad; Bbad; Chaa) (for one, the the rank of Bk, Ck would be preserved under such a
similarity transform). Since optimal filters are unique up to similarity transform (Lemma E.3), Kyaq
cannot be optimal.

Part v. Controllability and rank of 35, k (K € K¢¢p)  As shown in Appendix E.1, 395k >~ 0
provided that (Ay,q, Bpaq) is controllable. The latter can be verified since By,q = [e1 | 03], and
e is not an eigenvector of Ay 4.

Part vi. Rank of 315 x  The computation in Lemma F.3 shows 33  has rank 1.

This concludes the demonstration of points i-vi. To see uniform boundedness, we again de-

composition Loe(K) = £1(K) + £L2(K) as in Eq. (F4). Since £1(K) is globally minimized at
K = Kpad, and since z[2] = 0 regardless of v, we see Lgg(K) does not depend on +. O
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F.5 Proof of Lemma F.3

Proof. Writing out the Lyapunov equation (and using * to ignore irrelevant blocks),

_ (A 0] [Bi1,sys X2k n A 0 Yitsys 212K ’
_BK * EIQ,K * Bbad Abad EIQ,K *

_ AZ 11 Ak | AZ 110 AZik]) "
_Bbadzll,sys + Abadzirzp( * Bbadzll,sys + Abadzirz}( *

_ _Azll,sys + z:ll,syslAT A212,K + (Bbadzll,sys + Abad2I27K)T:|

* *

Using A = —I,, we have —3Iy = —231; 4y, 50 X1 5ys = 515. Then,
0=A31k + (BpraaXiisys + AbadEIQ,K)T

1
=—Xpk+ 5(312)]31;(1 + Z12A 4

= %Bgad + 1ok (Apaa — 1) T,
so that
Yok = _ngad(Abad ~I,)" "
Next,

-1
- 1+ 0
(Avea = 1) 12_@ =y 1+7D

o [(1+a*)1 0 ]
ey T+

1
—= 0
JERE)
3(1+y) 1+v

So, substituing in the definition of By,,q
T 1 1
310 -3 0 7 AW
> K=—% |: :l |: _3 1 :l = |:2 2(147)
. 2[00 3(117) 1+y 0 0

F.6 Additional numerical examples

In this subsection we present the results of a number of additional numerical experiments illustrating
the performance of IR-PG. All numerical experiments are carried out with a 2.4 GHz 8-Core Intel
Core 19 processor with 64 GB of RAM.

Random generation of true systems. Each experimental trial begins with the random generation
of a true system of the form Eq. (1.1). System parameters A, C are randomly generated using
Matlab’s rss function, with state dimension n = 2 and output dimension m = 1. The matrix G
defining the mapping from state to performance output z is set to G = I. The intensity of the system
disturbances is randomly generated as W; = M "M with each entry of M € R™*" sampled from
N(0,1). The intensity of the measurement noise is normalized to Wy = 1. To select suitable
systems, we then rejection sample according to the following criteria: i) A must be strictly stable,
and the observability Gramian O corresponding to (A, C) must satisfy 1074 < A\, (0) < 1072
ii) W must satisfy Apnax(W1) < 5; iii) the optimal cost must satisfy Log(Ky) < 10%. The
first criterion regulates the observability of the true system, which sets the difficulty of the filtering
problem; the second ensures that the ratio between the disturbances and measurement noise remains
“reasoanble”; and the third ensures that the problem instance is not “pathological”, as determined
by excessively high cost of the optimal filter.
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Remark F.1 (Choice of G = I.). As detailed in Section 3.2, IR-PG makes use of the regularizer
Rinto, defined in Eq. (3.1), the computation of which requires access to the true system states x,
as described in Section 2. To facilitate a more fair comparison with direct minimization of Lqg, we
selected G = T to effectively give the optimizer of Lgg access to the true system states x as well.
As a result, all algorithms compared in this section have access to the same information concerning
the true system.

Random generation of initial filters. = Next we randomly generate a filter Ky from which to
initialize gradient descent. To do so, we take the optimal (Kalman) filter K,, and randomly perturb
each of the parameters; specifically, we set (Ko); = (K,); + §; with §; ~ A(0,100) for the ith
parameter. Before accepting this Ky, we rejection sample based on the following criteria: i) 3k,
must satisfy 107° < oyin(T12k,) < 10735 i) Tk, must satisfy 1072 < opin(Baok,) < 1
iii) the initial suboptimality must satisfy Log(Ko) < 100 x Log(K, ). The first criterion ensures that
we do not begin from an initial guess for which the informativity is too low, nor a guess for which
it is too high (which makes the search easier). The second criterion ensures that the initial filter is
sufficiently controllable, to avoid initializations that are too close to suboptimal stationary points.
The final criterion ensures that the initial guess is, in all other ways, “reasonable”, as measured by
suboptimality.

Optimization methods compared. Given a randomly generated true system, and random initial
filter Ko, we then apply the following three optimization algorithms: i) gradient descent on Log(K);
ii) gradient descent on Lgg(K) with filter state normalization performed before each gradient step,
cf. Eq. (3.2); iii) IR-PG, as detailed in Algorithm 1, with regularization parameter A = 10~%. See
below for further discussion on the selection of A. All methods are initialized from the same K,
and make use of the same backtracking line search to select step sizes. Moreover, all algorithms
have the same termination criteria. Each algorithm terminates when either: i) the Frobenius norm
of the gradient of the cost function being minimized (either Log or L)) falls below a tolerance of
1078; ii) the step size selected by the line search falls below a tolerance of 10~16 for more than three
consecutive iterations; or iii) the number of iterations (gradient descent steps) exceeds 100, 000.

Results. The results of 60 such experimental trials are depicted in Fig. 3. It is evident that simple
“unregularized” gradient descent on Lgg routinely fails to converge to the global optimum, in the

allotted number of iterations. In fact, the median (normalized) suboptimality gap %ﬁg(&)

exceeds 1074, and only a single trial achieves suboptimality less than 10~7. Loss of informativity in
these trials can be seen clearly in Fig. 4. The addition of the filter state reconditioning procedure of
Eq. (3.2) offers only minimal improvement. In contrast, IR-PG converges reliably to high-quality
solutions that are extremely close to the global optimum; the median normalized suboptimality
gap was zero, to numerical precision. In fact, for one third of trials, the suboptimality gap was
actually negative (by very small margins, e.g. 10~17) indicating that IR-PG has reached the limits
of numerical precision with which Matlab’s icare solves Riccati equations (which we use to
compute K,).

Selection of regularization parameter \. Performance of IR-PG is in many instances insensitive
to the value of \ selected. Experiments were conducted with A = 10~#. However, we observed that
handful of experimental trails required A\ to be chosen more judiciously, in particular, when the
spectral properties of V 2R, differ significantly from those of V2Lgg. Very small stepsizes may
be required when )\maX(VQRinfo) is very large, which means the search may make slow progress
in updating Ck, as Rins, is independent of Ck. We have observed good performance in practice
by simply “turning off” the regularizer (i.e. setting A = 0) when the stepsize becomes excessively
small (e.g. drops below 10~16).
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Figure 3: Performance of each algorithm as measured by the normalized suboptimality of the output
estimation cost, %ﬁnz(m 60 trials of the experimental procedure described in Appendix F.6
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Part 11
Proofs for Convergence Guarantee

G Proof of Theorems 1 and 2

G.1 Gradient descent with reconditioning
Before outlining the formal steps of our main results, we provide analyze gradient descent under

the weak-PL condition. This generalizes Proposition 4.1 to accomodate the reconditioning step in
IR-PG (Algorithm 1). All proofs are deferred to Appendix H.3.
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Definition G.1 (Reconditioning matrix). Given f : R? — R, we say that A : dom(f) — ST is
a reconditioning matrix for f if it is continuous on dom(f), and for every & € dom(f) such that
A(x) = 0, there exists an &’ € dom(f) such that A(x’) = I, and f(x’) = f(x). We define the
set recondp () := {a’ : f(x') = f(x), A(x) = L,} as the set of such points. We say x is
reconditioned if A(x) =1I,,.

Observation G.1. A(K) = X 2, is a reconditioning matrix for the loss £ ..

Proof. Since dom(Ly) = Kinto C Ketrb, 22,k = 00ndom(Ly). As observed in Eq. (3.2), there
is a similarity transformation mapping K € Cin¢o some K’ with Xi: 99 = L,,. Since £ is invariant
under similarity transformation, it follows £ (K') = £ (K). O

Reconditioning serves to ensure that f need only be well-behaved (i.e. satisfy upper-smoothness
and weak-PL for suitable constants) on a restricted set of approximately reconditioned parameters
x:Alx) =1,.

The following proposition is the guiding template for the overall convergence analysis. Its proof is
given in Appendix H.3.1.

Proposition G.2. Let f : R — R, @y € dom(f), and let A be a reconditioning matrix for f such
that A(xg) > 0. Define K(xo) as the following reconditioned level set, which we assume is closed:

1
K(zo) == {a: eRY: f(x) < f(z0) and | A(x) — L, lop < 2}. (G.1)
Assume that the function @ — A(x) is Leond,a, -Lipschitz as a mapping from (R%, || - ||) — (ST, || -

llop) and that f is By, -upper-smooth, Ly 5, -Lipschitz, and satisfies the o, -weak PL condition for
points in K(xo). Lastly, let {n}32, be a series of step sizes such that 0 < infy n, < sup, e <
min{i, m} If iterates are chosen according to,
:Ek S recondA(:ck), Tra1 = ik — nka(%k), (G.2)
or the more general condition,
Zy, € reconda(xy), x4 satisfies f(xpi1) < f(@x — eV (Tk)), (G.3)

then for all k > 1 it holds that

flzg) < ,  Wwheren = éI;f; Nie- (G.4)

| =

2
Az,

Proposition G.2 can also be used to establish that every &y € dom(f) is in the path-connected
component of some x* € arg min(f). To do so, we need the matrix operator to be connected in the
following sense:

Definition G.2. We say that a reconditioning matrix A : dom(f) — S’} is connected if there exists
a parametrized operator recondy (-, ) : dom(f) x [0, 1] — S such that (a) recond (-, -)(x,0) = x
(b) recond(x, 1) = recond(x), and (c) for all z € dom(f), ¢ — recond(z,t) is connected, and its
image lies in dom( f).

Observation G.3. The reconditioning matrix A(K) = Xk o2 for the loss £ A(-) 18 connected.

Proof. Define recond(K,t) := Sims, (Ak, Bk, Ck), where S; = E;;{f. Since similarity trans-

forms preserve membership in K;n¢,, and since ¢ — recond(K, ¢) is continuous and coincides with
Katt = 0 (resp. recond(K) at ¢ = 1), the observation follows. O

The following proposition, proved in Appendix H.3.2, establishes path-connectedness for connected
reconditioning matrices.

Proposition G.4. Consider the set up of Proposition G.2 with xy € dom(f), and in addition,
suppose (a) that A(+) is continuous reconditioning matrix and (b) the set K(xq) is compact. Then,
there exists an x* € argmin(f) and a path v : [0,1] — dom(f) such that v(0) = x¢ and

v(1) = x*.
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Proposition 4.1 can be recovered as the special case when the reconditioning matrix recondx () =
1, is always the identity. In this case, the reconditioning step is vacuous. Moreover Lcond,z, = 0
(recondy is constant), and it is straightforward to modify the proof of Proposition G.2 to dispense
with the dependence on Ly 4.

G.2 Proof of Theorem 2

With key ingredients of the analysis in mind, we now finish the proof of Theorem 2 by illustrating the
existence of a DCL for the regularized OE problem, and establishing smoothness and Lipschitzness
of the objective when restricted to the reconditioned set so as to apply Proposition G.2. More
specifically, we first establish the relevant properties “locally”, in that they depend on the choice
of the filter K, and then prove a uniform bound over all K in the reconditioned set at the very end.
A recurring theme is that both the weak-PL and the smoothness properties are controlled by the
informativity, as measured by [ Z, '||. These are terms are also controlled by ||Z||, || 2, ||, which
we show below are bounded in terms of ||Xg k||, ||E;2{K|\, which are both bounded due to the
reconditioning step.

As shorthand, we let poly,, (X4,Xa,..., k) denote a term which is at most a polynomial function
of the operator norm of the matrix arguments ||X; ||, ||Xz||, ..., and a polynomial in the scalar
argument ; || - ||¢, denotes the Euclidean norm (e.g. on parameters K = (Ag, Bk, Ck)). All results
below assume K € Ciys,, and that X is invertible (we verify this condition in Lemma G.7 below.)

A DCL for the regularized OE objective. While it is by now well-known within the controls
community that the OE problem admits a convex reformulation [Scherer et al., 1997], we prove a
stronger result showing that this reformulation is in fact a DCL. We prove the following result in
Appendix I.

Proposition 4.2. For any A > 0 (non-strict), the objective L (K) admits a DCL (feyx, fi£t, )
where the lifted parameter takes the form (K;Xk) € Kinso X S?ﬂr, LK) = fire(K, 2k) =
mingcgen fre: (K, X), and where

oq, (VO(K,2k)) > 1/poly,, (A, C, W3, 5k, 2" Z ', Loe(K))
1®(K, Bk)|le, < (max{n,vmn} + \/Lee(K)) - poly,, (A, C, W5, 5k, 51 21

Furthermore, the norms of the parameters Ag, Bk, Ck satisfy the following bounds:

max{[| Ak [lop, [Bkllop} < poly, (A, C, W3, Z ', B, B¢ ') [ICklle </ Loe(K)/ [
4.1

Recall that the domain of £ (K) is the set Kinzo, on which Zk and (as noted above) Xk are invert-
ible. Hence, all quantities in the above lemma are well-defined. Having established the existence of
a DCL, a direct application of Theorem 3 shows that this objective satisfies the weak-PL property.

Corollary G.1 (Weak-PL Property of £y). Forany A > 0 and K € Kinso,
1
- (LA(K) —inf(Ly)), where
Con(R) - e, oy (A~ nf (L) G5)
CPL(K) = polyop (A7 C7 W517 ZE17 2Ka 2E17 ‘COE(K)) .

IVEA(K) =

Smoothness and Lipschitzness of £ (K). To verify these regularity conditions, we need to bound
the norms of various quantities, which are themselves the solutions to Lyapunov equations involving
the closed-loop system matrix A k (defined in Eq. (2.1)). The main step is therefore to show that
the solutions to these Lyapunov equations are uniformly bounded, as per the following lemma (proof
in Appendix J).

Proposition 4.3 (Stability of A k). Suppose that K € Kinso. Then, for any matrix Y € S?", the
solution 3k y to the Lyapunov equation A 3k vy + EKyyA;rLK + Y = 0 satisfies

HEK7YH° S ClYaP(K) : ||Y||07 where ClYaP(K) = pOIyop (EKa EIZ17ZE17W1_17W2_17C> 5

and where || - ||o denotes either the operator, Frobenius, or nuclear norm.
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Using this intermediate result, we can bound the norms of the various derivatives which govern the
smoothness and Lipschitz constants for the regularized OE problem. We present the proof of the
following result in Appendix K, as well as formal explanations of the notation of the norms below.

Proposition G.5 (Smoothness and Lipschitzness). For any K € Kinto, L2(+) is €2 in an open
neighorhood containing IC, and

[V2LAK) |le3—s02 < Cgraa2(K) - Cryap(K)? - (1 + ) (Local smoothness)
IVLA(K)|les < Cgraa,1(K) - Chyap(K) - (1 +A)v/n (Lipschitz loss)
[VE22klle—op < Cs,1(K) - Cryap(K), (Lipschitz reconditioning)

where Cs, 1 (K) = poly,, (2, Bk, C, Wa), where
C'grad,l (K)a Cgrad,Q(K) = pOlyop(Z ! 252 K> EK» BK; CK7 C7 G7 WQ);
where Chyap(K) is as in Proposition 4.3, and where the gradient norms are in the Euclidean geom-

etry.

Concluding the proof: uniform parameter bounds. Note again that bounds above are local, in
that they depend on the choice of filter K. To finish the proof of Theorem 2, we prove a uniform
bound over all filters K which lie in the set considered by Proposition G.2, namely.

Ko := {K € Kinto : L2(K) < L (Ko) and 1 < ok <2, } (G.6)
Immediately, we see that on this set ||2122 Il <2, and that

_ _ 1 1
Loe(K) < £a(K) < La(Ko),  1Zi | < 01[Zic"] = Ranto (K) < 5 £2(K) < 3 La(Ko):
As a consequence, we can bound the terms appear in the bounds above as follows (see Ap-
pendix G.5):
Lemma G.6. The terms Cpr(K), Cryap(K), Cx,1(K), Cgraa,1(K), Cgraa,2(K) appearing above are
all bounded by at most polyop(Zgl, Sk, A, C, G, Wy, Wy Wit £4(Kp), %)

Lastly, we control the dependence on 3 and Egl. The follow lemma is proven in Appendix G.6.

Lemma G.7. Let 0, > 0 be as in we mean Lemma 3.3. Then, for any K € Kcerp, it holds that:
(a) Bk = 0 is invertible, (b) ||| < 2||222KH + 207 P max{1, || 255
[kl < 2max{||[Zaz k||, |Z11,sys]}-

In particular, on Ky, where ||222KH [Zaokl| < 2, we have ||Zk|,[|= <

polyop(HZmSysH, o 1), so that the terms Cp(K), Cryap(K), Cx1(K), Cgraa, 1 (K), Cgraa,2(K) are
all at most polynomial in

Cays = max{||Sipsysll, [|A[L ICIL NG Wl WL WL o7, (G.7)
as well as in £ (Kp), % Thus, from Corollary G.1 and Proposition G.5, we verify the conditions of
Proposition G.2 uniformly on the set /Cy.

Corollary G.2. The loss function L) satisfies a-weak PL and B-upper smoothness on Ko with

! < max{n vm } 'pOIY(Csysa £)\(K()), %) ﬁ < pOIY(Csysu £)\(K()), )\a)\)7

where C’sys is defined in Eq. (G.7). In addition, on Ko, L) is L < V/npoly(Csys, L2 (Ko), A, )
Lipschitz , and K — g k is at most Ly, < poly(Cesys, L(Ko), % 5> A) Lipschitz as a mappzngfrom
(Kingos || - llea) = (8™, llop)-

Lastly, we establish compact level sets. The subtlely here is not only showing that Ky is bounded
(this is rather direct from Proposition 4.2), but also closed.

Lemma G.8. Let set Ky in Eq. (G.6) is compact.

The upper bound on £ (K,) — mink £ (K) in Theorem 2 is now a direct consequence of instantiat-
ing Proposition G.2 1) = 7 with the bounds in the above Corollary G.2, and noting that Xy is closed
by Lemma G.8.

The inequality Log(Ks) — ming Loe(K) < £ (Ks) — mingk £ (K) is just a consequence of Corol-
lary 3.1. O
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G.3 Proof of Theorem 1

Due to the DCL exhbited by Proposition 4.2, and in particular Corollary G.1, we find that any A > 0
and K € Kin¢, for which VL, (K) = 0 must be optimal (in applying the corollary, we again note
that Zg is guaranteed to be invertible of K € IC45,, and X invertible by Lemma G.7). By taking

A = 0, we have VL, (K) = VLg(K), proving the theorem. Path connectedness follows from
Proposition G.4, again noting that /Cy is compact (Lemma G.8). O

G.4 Proof of Theorem 2a
The proof is nearly identical to that of Theorem 2. The only difference is that the step sizes are

selected according to backtracking line search. We apply Proposition G.2 where 7, (in the statement
of the proposition) is set to any 17 € S, for all s satisfying the same upper bound n < é required in

Theorem 2. Since since backtracking line search selects the step which attains the greatest direction
of descent, at each iteration, we have

AC)\(KtJrl) < E/\(Rt - UV£>\(Rt))-

Hence, backtracking satisfies the descent condition Eq. (G.3), and the theorem follows.

G.5 Proof of Lemma G.6

Recall that, for K € Ko,
1
Lox(K) < Lx(Ko),  [1Zc" | < TLa(Ko)-

Hence, for KC € Ky and Cp,(K) as in Corollary G.1
Crr(K) = poly,, (A, C, W31, Z ' Bk, B¢t Loe(K))

_ _ 1
< pOIYOp (A7 C7W2 17 ZKa EKlyﬁ)\(KO)a )\> .

In addition, from Proposition 4.3,

_ _ _ _ _ _ _ 1
Clyap(K) = pOlyop <2K7 EK17ZK1, 07W1 17W2 1) < POlyop (2K72K17 07W1 17W2 17£>\<K0)7 A) .

Moreover, from Proposition 4.2
max{[| Ak|lop, [|Bx [lop, [ Ckllr} < poly,, (A, C, W5, Zy*, Sk, Bt Low(K))
< poly,, (A, C, W', Ik, B La(K)) .
Finally, from Proposition G.5, we have for K € K,
Cs.1(K), Cgraa1(K), Cgraa 2(K) = poly,,(Zy ', 25, «, Bk, Bk, Ck, C, G, W)
3
< polyp (5" Sk, A, C, G, Wa, Wi £3(Ko). 1)

S p01yOp(2Ka BKa CK7 C7 G7 W?v E)\(KO)

Hence, in summary,
CPL(K)7 Clyap(K)7 CZ,I (K)a Cgrad7l(K)7 Cgrad,2(K)
1
= POlyop(Egl, EK? A» Ca G'a W27 W;17 W;17 EA(KO)v X)
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G.6 Conditioning of the stationary covariance (Lemma G.7)

Part (a). Recall the block decomposition

» Ell,sys 212,K
K = T
212,K EQZK ’

where we note that 3y 4,5 does not depend on K. From the Schur complement test, Xk > 0 if
and only if both 25k > 0 and X1 5ys >~ 2127K22_21K21T2’K = Zg. The first of these holds for
K € Kctrb, and since Zk < Z, (for Z, as in Lemma 3.2), the second holds from Lemma 3.3.
Part (b). We invoke Lemma G.9 below to bound

1B < 201250kl + 201X max{ 1, [ B35k 11,6513

where Xk = 311 gys— 2127K22_21K21TQ K = 211,sys — Zk 18 the Schur complement term. Moreover,

since ZK j Z*, szl j (Ell,sys - Z*)ils SO ||XE1|| S ||(211,sys - Z*)iln - 1/)\min(211,sys -
Z,). Hence,

1Bl < 20185kl + 2 nin (B11sys — Z)] ™ max{1, [0, 1 B11,sys1}

as needed. By Lemma 3.3, we have 0, = Amin(Z11,sys — Zx)

Part (c). Invoking Lemma G.9 part (a), we directly obtain || Xk || < 2 max{||Z11,sys||, [|Z22,k
By

Now the remaining part is to prove the following Lemma.

1}

Lemma G.9. Suppose that A = 0 is positive semidefinite and has block-diagonal decomposition
with blocks diagonal blocks A1, Aos. Then,

(@) [|A]l < 2max{[| A ], [[ Az}

(b) If in addition A > 0, then defining the Schur complement X := Aj; — A12A2_21A1TQ, we
have

IATH] < 2] Ay || + 20X max{L, || Az ||[[Av ]}
Proof. We prove each part in sequence:

Part (a). It suffices to prove that

o A A x A A1 0
A= [AE Azz} < 2A, where A := { 0 As

To show the above, consider any vector v = (v1, vs). First, for the modified vector v = (v1, —v3),
we compute

0 S GTAG = VIA11V1 + V;AQQVQ — 2VIA12V2.
Hence,

T T T T
v Av = Vi A11V1 + Vo A22V2 + 2V1 A12V2

< 2V1|—A11V1 + 2v;A22V2 =2v'Av.

Part (b). Introduce the X := Aj; — Ao A5, A, as the Schur-complement term. From the block-
matrix inversion formula,

L X1 *
AT = - —1/2 _ —1/2) | -
o A (T AL PALX T ALAL, )
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From part (a), we then bound
JA ] < 2max (X, A (T+ Am*ALX " Aay ) |1}

- 3 _ —1/2
§2max{||X YL 1AL (1+HX U A AL, HQ) H}-

The term |[A12A5; %2 = |A12AZ AL | < |[A11], where we used that Aj5A5, AT, < Ay by
the Schur complement test. Hence, we conclude

IATH] < 2max { X7, [[Ag || (1+ 1XTHE - [ Awll) I}
< 20 A% || + 21X max{L, || Az [ A ]},

which completes the proof of Lemma G.9. O

This finally completes the proof of Lemma G.7. O

G.7 Proof of Lemma G.8

To see that Ky is bounded, we use that || Ak]|, || Bk||, ||Ck]|| are uniformly bounded on XCy. This is a
consequence of the bounds on these parameters in Proposition 4.2, as well as the fact that the various
terms in those bounds are in terms of || Zk ||, [|Zx" |, | Zx || and Log(K), all of which are shown to
be uniformly bounded on /.

To show Ky is closed, it suffices to show that for any convergent sequence of controllers K(*) in /Co,
its limit is in Cp. In light of the boundness discussion above, this follows directly from the following
lemma.

Lemma G.10. Let KO € K50 be a sequence of controllers converge to some K, such that

12kl ||EE<1,O , HZ;({.) , as well as || Ao ||, 1Bk ||, [|Cka) || remain uniformly bounded. Then,
€ Kinfo.

Proof. We prove stability, 395 > 0, and Zk > 0 in succession.

Stability. Let I'Y) := ||clyap(A k@, I2n)]|o. Then, sup; [T | < M for some M > 0. More-
over, for any € > 0 and 7 > 14 sufficiently large, we have HACI’K — ACLK("') < ¢. Thus, for such
1 2> 1o,

AakTW +TOAL ¢ < Ao T +TOAT ) +2Mely, = —Tp, (1 - 2Me).  (G.8)

Hence, for ¢ = 1/4M, Aq kD' + TWA] < —1I,,. Since I - 0, this implies Ak is
stable.

Controllability. Define the functions F;(X) := A ko 3 + ZA ki) + W k), so that Zy )
is the unique PSD solution to F;(¥x)) = 0. By Proposition 4.3, 0 < Xy =X MIy, for some

i > 0. Hence, there is a subsequence i; such that 3, ;) converges to a limit 3 on the set X :=

{¥:0=3 < MI,,}. Since HA(Ki)H, HBS)H, ||C(K1)|| remain uniformly bounded, F; — F(X) :=
AgkZ + XAk + We k uniformly on this set X, and thus, F/(X) = lim; o Fj(Z,,) = 0.
Hence, since Ak is stable as established above, ¥ = 3. Since this holds for all subsequences,
we have lim;_, o, ¥ku) = k. Hence, 3k > 0, since by assumption ||E;(11,) || is uniformly bounded
in 4. Thus X35 k = 0, and thus, K € K.

Informativity. As established above, lim;_,,, 3k = k. Since the transformation mapping
Yk — Zgw is continuous for X > 0, we see that lim; , ., Zy:) = Zk. Hence, since
Zyy > 0and le(li) is uniformly bounded, Zk > 0. Thus, K € Kjiuzo. O
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H Proofs for DCLs and Gradient Descent

H.1 Proof of Fact 1.1

Throughout, we use the notation doms (f) := {x € dom(f) : f(x) > inf(f)}.

Fact 1.1. Let f : R™ — R be a differentiable, possibly nonconvex function such that min, f(x)
is finite. Suppose there exists a differentiable function ¥ : R™ — R"= satisfying the following
two properties: (i) the mapping W is surjective, i.e. for all x € R™= there exists » € R™ such that
x = U(v), (i) under the change of variables the function f.,x(v) := f(¥(v)) is differentiable and
convex. Then all first-order stationary points, « s.t Vf(x) = 0, are globally optimal.

Proof. Let us proceed by contradiction. Suppose that & is a suboptimal stationary point, i.e.
Vf(®) = 0 but f(Z) # min, f(x). Let ¥ be such that £ = ¥ (). By surjectivity of ¥, such
a D always exists. Next, by application of the chain rule to feyx(v) := f(¥(v)), we have

foVX(V)‘V:ﬂ = vf(w)|m:i . V\IJ(V)|V:D~ (Hl)
Therefore, by Eq. (H.1), Vf(z) = 0 implies Vf.yx(¥) = 0. However,

() (b) (©) (d)

fcvx(D) = f(‘ll(ﬂ)) = f(q_:) 7& H;ll’lf(w) = muinfcvx(u)7 (H.2)

where (a) follows by definition of feyx, (b) follows from & = ¥(v), (c) follows by suboptimality
of &, and (d) follows by the definition of f.,y and surjectivity of ¥. However, Eq. (H.2) contradicts
the fact that f.., is a convex function, for which all stationary points must be globally optimal.
Therefore, no such suboptimal stationary point  can exist. O

H.2 Proof of Theorem 3

We prove Theorem 3, which can be thought of as a (considerable) strengthening of Fact 1.1. The
theorem pertains DCLs, whose definition we recall below.

Definition 4.1. A triplet of functions (fevxs frze, @) is a DCL of a proper function f : R? — R if
@) feux: R% - Risa proper convex function whose minimum is attained by some z*.

(2) For some additional number of parameters d¢ > 0, fig : R4t9e — R is related to f via partial
minimization: f(x) = min, pec fiee (2, §).

(3) There is an open set Y O dom( fi¢+) for which @ : ) — dom(feyx) is € and satisfies fis(-) =
f cvx (‘I) ())

Before beginning the proof, we explain why the following “trivializing” reparametrization is inade-
quate.

Remark H.1 (Failure of the trivializing reparametrization). Given a DCL (fevx, fist, @), it may
seem that one can avoid the dependence on o4, (V®) with the following trivializing reparametriza-
tion obtained by (a) augmenting the lifted parameters (x, £) with the convex parameter z and (b)

defining a new candidate DCL ( feyx, flft, ®) given by fisi(x, &, 2) = fire(x, €) and &)(w, £z)=
z. Note then that adz(i) = 1 since ® just projects onto the z-coordinates, so this would cir-
cumvent the dependence on o4 (V®). In addition, (fcyx, free, ®) meets the first two DCL two
criteria: fcyx is convex and f(x) = min ) ﬁft(w,f, z). However, the candidate DCL does not
meet the third criterion of Definition 4.1 since the value of flft(:c, &, z) does not depend on z, so

Frso(@,€,2) # forx(2) = feux(®(, €, 2)) in general.

We now begin the proof. We first define a notion of descent direction for functions which strictly
generalizes the gradient:

Definition H.1 (Cauchy Directions). Let f : R? — R be a proper function, and € dom(f).

(a) We say g € R?is an Cauchy direction of f at x if there exists constants £y > 0 such, that
forall e € [0,¢], ¢ — eg € dom(f) and lim,_, g+ M < —|gll?
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(b) We say g € R? is a generalized Cauchy direction of f at x if, for some ¢y > 0
the exists a ¢ curve ¢ := [0,69] — dom(f) such that ¢(0) = =, ¢/(0) = g, and
lim8_>0+ f(‘b(a)g_f(w) S _ HgHQ

Observe that if f is €' at , then the standard gradient Vf(z) is a Cauchy direction at x; indeed,

our nomencalture is a tribute to the 1847 article in which Augustin-Louis Cauchy first described

gradient descent, justifying its use via the computation f(x — nVf) = f(x) — n||Vf||* + o(n) (for
more in depth history, see e.g. Lemaréchal [2012]). The purpose of generalized Cauchy direction is
to accommodate functions whose domains may not contain the segment {& — g}, but may contain

a curve ¢ with the same slope.

Cauchy directions for convex functions. At all high level, we show weak-PL by first showing
that f.,x has a Cauchy direction at z of magnitude &~ fcyx(2) — inf(feyx), and then subsequently
showing similar Cauchy directions for f¢; and f. For convex functions f.,x, we can usally construct
Cauchy directions using the subgradient at 2, a vector g such that fe,;(2) — ferx(2') < g' (2 — 2')
for all other 2’ € dom( f.vx). However, in certain pathological cases, the subgradient may not exist.

Hence, we take a more conservative approach by showing considering not the whole domain of f.x,
but rather the line segment joining z to any minimizer z*, defining the function

V() = fex(z + (2" — 2)) (H.3)
This approach allows for pathological cases where the subgradient is “infinite” (in the sense of
h = o0, in the sense of the proof below. )
Lemma H.1. Suppose that f..x is a proper convex function, with z* € argmin, fcyx(2) attained.
Then, for any z € doms (fevx), fevx admits a Cauchy direction g satisfying
fcvx(z) - inf(fcvx)

Iz ==

lgll = (H4)

Proof. Recall ¢(t) from Eq. (H.3), and define the secant-approximation function ¢(t) := $O)=¥(0)

for t € (0,1]. From convexity, one can check that ¢(t) is non-increasing on ¢ € (0, 1]. Hence, the
limit

h= lim ¢(t) = lim v

t—0+ t—0+ t

exists, and has h € {—o0} U (—o0, ¢(1)], where again, since ¢(t) is non-increasing, we note that

h < ¢(1) = _(fcvx(z) - inf(fcvx)) (H.5)
Let us first assume h # —oo. We now claim that g = —|h|(z* —2)/||z — z*||?
of f at x; this will conclude the proof since by Eq. (H.5)

[l (=) = fA)]

z=z 7 [z-#

is a Cauchy direction

lgll =
I

Let us show that g is a Cauchy direction. First, since f is convex, dom(f) is convex. Thus, since
z,z* € dom(f), the line seqment joining z, z* is contained in dom( f), and hence for ¢ sufficiently
small, z — g lies on this line segment, and is therefore also contained in dom(f).

Next, we compute

t(z* — z)) — [z =tz = 2|1 8) - f(2)
he i JETHET—2) - f2) [h]
t—0+ t t—0t t
— %2 _ _
_lE=2P L fz—te) = f(2)
‘h| t—0+ t
Hence,
o fEote) ) WAL -k
im = s = = gl
=0t t lz—2 2~ Tz — =
as needed. Now, consider the case where h = —oo. Then, for any > 0, we see that
lim,_, o+ LEFENE t_z))_]f(z)) = —oo. Hence, g = 7 - (2* — 2) is Cauchy direction for any n > 0.
In particular, taking n = % satisfies the conclusion of the lemma. [
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Smooth transformations preserve Cauchy directions. We show that the existence of a Cauchy
direction is preserved under smooth transformations.

Lemma H.2. Let f be a proper function, z € dom(f), and g a Cauchy direction of f at z. Let U be
a €' mapping from a neighborhood Z containing z into a domain Y such that o4_ (V¥ (z)) > 0,
and let f1sy © Y — Rsatisfy f(2') = fiee(V(2')) for all 2’ € Z. Then, fis¢ has a generalized
Cauchy direction g aty = V(z) of norm

~ lgll
lgll > :
IVE(2)]|op

In particular, we take f to be proper, convex function f.,yx whose minimum is attained at some z*,
we can take

fcvx(z) - inf(fcvx)

=+ cangmn for 2 — 2] - [VE(2)llop

gl =

Proof. We may assume without loss of generality that g # 0, for otherwise g = 0 and the constant
curve ¢(g) = ¥(z) = y satisfies the conclusion of the lemma. Fix a parameter > 0 to be chosen
at the end of the proof, and define the curve ¢(¢) := ¥(z — £ g). Then, for ¢ sufficiently small,

Fuen(6() = f(z — %g) < o0,

since g is Cauchy direction of f. Hence, ¢(g) € dom( f1s;) for ¢ sufficiently small. We compute

lim Jree(D(€)) — free(y) — lim free(U(z — %9)) — f1ee(y)

e—0+ £ e—0+ £

A2
< M (H.6)

Furthermore,

Since we assume g # 0 (see above), and since o4, (V¥(2z)) # 0 by assumption, we find that
|l¢'(0)|| > 0. Thus, continuing Eq. (H.6),

lim flft(¢(5)) - flft(y) < _||gH2 _ 7H¢/(0)”2 . ||g||2 _ 7H¢/(O)H2 - HgH2
-0+ € oo - [le' ()2 IV (z)g]?
In particular, if we set n = %, we see that ¢(+) is valid for certifying that g = ¢’(0) is a
generalized Cauchy direction. In this case, we have that

IV¥(2)g] - llgl® lgll lgll
l¢" (01 = >

eegl 1 el T Ve
O

Partial minimization preserves Cauchy directions.  For our final lemma, recall the set up of
DCLs. Lety = (z,&), and let f(x) := ming fiec(x,&). As shorthand, we say y = (x,&) is
admissible if x € dom(f) and € € arg ming, fiee(x, &). We show that if fi¢, has a (generalied)
Cauchy direction g at an admissible vy, then the norm of the gradient of f must be at least as large
as ||g].

Lemma H.3. Suppose that f is proper, and that f(x) is €? at x for some € € dom(f). Let
y = (x, &) be f-admissible, and suppose that f1s has a generalized Cauchy direction g at y. Then,

IVF (@)l = llgll-
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Proof. Let ¢ be a curve which certifies g as a Cauchy direction of fi¢¢; namely ¢(0) = y, ¢'(0) =
g, and

lim fise(6(€)) — frse(y)

e—0t 5

We write ¢(e) = (¢1(€), p2(g)) inits (x, £) components. Then,
F(@1(e)) = nin free(é1(2),€) < free(91(2), 82(€)) = faze(6())-

By admissibility of y = (z, £), f(61(0)) = f(x) = fis:(y), so that
F(1(2) = f(®) < free(d(e)) — free (y).
Dividing by € and taking limits,
i T = 1@ _ a0 ~ fis(w)

e—0+ 5 e—0t 5
On the other hand, since f and ¢; are both differentiable,

tim, KO I 506, (0)),6110)) = (11(2),0).9)

e—0t
where above (Vf(z),0) € R%*% has a 0 in the remaining d,, coordinates. Therefore,

<(Vf(1:)70)7§> < _||§H2’
which requires ||V ()| = [|(V/ (), 0)] = [|g]- 0

< —lgl*

= —lgl*.

Concluding the proof of Theorem 3.

Proof of Theorem 3. Given & € dom(f), pick any z* € argmin(feyx), and any € €

argming fise(x,€’). Set z = ®(y), and note that f(x) = fise(y) = fex(P(Y)) = feux(2),
$0 z € dom(fevx) and y € dom(fif:). Note that we cannot have z* = z, since € dom- (f)
implies

fo(2) = F(@) > inf £(@') = i0f fiee(y) = i0f forn(B(y) > foue(2").
By Lemma H.1, f.,x has a Cauchy direction g at z satisfying

fcvx(z) - inf(fcvx) )

[EREa

lgll =

Next, from the DCL, the mapping ® : ) — Z is ©’! on an open neighborhoods containing . Hence,
V®(y) is defined. We now claim that f1¢, has a generalized generalized Cauchy direction g of norm

fcvx(z) - inf(fcvx)

gl =
Iz — 2]l

-04. (VO(y)). (H.7)

Indeed, if o4, (V®(y)) = 0, g = 0 suffices (the zero vector is always a generalized Cauchy di-
rection). Otherwise, if o4 (V®(y)) > 0, the fact that d, > d, and the implicit function the-
orem implies that ® admits a ¢! right inverse U satisfying ® o ¥(2') = 2/ and ¥(z) = y
on a neighborhood of z. This mapping must satisfy V¥(z) = V&(y)T, so that in particular,

[VE(2)|5) = 0a. (V®(y)) and 04, (V¥(2z)) > 0. Hence, Lemma H.2 implies that
~ fcvx(z) B inf(fcvx) 1 fcvx(z) B inf(fcvx)
> . = . Vo
lgl 2 Iz — 27| V¥ (2)|op [E 74 (Vo)

verifying Eq. (H.7). Finally, by Lemma H.3,
~ fcvx(z) - inf(fcvx)
IVf ()|l > llgll > ~
Lastly, using the DCL, we have fex(2) = f(x), inf(fevx) = inf(f). Substituting in z = ®(y) and
y=(z,€),

-04. (VO(y)).

V@) 2 11 = Lo o (Va6

Since the above holds for any 2* € argmin(feyx) and any €& € argmin fis:(,-), Theorem 3
follows. O
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H.3 Analysis of gradient descent and reconditioning under weak-PL
H.3.1 Proof of Proposition G.2

The first step of the proof is to ensure sufficiently small step sizes remain in the set /C for which our
regularity conditions.

Claim H.4. Suppose that Ty, € K. Then,
[ @ = mVf @) < F@e) — FIVF@)I2 = fla) = DIVI@I2 HS)
In addition, for all t € [0, ni), @ — tVf(xx) € K.

The proof of Claim H.4 is somewhat elementary, and deferred to the end of the broader argument.
We now argue recursively that €5, € K for all k. We argue inductively, noting f(Zo) = f(zo) and
A(xo) =1, ensures the base case Ty € K. Now, if ), € K,

(&)
f@r) < f(@e —m V(@) < flzr) - %HW(@)II2» (H.9)

where (i) is an equality under Eq. (G.2), but may be an inequality under Eq. (G.3). Hence,

f(@rs1) = f(xrt1) < f(zg) = f(@r) < f(xo) (since & € K). Hence, since Xy is re-
conditioned, )11 € K as well.

Subtracting inf(f) from both sides of Eq. (H.9) and invokingthe c,,-weak PL property of f, the
suboptimality gaps dy, := f(x)) — inf(f) and minimal step 7 := ming {7y, }satisfy

2
nawo

o2, o 5
Opt1 < 0 — T“(Sk <O — 0 - (H.10)
We solve this recursion following an argument described in Section 3.2 of Bubeck [2014]. Setting

. 5 .
w=n- aiO/Q, we have 6, > wéﬁ + Ok1, or equivalently, ﬁ > ﬁ + 5%. Since 6 > Ogt1,

this implies that = > w + . Hence, we find
Ok+1 Ok

1 1 S
—_ w.
Op+1 Ok

Telescoping, we conclude that ﬁ > w(k + 1), whence

fa(@i) — inf(f) = 6 < — = 2

wk a2 nk’

O

Proof of Claim H.4. Define (1) := &, —7Vf(Z}), noting £(0) = x. The key subtlety in proving
the claim is ensuring that the entire line segment {Z(7) : 7 € [0, 7]} lies in the set K under which
relevant regularity conditions on f hold. To start, we may assume without loss of generality that
Vf(xx) # 0, for otherwise the bound follows trivially. We make two observations

1. since f is Bx,-upper-smooth on /C, there is an open set containing Z;, on which f is €.
Then, there exist some 71 such that, for all 7 € [0, 7], f(@(7)) = f(zr) — 7| Vf(@k)||> +
o(1) < ¢(0). Note further that = f(reconda(xx)) = f(xr) < f(xo) (since Zj, € K by
assumption.)

2. Since A(x) = I and A is L-Lipschitz on /C, there exist some 75 such that, forall 7 € [0, 72],

IA(Z(7)) = Lallop < 3

Let us choose 7 as the largest real satisfying the above two constraints:
_ ~ _ 1
mimsup {7 < s € 0, (@() < @) and [A@() < Tully < 5}

and observe that &(7) € K for all T € [0, 7] by construction.
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First, we show that 7y > 0. Indeed, by assumption, there is any open set containing & on which f
is €2, and hence, on this open set f is finite. In particular, there is an open set / C dom(f) with
Ty €U, fis €% onU. Since f is €% on U and Vf(xy) # 0, there exists some 75 > 0 for such
that, for all 7" € [0,79), f(Zx(7")) = f(®r — 7'Vf(Zr)) < f(@k), and since A is continuous on
dom(f) D U and A(&;) = I,,, we can shrink 79 if necessary to ensure that ||A(Z(7")) — L |lop =
HA(ik - T/Vf(ik))) - In”op < %

Further, observe that by 3,,-smoothness of f on K, a Taylor expansion along the segment parame-
terized by Z(7) yields

@) < (@) - (r = 5= ) V@I vr < Do

< flzr) — % IVE(@R)|? VT e {O,min{m, 51 }} . (H.11)

To conclude, it suffices to show 7o > 7. For the sake of contradiction, suppose instead that 75 <
e < min{ﬁi7 5T, L }. By (a) continuity of f and A on K (b) continuity of 7 +— Z(7) € K,
0 » 20

Leond,
and (c) the assumption that K is closed, it must be the case that, either (a) f(Z(7)) = f(Zk)
or (b) [[A(Z(7)) — Ln|lop = 3. To see that (a) cannot hold, we have that 7y < n;, < + and
Eq. (H.11) implies that f(Z(7)) < f(Zx). To see that (b) cannot hold, we use A(xy) = I,, and
Lcona-Lipschitzness of A in the || - ||2 — || - ||op norm, Ly o, Lipschitzness of f, and the bound
T0 <Mk < ﬁ to attain

;@0

cond,z(

=

[A(Z(70)) = Lnllop = [|A(2(70)) — A(Z4)l|op

< Lcond,mona_f'(TO) - ik” < Lcond7:'coLf,moTO <

H.3.2 Proof of Proposition G.4

We assume without loss of generality that ¢ ¢ arg min(f).

Claim H.5. Fix n > 0 consider the iterates xj, and xy, produced by the updates in Eq. (G.2) with
Nk = 1n, N satisfies the step-size conditions of Proposition G.2. Then x is in the same connected
component of dom(f) as Ty, for all k.

Proof. Since A(-) is a connected reconditiong operator, each ) and Zj lie in the same path-
connected component of dom(f) for all k. Moreover, by Claim H.4, the line segment &) —
tVf(Zy),t € [0,n] lies entirely in /C, so &), and xy11 = T, — nVf(Zy) lie in the same connected
component of dom( f). Since path-connectedness is an equivalence relation, the result follows. [

Now, since K(x¢) is compact, and Z, € K(x¢) for all & > 0, there exists a convergent subsequence
Ty, — & € K(xo). Since f is continuous on K(xo), lim; ,o f(Zx,) = f(&), so by Proposi-
tion G.2, f(&) = inf(f), i.e. & € argmin(f) N K (). Since T € K(xy) is contained in an open
set U, which is in turn contained in dom(f), there is an open ball of radius r, B, (&), contained
in dom(f). Since for some i, sufficiently large, ), € B,(&), Zy, is in the same path-connected
component as €. But by Claim H.5, it is also in the same path-connected component as x. Since
path-connectedness is an equivalence relation, the result follows.

I DCL for Output Estimation (Proposition 4.2)

In this section, we establish the weak-PL property of our regularized loss function £ (-) = Log(-) +
ARinto(+). Our strategy is to show that £ () admits a DCL, which leads to a weak-PL constant a(K)
for each K, whose parameters are themselves bounded in terms of £y(-). Before continuing, we
recall that n denotes the dimension of the system state x (and internal state X), m of the observation
y, and p the output z, and that polyop(Xl, Xa,..., k) denote a (universal) polynomial function of

operator norm of matrix, arguments ||X;]|, || Xz]|, ..., and a polynomial in scalar argument . We
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use I, to denote the 1-co indicator, i.e. for some event £, [,,{E} = 1if £ is true, and [, {€} = +o0
otherwise.

All proofs of the lemmas that follow are deferred to Appendix I.1. To proceed, we need to invoke
Theorem 3 by specifying the DCL of the function

Lx(K) = Log(K) + ARinto(K) = lim E]|z(t) - 2(t)|1%] + Mr[Zy ).
Throughout, given a matrix 3 > 0 partitioned in 2 x 2 blocks, we more generally define
Z(T) =232, (L1
With the above notation, we can express

£3(K) = Jim E[[Gx(t) — Cix(t)*] + A+ tr [Z]

= lim tr l[G —Ck]E [zgg] [zggr {_%H + At [Z(2k) 7]
= tr [[G —Ck] Zk [G&:TI” + Atr [Z(Zx) 7] (1.2)

This leads to the following notion of the lifted function.

Definition I.1 (The lifted function). We define the lifted function on the space of parameters
(K, %) € Kinto x S*™ as follows

fe(K, X)) = (tr [[G —-Ck| T {_GCH +A-tr [Z(E)l]D T (K, 2) € Cuge, } (I.3a)

(M)E=0,Z(X) =0 (1) AX;; +Z1;AT +W; =0

1

(A0 A 0 W, 0

(i32) (BKC AK> Tt E (BKC AK) +< 0 BKWQB;) =0
(13b)

let = (K,E) N

We extend fi+(K,X) to the space of all (unconstrained, even possible unstable) filters K =
(Ak, Bk, Ck) by setting the lifted function to be infinte when K ¢ Kinso: frr:(K, X)) =
Jree (K, D)oo {K € ’Cinfo}-7

Step 1. Verifying the lifting.  We first verify that fi;, is indeed a lifted function of L.
Lemma L.1. For any feasible K € Kinzo,

Ly (K) = in f K, X
A( ) Helg}n 1ft ( ) )7
and this minimum is attainedfor > =3k

Step 2. Convex reparametrization. Next, we introduce the transformation ®:

Definition I.2. We define the convex parameter v := (Ly, Lo, Ly, M, M) and the transformation

U(AVT + BKC(%)H) +(E A0

Bk
v =K X) = CkVT , (1.4a)
(= Hu
(B
U\ _ ((Z D
where <V) = ( (210 > (I1.4b)

"This formalism is just to accomodate for the fact that we encode constraints on domains in the function in
general DCL framework.
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We let d,, denote the dimension of the parameter v and let d,, denote the dimension of the parameters
(K, 32), both as Euclidean vectors. One can then verify that d, < d,; that is, the lifted function
indeed has more parameters than the convex one. The following shows that there exists a convex
function f.,x, which completes the DCL:

Lemma L.2. There exists a convex function feyy : R% — R such that

flft(K72) = fcvx((P(K,E)) (IS)

The transformation ® and associated convex function f.,, was first developed by Scherer et al.
[1997], cf. also Masubuchi et al. [1998] for contemporaneous independent work.

Step 3. Controlling the weak-PL constant. Lastly, we show that the DCL lends itself to a
bounded PL constant by invoking Theorem 3. To do this, we need to show that the image of ®(K, X)
is not too large, and that V®(-) has rank at least d,,. We establish both in sequence. Let Uk and Vi
be corresponding to Eq. (I1.4b) with 3 = 3, i.e.

Uk = (Z¢H12, Vi = (Zk)12. (L6)

Lemma 1.3 (Parameter compactness). Consider (K, Xk), where X is the stationary covariance
associated with K. Then,

[@(K,X)le, < (max{n, vVnm} + /Los(K)) - poly,,(A,C, W3 I, B "), (17

where ||V, = \/E?:1 L, ||Z + 23:1 |M; || denotes the Euclidean norm of the parameter v.
Moreover, if Ug and V are invertible, then the filter parameters are bounded by

max {[| Ax||, | B[} < polyo, (A, C, Wy 1, Bk, B U L Vieh), [ICklle < 4/ Loa(K) /[1Z -

Lemma 1.4 (Conditioning of V®). Suppose that K € Kinto. Then, ® is differentiable in an open
neighborhood of (K, ¥x), and if Uk and V are invertible,

1
—————— < poly,, (A, C, 3k, =", Ak, Bk, Ck, U, Vit
O'du(vq)(K,EK)) _poyop< ) Wy Ky Ak K, DK, VWK, Vi 5 Vi )
S pOlyop (Av Cawglv EK? Elzla Uglavlzlv ‘CUE(K)) ’
where the last line is a consequence of Lemma I.3.

To conclude, we eliminate dependencies on Uy and V:

Lemma L5. I[fZ = Z(X) is invertible, the matrices U = (X71)15 and V = X5 are invertible,
and their inverses are bounded in operator norm as

O~ < VIZHIEL v < IS HEIIZ -
As a consequence of Lemmas 1.3 and 1.4,

1

max {HAK”a Bk, m

} < poly,p, (A, C, W3, Bk, B h Z Log(K)) - (18)

The conclusion of Eq. (I.8) and the bound ||Ck|[r < 1/Loe(K)/||Zx"|| from Lemma 1.3 are pre-

cisely the conclusions of Proposition 4.2. O

I.1 Supporting proofs for Proposition 4.2
L2 Proof of Lemma I.1

Recall from Eq. (I.2) that

GT

LA(K) =[G —Ck] =k {—CI

] + Mr [Z(2x) 7.
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Since Xk satisfies the constraint in Eq. (I.3b) with equality, and since ¥k > 0 and Zk > O for any
Yk € Kinto by Lemma G.7, we see that (K, X) € Cy¢s, and therefore

LA(K) = {[G —Ck] =k {_GCH +Atr [Z(3k) Y] } Lo {(K, k) € Cige} = fuze (K, S).

Next, let X be any other matrix such that (K, X) € Cyz,. Examining fi4, it suffices to show that
@ =S and () Z(T) < Z(Zk).
We show (a) and (b) hold as follows.

Proof of point (a). Recall the matix A k and W

Agk = {B?C AOK] , Wk = [Vgl BKV?/'QBI = 0.
Then, 3 is the solution to the Lyapunov equation
A3k + EKA;EK + Wk =0. 1.9)
Since X € Ci4¢, Eq. (I.3b) part (4i7) implies
AakE+ BA0k + Wk 0. (1.10)

Subtracting these equations gives
0= Aak(E—2k)+ (2 - Zk)Al k-
In other words, there exists a matrix @ > 0 such that
Al(E-3ZK)+ (2 -Br)Ahk+2=0. (L11)

Since it is assumed K € Kinso C Kstan, then Ak is Hurwitz. Therefore, the uniqueness of
solutions to Lyapunov equations with stable matrices shows that the unique solution to Eq. (I.11) is

some matrix X — X = X >~ 0, as needed.

Proof of point (b). We build on 3 > 3. Recall that 3 > 0 as noted above, so that we can
invert X1 < 2;1. Taking the bottom-right block and using the block inversion formula,

(B -Z(®) " 2 (B - 2(2) 7
which is equivalent after inversion to
Y11 —Z(X) = Bk — Z(Xk). (1.12)

Next, observe that since 317 = 311 k = 311 gys for (K, X) € Cy¢ (this follows from the unique-
ness of solutions to Lyapunov equations with Hurwitz matrices and constraint (i7) of Eq. (I.3b)).
Therefore, Eq. (I.12) simplifies to Z(Xk) = Z(X), as needed.

1.3 Proof of Lemma 1.2
Consider the parametrization v = (Ly, Lo, Ls, My, My) = ®(K, X). We can then write
GT _1
f]_ft(K72) = tr [G _CK]Z: —CT +)\tr [Z(E) ] ]IOO{(K, E) c let}~
K —_————

f2(K,3)

fi(K®)

We show that

(a) Whenever (K, ) € dom( fi¢¢) (thatis, (K, 3) € Cy1t), then there are affine matrix-valued

functions C(-) € RP*2" and X(-) € S2" with X(v) > 0 of v such that

filK,2) = a[C(v) ' X(¥) " C(v)).
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(b) Whenever (K,X) € dom(fis) (that is, (K, X) € Cis¢), then M; = 0 and My > Mfl.

One can further express fo(K, %) = tr[(My — M; )71,
(c) There exists a convex set Ceyy such that (K, 3) € Cy¢y if and only if v € Ceyy.

We turn to the verification of points (a)-(c) momentarily. Presently, let us conclude the proof. Points
(a)-(c) directly imply that fi5+ (K, X) = feux(P(K, X)), where

Fore(V) = (tr[é(u)Ti(-)—lé(u)] F A tr[(Ms — M;l)—l]) Loo{V € Cous}-
To conclude, it remains to show that feyx(-) is convex. Since Cyx is convex by point (c), it suffices
to show that the functions (i) v + C(v) T X(v)"'C(v) and (i) that (M, Ms) + tr[(My —

M *)~1] are both convex. Since C(-) and X(-) are affine in v (and affine composition preserves
convexity), point (i) follows from the following lemma:

Lemma L6. The function g(C,X) = tr[CTX1C] is convex on the domain (C,X) € RP*™ x
S,

Point (i¢) follows from the following lemma:

Lemma L7. The function h(M;,Ms) = tr[(My — M{Y ™Y is convex on the domain
{(M;, M) € ST, xS%, : My = M; '}

The proof of these lemmas is defered to Appendix 1.7.

Proof of point (a). Introduce

6(1/) = [GM;y — Lg G]T = [GM2 - CkV' G]T’ 5((”) = (NII2 1\/111) ‘

It is shown in the proof of part (c) below that )N((V) > 0. We compute (noting that My is symmetric)
that

Ew) X(v) ' E(v) = [GM, — CVT G [Mg I ]_1 {(GMQ — CKVT)T:|

I M, GT

T —1

G —Cy Mz V] M 1 M VI ¢
I 0 I M, I 0] |—Ck
@ M2 A\ G‘r—r
=[G G« [VT —U-lMlv} [—c;]
(i1) GT =
= [G —CK]E _CT :fl(AK;BKaCKvx)'
K

Here, equality (¢) uses the block matrix inversion formula, and the facts that M, M are invertible,
and I = M;M, + UV as to be shown in Claim 1.8; Equality (ii) is given by the following
calculation, whose steps follow from Claim I.8.

r -1

1 oo M, V
s = M U} [ T O] Eq. (L13a)
[ I 0] M, V] _ M, \Y%
T-UM; U | T 0] T |-UTY (MM, - 1) —UTIMLV
M, A% ]

_VT UM,V Eq. (I.13c)

Proof of point (b). To show point (b), we have
tr [Z(E)_l] = tr[(2122272121'—2)_1]
= tr[(— (B — TR Eh) + )
= [(=(=)' +30) ) = ul(Ma — M),

In addition, M; = —(2*1)11 > 0 since X > 0 (see the definition of the constraint set Cy¢; in
Eq. (I.3b)). Lastly, since Z(32) > 0 from the definition of Cy¢+, it must be the case that My > Ml_l.
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Proof of point (c). We first remark that, as in the specification of the lifted constraint set Cy¢¢,
specification of the convex constraint set C.,, does not invole the parameter Cy at all. We first show
that v = ®(K, X) satisfies some useful identities, using the convex parameterization in [Scherer
et al., 1997, Masubuchi et al., 1998].

Claim L8. v = ®(Ak, Bk, Ck, X) satisfies the identities

—-1 -1
(M, V I 0 e (1 0 M, V
X_<I o> <M1 U) r=X _<M1 U) (I 0) (1.13a)

_ Ly - M;AM, Lo\ (VT 0\
(Ak By) = (U o)( Lo AN 02> (CM2 g) , (113b)

I=M,M,+UVT. (I.13c)

Proof of Claim 1.8. To satisfy Egs. (I.13a) and (I.13c), one uses the variables (written in terms of X)

S I (< iy R (<< ) PO

Next, by Eq. (I.13b) we have

L1\ _ (U(AVT +BcCMy)) | (MiAM,
Ly) = UB« 0 '

Hence, combining with Eq. (I.14) and setting Lz = Cx'V |, these identities are satisfied for

Lq U(AKVT + BKC(E)H) + (Eil)nA(E)ll

L2 UBK —1
vi=|L; | = CkV'’ ,  where (3) = <(?2))12

Ml (271)11 12

M2 (2)11

To conclude, we use Claim 1.8 to check that (Ak,Bk,Ck,Xk) € Cis if and only if
®(Ak, Bk, Ck,Xk) € Ceyx for some convex constraint set Ceyy. Recall the definition of Cisy
in Eq. (I.3b). Via a Schur complement argument, we can express (Ag, Bk, Ck, X) in Cy¢; if and
only if Ak, Bk and X := X! satisfy

i,
A 0 A0 I 0
X{BKC AJ“L[BKC AK] X X[o BK}

<0 (1.15a)
1 0] ¢ w0
0 Bk 0 ng
X >0 (1.15b)
AX N+ (XTHnAT + Wy =0. (1.15¢)

Substituting Eq. (I.13a)-Eq. (I.13b), we see that Egs. (I.15a) to (I.15c¢) are (respectively) equivalent
to the following constraints

Aw)T +A®v) B(v)
- {Wl—l 0 } =<0, (I.16a)

X(v) = 0, where X(v) := (1\? L ) (1.16b)

AM, + ML,AT + W, = 0. (L.16c)

54



Here, the equivalence between Eq. (I.15a) and Eq. (I.16a) invokes the following identity, derived
similarly to the expression for ¥ derived in part (a) above:
M, V]‘l{l 0}_[M1 U

_ -1 _
X=5% _[I ol M, uUlT|UT —v-M,U|"

The equivalence between Eq. (I.15b) and Eq. (I.16b) can be verified via the Schur complement. It is
clear that Eqgs. (I.16a) to (I.16¢) determine a convex constraint set. ]

1.4 Proof of Lemma 1.3

Fix (K, Xk) for K € Kiut0, and v = (Ly, Lo, L3, My, M>) be the associated convex parameter,
v = ®(K, Xk) defines the matrix A as in Eq. (I.16a)

AT +A B
~ AM A ~ I 0
o - -1 ._ 2 .
A= BT Wy 071 , where A := ( L, M1A+LQC)’ B: <M1 L2>'
0 W,
Since (K, Xk) € dom(fiss), v € dom(feyx), and hence Eq. (I.16a) implies A < 0.

We begin our argument by bounding the operator norms of the matrices L; and Loy, which we
ultimately translate into bounds on Ak and Bg. Our arguments use the following Schur complement
test for negative semidefinite matrices:

X11
X[

Lemma L9. Let X = [ §12} satisfy X < 0 and Xgy < 0. Then, || X12]|2/[Xa2|l < | X11].
22

Proof. Since X < 0, —X > 0. By the PSD Schur complement test applied to —X,
0= —Xi1 — (—X12) (X35 ) (—X12) T = = X1 + (X12X55 X).

Hence, —X12X2_21X1T2 =< —Xj4;. Now, observe that X =< 0 implies that —Xjy1, —X2_21,
7(X12X2_21X1r2) are all PSD ThllS, X12X2_21X1TQ| S ||X11||, so that ||X12||20mi11(X2_21) S
I X11]] (where o,y denotes minimal singular value). Noting Umin(X521) = 1/||X22]| con-
cludes.

We begin bounding ||Ls]|.
Claim 1.10. We have the bound

Lol < 2] CIIW3 | + \/QIIMlllHAIIIIW?H.

Proof. Let A3 4y denote the submatrix of A corresponding to the 2nd and 4th rows/columns:

L,C + (LoC)T + MiA + (M;A)T Ly

A(274) = L2T —W2_1 .

Since A <0, A(2’4) < 0. Lemma 1.9 gives

Lz [/ W5 | < 2| Lol Ol + 2/ M [[[| A

Hence, 2 := ||Lo||? satisfies a quadratic inequality az? — bx — ¢ < 0, a = 1/|W3 |, b = 2||C|

and ¢ = 2||M ||||A||. Solving the quadratic equation, using a, b, ¢ > 0 and taking the positive root,

and using \/z +y < \/x + /y forz,y > 0,
5]
o< b+m§ 2b+22\/%§é+\/c/—a’
a a

2a

that is,

L2 < 2 ClIW5 |+ \/2||M1||HA||||W51H~
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Next, we bound || L || in terms of || Ls||:
Claim L.11.

L | < 2/ AV (AL + [CIL]]) + 1A

Proof. Observe that A < 0 implies A + AT < 0. That is,

(AM2 +(AM,)" A+L{

L+ AT W, ) <0, where W3 :=M;A + (M;A)" +Ly,C+ (LyC)".

Now, we know that W3 =< 0, but to invoke a Schur complement, we need strict inequality. To this
end, for some A > 0 to be choosen larger, we know that W3 — A\I < 0, and

AM; + (AM,)"T A +L] <0
Ll—‘rAT W3-/ — 7

Using Lemma 1.9
AM; + (AMy)T —(A+ L) (W3 =X)L, +AT) <0,

(A+L)TAT—W3) H(Ly + A7) < —(AM; + (AM,) ),
and hence
|A+L]|?
[W5 — AT
Since W3 < 0, ||[W3 — AI|| = A + ||[W]||. Hence,
A +L{ ||? < 2|A[[[|Mz]| < (A + [W3]]) - 2] Al Ma].
Since this is irrespective of A > 0,

1A + Ly 2 < 2| Al M| W]
< 4[| Al[[[Ma]| AV [ + [[Cl[Te]) -

< 2[| Al M.

Hence,

Lo < 2/ ANV (TA]IIML + [ICHIT2]) + A

Lastly, let us bound Ls.
Claim L12. We have that | Ck||r < \/Loe(K)/|Z¢| and |Lallr < Bk lv/Loe(K)/|| Sk -
Proof. As follows from the proof of Lemma .1,

) =t (16~ 2| Gr|) 2 M (BOUGIE +1CKIR) = Ain(B) Kl

which gives the desired bound on ||Ck||r. Since L3 = CxV T, and since V is a submatrix of 3,
[Lsllr < [[VII[Ckllr < [Zk[|Cklle-

The lemma follows. O

Summarizing the previous three claims,

Lol < I|Lall < 2CHIW5 |+ 2V A [W5 ]| = poly,, (M, A, C, W5 )
L]l < 2v/AJIM: || ([[[|A[[M: | + [C]lI[La]) + [|All
= pOlyOp(MlvMQa A7 C7L2) = pOlyop(MhMQa A7 va2_1)

ILslr < [[Zklly/ Loe(K) /B | = polyep, (B ' Bk) v/ Loe(K).
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This suffices to bound ||v||¢,:

2

2l = 4| D (M2 + |Ll12) + | Lsle
=1

2
Lalle + > (Ml + [ Lillr)

<
=1
(i) 2
< max{n, vom} [ Y (IM;l + |Lq]l) | + |[Ls|lr
=1

(id)
< max{n,v/nm} - poly,, (A, C, W5 ', My, My) + poly,, (27", ") v/ Loe(K)
@) max{n, vam} - poly e, (A, C, W5, S, Bi) + poly,, (B¢, k) v/Loe(K)
= poly,p (A, C, W3, Bk, B, ") (max{n, vnm} + v/ Lee(K)).

Above, (i) uses My, Mg, L; € R™*", and Ly € R™*™, (4i) uses the bounds on ||L;|| developed
above, and (i) uses | M || = [|(Zx")11]l < || 2| and similarly, | Mz|| < || Zk]|.

Next, we bound || Ak|| and ||Bk||. From the definition of the transformation ®, and recalling Uk =
(B2 and Vi = (Zk)12, we have

L; = Uk(AkVg +BkC(Z)11) + (Z Y11 A (2)11, Ly = UkBk. (1.17)
=M M|
=M1 = 2

Hence, if Uk and V are invertible,
Bkl < [[U L]l = poly,, (Mi, A,C, W51, U,
Ak < [V IO (ML A IM: || + ([T []) + B HICIHITV Ok
= pOIyop(MlaM25AaC7W2_17UK7V;15U;1)

Again, we note that |[M;|| = [(Zc")11l| < [|Zc!|| and similarly, | Ms| < ||Ek]|. Similarly,
Uk = H(E,Zl)m” < ||EQ1H, hence, we conclude

max {|| Ak, | Bk} < poly,, (A, C, W5, 5k, 5. U, Vieh), (L.18)
as needed. O

I.5 Proof of Lemma 1.4

€ Ci¢t; the lemma cor-

We establish the differentiability and conditioning of ® for any (K, X
K,Xk), where we recall v =

responds to the special case when ¥ = 3g. We let v = &
(L1, Ly, L3, My, My) is given by

Ly U(AVT +BkC(Z)11) + (E HuA(S)n
Ly UBg
Ly | = CV T : (.192)
M, (= Yn
M, ()
-1
where (3) = <<%2)1)212) ) (L.19b)

To see that ® is differentiable, we see that Phi is a polynomial function in Ak, Bk, Ck and X
and X1, and is therefore differentiable in an open neighborhood of any (K, X) for which X is
invertible.

Let’s turn to the condition of V®. We then fix a target perturbation Ay =
(Ar,, Ar,, AL, Am,, A, ) such that its /3-norm as an Euclidean vector (equivalently, the sum
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of Frobenius norms of its parameters) is
3 2
1AcwllZ, = D IALE + Y A, |17 = 1.
i=1 j=1

Our strategy is to compute a perturbation Ajsy, = (Aa, Ap, Ac, Ayx) of the parameters (K, )
such that

d

2K Z) +thae)|, = Acw. (1.20)

Noting the identity
V(I)(y) “Agg = ACVX)
it thus suffices to compute uniform upper bound on [|A¢c[|7, = [|AalZ + [|Asl} + [[AcE +

| Ax||% for which Eq. (1.20) holds. For convenience, let j € {1,2} (respi € {1,2,3}) g, (resp
®y,,) denote the restriction of ®’s image to the M (resp. L;) coordinate.

Handling the M;-blocks. We proceed to choose Ay by first ensuring 3 ®np, (K, X) +
tAlft)| — = Ay, for j € {1,2}, and then continue to show the same for the L;-coordinates.
Since CIDMJ. are functions of X, it suffices for now to choose perturbations of 3J; abusing notation,
we shall simply write ®pp; (2) to express this fact. We consider a perturbation of the form

A Agp
Ay, where Ay = [AL 0 ] . 1.21)
Since P, (X) = X471, we have %©M2(Z + tAg)ftZO = A, so it suffices to choose
A = Anm,. (1.22)
Next, we consider the M -block. For convenience, we define the curve E(t) =Y +tAsx. Then
d d — d -
SO (B4 tAz)],_, = 0w ()], = (50 ],
d - o aleT
= (Zn - 20250 E0) 7,
_ o d o
= (B0 -ZpTnTh) Y, <dt(211 - 2122221212”#0) P
=M; =M,
=M, (An - A1222_21212 - (A1222_21212)T) M;.
Hence, we can take
1 _ _ _
A = 9 (AMz - My 1AM1A111) 2121222
1 _ _ _
=3 (Am, — M A AL ) VIS, (1.23)

Some directional derivatives. To handle the L, blocks, we extend the “bar” notation to the vari-
ables M (t), Ma(t), U(¢), V(t) to denote the matrices corresponding to 3(t) = X + tAy, i.e.

M () = (Z7 (), Ma(t) =Zn(t), V=), U=(Z(t) o

Since 3(0) = X, the above matrices are evaluated to their “non-barred” counterparts when ¢ = 0.
Moreover, by choice of A, we have

M;(0) = Am,, M5(0) = Am,, V'(0) = A
Using the block matrix inversion formula, we have
U= (), = -E By = -MiZp3,,
where above we use M; = (X~1);; and 5, (t) = 35, is constant for all ¢. Therefore,
U'(0) = —M/(0)212(0)Z55 — M1 (0)Z75(0) S5,
=AM, T2 - MjA LTS
=AM, V(Z22) ' - M AL (1.24)
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Handling the L;-blocks. Let us also define By (t) = B + tAp and Ak(t) = A + tAa. Using
the “bar”’-notation, we can compute

d

%@LQ(V +t A, = a(BKU)h:O = Bi(0)U + BkU'(0) = AgU + BkU'(0).
Hence, we set
Ag = (AL, — BkU'(0))U! (1.25)
Similarly, we can select
Ac =V (AL, — Ck(V'(0)"). (1.26)
Finally, we compute
%% (0 + A, = % (O(AkVT + BcCM,) + M, AMS) |,_,

=UAL(0)V + U'(0)(AkV + KkCM;) + U (AV'(0) + By (0)CM; + BKCM}5(0))
+ M/ (0)AM; + M (0) AM5(0)
=UAAV + U (0)(AkV + BkCM3) + U (AA 5 + AgCM; + BKCAyp,)
+ Ap, AM; + M AAY,.
Hence, we select
Apr=U"'AL, VI -U U (0) (Ak + BkCM,) V!
— (AA 3 + ABCM; + BKCAN,) VT — U (Ap, AMy + MjAAN,) VT

1.27)

Bounding the norm of A.,;. We begin with some useful bounds:
max{ [ My [[, [ O[], [|(Za2) |, (M5 ]} < =71 (1.28a)
max{ || Saa|, M, [Mall, [V} < [IZ]. (1.28b)

Eq. (1.28a) uses the fact that M; and U are submatrices of 7!, and the fact that for any positive-
definite matrix, ||X;7'| (which is just [|[M;'||) and ||25,'|| are both at most |=~'|| (as can be
verified by the block-matrix inverse formula). Finally, Eq. (1.28b) follows from similar reasoning.

Notational aside. In what follows, we apply our polyop( -) notation, which denotes a universal
polynomial in the operator norms of its matrix arguments, and in the values of its scalar arguments.
We let poly,,(-) include universal constant terms (e.g. 1 + || X[ is poly,, (X)).

From Eq. (I.23), we can bound

”Al?”F = pOlyop(Ml_la 2227V71) ’ (HAMl HF + HAMQ ”F)
In light of Eq. (1.28b),

[A12]lF = poly,, (B, V) - ([AM, lIF + | A, [|r), (1.29)
which means that
(@) _
[Ax|r = \/IIAMQII% + 2 Arllf < poly,, (B, V7 - ([Am, [Ir + [[ A, [|r),

where () uses Eq. (I.21) and Eq. (1.22), and the second inequality calls Eq. (1.29).
Next, from Eq. (I.24) and Eqs. (I.28a) and (1.28b),

[T (0)[r < [|AM, e[ VIHZs | = [Mul[[|Aw][[(S22) 7!

= pOl}Iop(Ev 2_1) (HAM1 ||F + ||A12HF)

2
= poly,,(Z, 27V [ D Am, e
j=1
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Continuing,
[Ag[lr = [[UH (AL, [F — 1Bk T (0)[|r)
2
< poly,, (BB, VLU By) | Y [AM,llr + AL lF |

j=1
and similarly, since V/(0) = A, bounded as in Eq. (1.29),
lAclle = V7 (AL e — [ICIIIV'(0)]r)

2
< po]Yop(271727V713U71v CK) Z ”AM]HF + ||AL3HF

=1
Finally,
||AAHF - pOlyop (A7 C7UaV7M17M2aAKaBK7U_17V_1)
2
< | T 0)|lr + |AL, lr + [|ABllE + Y [|Awm, [l
j=1
2
= poly,, (A,C, 2,27 Ak, B, UL, V) | Y A, [Ir + AL, I
j=1

In sum,

|Avecll?, = lAAlE + [AclF + [Aclf + [AxlE

2 3
= poly,p (A, C, 2,571 Ag, Bk, Ck, UL, VY - [ S am 12+ AL
j=1 i=1
The bound follows. O
1.6 Proof of Lemma 1.5
Let Z = 31535, 3/, Then,
1Z7H) = 125 22225 || 2 1575512 Amin (Ba2)
> 1= 5 1P Amin (B22)
> |25 1 Amin ().
Hence,
Z
v = < o/ JE L _ s
V=123 < 5y = VIS
Next, from the block matrix inversion identity, we have
U = (2_1)12 = —(2_1)1121222_21 = —(2_1)11V22_21.
Hence,
N PN o] -
U 1 — 2 V 1 2 1 1 < || V 1
H H H 22 ( )11 || — Amin((zil)ll)” H
2] - - _
< — =V =IZl= vV
)\min(z )
< IZIVIZHPIIZ )
The conclusion invokes Lemma 1.4. O
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L.7 Proof of convexity lemmas

Here we prove Lemmas 1.6 and 1.7, restated below for convenience. Both proofs use the fact that
convexity is preserved under partial minimization.

Fact I.1 (Chapter 3.2.5 of Boyd et al. [2004]). Let (Z(ac, y) be a convex function in two arguments
such that ¢(x) := miny ¢(x, y) is finite and attained for each x. Then ¢(x) is convex.

Lemma L6. The function g(C,X) = tr[CTX1C] is convex on the domain (C,X) € RP¥7 x
St ..

Proof. Observe that we can express

9(C.X) = in §(C.X.B), §C.X.E)= <tr(E) T {E - 0, [@ET % - o}) .

- T
Indeed, since X > 0 on the domain of g, the Schur complement test implies that [g C;z } = 0if
and only if E = CX~1CT. Hence, the minimal value of tr(E) is attained with E = CX1CT.
Observing that g(C, X, E) is convex (affine function with a convex constraint), Fact I.1 implies that
its partial minimization g is convex. O

Lemma L7. The function h(Mi,My) = tr[(Ms — M;')7!] is convex on the domain
{(M1,M,) €S" | xS", : My = My '}

Proof. Introduce the function

M,-E I,

h(My, My, E) = tr[E™"] - I { [ L M,

}EO, E -0, M1>O}.

Since the function E + tr[E~!] is convex for E > 0, the function I is also convex. The constraint
in h is equivalentto My > 0, E > 0, and M, —E—Mf1 > 0. Rearranging thatis E < M —Mfl,
or equivalently, E~ = (M, — M ')~'. Hence, h can be written as

(M, My, E) = trlE"!] - I, {E™ = (My — M7, E>0, M;»>0}.

From the above form, it is clear that ming ﬁ(Ml, M,,E) = E(Ml, M), which is finite and at-
tained by E = My — M; ! on the domain of h. O

J Bounds on Solutions to Closed-Loop Lyapunov Equations
(Proposition 4.3)

The following proposition gives a more granular statement of Proposition 4.3 in the main text.

Proposition J.1. Let || - || denote either the operator, Frobenius, or nuclear norm, and let clyap
denote the integral in Eq. (J.1), which corresponds to the continuous Lyapunov opertor when its
argument is Hurwitz. Then, for any matrix Y € S?,

||C|yap(AC17K,Y)||o < Clyap(K) Y],
where Cyap(K) = poly (12l IZ I, 12 1, W, W5, | C). More precisely,

8. (K)2 22 B11.5sl 2 CI? {1, Bl N
7A )

Cryap(K) :=
g p( ) )\min(EK)Amin(W2)>\min(222,K)Amin(zK) min(zll,sys)

[Z11.sys (||§311sys||2 { 2 4/[X11,sys|l })
ty(K) := : lo : max , - .
*( ) Alnin(wl) )\min(wl) )\min(zll,sys) )\min(zll,sys)Amin(ZK)

The following corollary is also useful for establishing compact level sets.

61



J.1 Preliminaries on Lyapunov solutions

As a shorthand, we let clyap denote the following limit, if it converges:8

t oo
clyap(X,Y) = lim | exp(sX)Y exp(sX)'ds :/ exp(sX)Y exp(sX) ' ds. Jd.1n

t—o00 0 0
We also define a “finite-time version”, which is defined for all X € R%*4 and Y € S%:

t
clyap(X,Y) = /
0

oo
exp(sX)Y exp(sX) " ds, clyap[>t](X,Y):/ exp(sX)Y exp(sX) ' ds.
t

The name clyap is short for “continuous Lyapunov”, and is motivated by the following lemma:

Lemma J.2. Suppose that X is Hurwitz stable. Then, T' = clyap(X,Y) exists and is the unique
solution to the Lyapunov equation

XL+IX'+Y =0.

In addition, if there exists a sequence ty,to, ... such that limy_, || exp(txX)||[r — 0, then X is
Hurwitz stable.

J.2 Proof of Proposition J.1
J.2.1 Setup.
Recall that 3x = clyap(Ac k, Weik) and X171 oys = clyap(A, W) solve the equations

T
A 0 A 0 W, 0 B - B
[BKC AK] RO {BKC AK} + [ 0 BKWQB;(F:| =0, AZiieys + Buesd W1 =0.

—_———
:Acl,K WCI,K

Define the matrix X,, = clyap(Ac k, Wo) and X, = cIyap(AK,BKW2BI) as the solutions to
the Lyapunov equations

AakSu + SuAl «+ mfl 8} —0, AxS,+S.Af +BcW.BL =0.  (.2)
—_——

::Wg
We recall the following closed-form expression for the solution to Lyapunov equations.

In particular,

EK = / eXp(TAcl,K)Wcl,K eXp(TACl,K)TdT
0

o0
pI / exp(TAak)Woexp(TAq k) dr
0

3, / exp(TAx)BkW3By exp(TAk) Tdr
0

le,sys:/ exp(TA)Wy exp(TA) T dr.
0

Throughout, we use the following decompositions

_|_ 2[>t]

11,sys?

pINEES TS SN SHIES HINED EC D SHES LT SES D NI > U

where we define

t [e'e]
Eﬁ] ::/ exp(TAc k)Wl k exp(TAd,K)TdT, Eft] ::/ exp(TAc k)Wl k eXp(TAd,K)TdT,
0 t

and where 2%]7 )l t], sl ], Dl , Egt}’sys, E[ﬁfs]ys are all defined analogously. The following com-
putations are useful.

8That is, if im$2 || exp(sX)Y exp(sX) " ||r ds is finite.

62



Lemma J.3 (Computations of exponentials). The following characterizes the exponentials of A k:

(a) Defining M(t) = fg exp((t — s)Ak)BkC exp(sA)ds, one has

exp(tA 0
exp(tAak) = [ 1\1;[((75)) exp(tAk) |-

(b) The following computation holds

W; 0 exp(tA)YW7 exp(tA)T  exp(tA)W M(t)T
exp(tAck) [ 0 0} exp(tAak) " = [ 1\%@)\)7\71 éxpEf(A)T) I\I;I<(t)\)7V1li/I(t()T)

Proof. Part (b) follows directly from part (a) and a straightforward computation. To prove part (a),
we observe that the desired identity holds at time ¢ = 0. To prove it holds for all ¢, it suffices to
equate derivatives. First, we compute

d
dt

M(t) = (i/o exp((t — s)Ak)BkCexp(sA)ds

¢
=exp((t — s)Ak)BkCexp(sA) | ot / %exp((t — 5)Ak)BkCexp(sA)ds
0

t
= BkCexp(tA) + / Ak exp((t — s)Ax)BkCexp(sA)ds = BkCexp(tA) + AxM(t).
0

Therefore,
d Jexp(tA) 0 _ A exp(tA) 0 A exp(tA) 0
dt | M(t) exp(tAk) BkCexp(tA) + AkM(t) Agexp(tAx)| — “MK | M(t) exp(tAk)|"

Slmllarly, 7 exp(tAc k) = Ack exp(tAci k). The identity follows from uniqueness of solutions
to ODEs. O]

The following lemma is straightforward to verify using the previous one.
Lemma J.4 (Useful identitities). The following identities hold:

(a) One has the decompositions

0 0 0 0
S =%, + [0 EU] , s =zl 4 [0 z[t]] (1.3)
(b) E[ﬁ’K = Eﬂw = E[ﬁ,sys and similarly, 2[1>1t|]( = E[ﬁf] = Eﬁts]ys, and Y11k =

E117w = Ell,sys'

As a consequence, we find that Z[E . 1s invertible for all ¢. Lastly, we show Z}[ﬂ_’w = 0.

Lemma)s. =V}, ==l ==l ~o0frait>o

Proof. The equivalence E[ﬂ K= EH w = E[ﬂ sys is given by Lemma J.4. Using the formula

E[ﬂ,syb = fo exp(rA)W exp(rA)Tdr, we see that we can X1 s = fo 7)dr, where N(-) is

a continuous matrix valued function with N(0) = W > 0. Hence, for all vectors v 75 0, the func-
tion f(+;v) = v N(:)v is continous and has f(0;v) = 0. Thus, VTEH sysV = fo T;v)dr >0
for all nonzero v. O

J.2.2 A Lyapunov argument

In this section, we show that if there is a finite ¢ for which A\, (EE]) is strictly positive, then one can
bound the solutions to clyap(A.ik,Y) in terms of this ¢ and other problem-dependent quantities.
We begin with a general lemma that bounds the decay of matrix exponentials, with their finite-time
Gramians.
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Lemma J.6. Fix a matrix X € R4, and matrix Yo € S% and suppose that the solution Ty =
clyap(X,Yy) exists. Define I‘g] = clyap[t] (X,YYy), and I‘g>t] analogously. Then, for all s,t > 0,

(a) Po(t) = F([)>t], where Py (t) := exp(tX)Tgexp(tX)T.

. [s]
(b) Po(s+1) = po(s) - Po(t), where po(s) =1 — 2=iao ),

(c) In particular, if T'y > 0, then X is Hurwitz stable.

Proof. Part (a). We see that

Ty :Z/t exp(TX) Yo exp(rX) "dr

= exp(tX) (/too exp((r — t)X)Yoexp((r — t)X)TdT> exp(tX) "

= exp(tX) (/000 exp(7X)Yo exp(TX)Td7'> exp(tX) "
= exp(tX)Toexp(tX) " := Py(t).
Part (b). We use the decomposition
Ty =T 4+ =1l 4+ Py (1),
For a fixed ¢t and s > 0, we have

Po(s +t) = exp(tX) - exp(sX)Tgexp(sX) " - exp(tX)"
= exp(tX) - (Ty — I‘[OS]) ~exp(tX)
= exp(tX) - Ty/2(L, — T /2T /) TL/? - exp(tX) T
< Amax(In — T POEITG %) - exp(tX) - T/ 2Ty - exp(tX) T

=Py (t)
/\min(r([)S])
< |1-2m0 ) poe).
( ol )Pl

=po(s)

Part (c). Suppose that I'y > 0. Then, since F([)s] is monotone, there exists a finite s such that
I‘([)S] > 0. Thus, po(s) < 1. Then, by iterating part (b), we have that for any finite k¥ € N

Po(ks+1t) = po(s)" - Po(t),
so that limy, oo Po(ks+t) = limy,_, o0 exp((ks+t)X)Tgexp((ks+t)X) T = 0. Since Ty > 0, this

implies that limy_, || exp((ks + ¢)X)|| = 0. By Lemma J.2, this can only occur if X is Hurwitz
stable. O

By integrating Lemma J.6, we bound ||clyap(X,Y)||, in terms of )\min(l‘g] ).

Lemma J.7. Consider the setup of Lemma J.6, and suppose thatt > 0 is such that )\min(l"g]) > 0.
Then, for any Y € S% and for || - ||, denoting either operator, Frobenius, or nuclear norm,

t[|To?
)\min(I‘O))\min(I‘([)t])

[clyap(X, Y)llo < Y o
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Proof. Using Lemma J.2, we write 3 explicitly and bound it as follows

Ielyap(X, Y)]l. — \

/ exp(7X)Y exp(rX) " dr
0

o

g/ ||eXp(TX)YeXp(TX)THOdT

0

(@) o0 ,

< 1Yl / Jexp(rX)|> dr

— HY||O/0 Hexp(TX) eXp(TX)THdT

< ||Y||oH1“51H'/ | exp(7X)T exp(7X) '[|dr
0

. 0o t(k+1)
=[[Y[[s|ITy H'Z/k || exp(7X)Tg exp(rX) " [|dr
k=01

00 pt(k41)
— YIS / [Po(r)]ldr.
k=0

Here, (7) uses that || X Xs|| < min{||X1||[|Xz2|lo, [|X1]|o]|X2]|} for any o denoting either the oper-
ator, Frobenius, or trace norms (or more generally, any Schatten norm). From Lemma J.6, Po(7) is
non-increasing in the PSD order and | P (tk)|| < ||Po(0)| po(t)*. Hence, noting that P, (0) = Ty,

t(k+1)
/k [Po(r)lldr < [Po(th)[| < tPo(0)[lpo(t)" = ¢ Tollpo(t)".
t

Thus, if /\min(I‘g]) > 0, then po(t) < 1, so we can sum

o0
elyap(X, Y)[lo < YT - Tl - Y po(t)*
k=0

1
= |Y|[LIT ] - ¢l - ————
1Y [lo /T[] - ¢ To | = o)
_ [Toll
— ¥ ol - T -
min( 0)

Hence,

_dme
Amin(FO)Amin(F([)t])

T Mol

(t] )

l[clyap(X, Y)llo < [IY][o - ¢ (
min ¥

YTl

Specializing with X < A k, Yo < W k, I'g < X2k, we arrive at the following lemma:

Lemma J.8. Suppose that t > 0 is such that )\min(EE]) > 0. Then, for any Y € S*", and for || - |-
denoting either operator, Frobenius, or nuclear norm,

12 ]l?
)\min(EK)Amin(ZE])

lclyap(Acik; Y)llo < Cry(K) - [[Y]lo,  where Cpy(K) :=

Thus, it remains to show that, for any appropriate choice of ¢

C[t] (K) < Clyap(K) : J.4)
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J.2.3 Lower bounding finite-time covariance in terms of diagonal blocks

In order to upper bound Cf;(K) from Lemma J.8, we must lower bound )\min(EE]). Recall that
from Lemma J .4,

0 0
IS S [0 2,[51} : 1.5)

Leveraging this form, we show that it suffices to lower bound )\min(Eg]), that is, the finite-time
covariance introduced by the observation noise into the policy.

<t
Sl <

)\min(zll,sys) }
4 B2zl

Lemma J.9. Suppose that t is large enough such that | X Amin (X1 sys), then

1
2

1
Amin (EE]) 2 5)\mm(2¥]>mln {1,

Proof. Applying Lemma J.14 to the decomposition Eq. (J.5), we have

1 AInin E[t]
Amin (El[z]) 2 7>\Inin(2£ﬂ)min {1 ( 11,w) )

2 28], + =)
Substituing in £Y] | = ] and bounding |2}, + S| = S5 (| < [Zoox] in view
of Lemma J.4. Moreover, we have /\min(E[ﬂ,w) > Amin (Z11,sys) — ||E[ﬁtjys|| > %)\min(zmsys),

where the last step holds under the assumption on ¢ in the lemma. With these simplifications, we
arrive at the desired bound:

. 1 . )\min(zlltw>

J.2.4 Lower bounding the contribution of output noise

From Lemma J.9, we have to lower bound Ay, (Eq[,t]) This step involves the two most original
insights of the proof:

e First, ng ] b %E[Qt;w, for some system-dependent constant C'. Here, Z[Ut ] represents the
part of the internal-state covariance excited by the full-rank observation noise Wy, and
Zg’%’w the part of the covariance excited by the observations y(¢t) = Cx(t). Essentially,

we argue that the covariance excited by any stochastic process y(t) cannot be much greater
than the excitation by Gaussian noise v (¢).

e Second, if Zk > 0 and if E[ﬁﬂys is small, then we can lower bound /\min(E[zt;w) in terms

of Zg. Intuitively, E[Qt%,w describes how much of the process noise w(t) excites the internal

filter state X(t), and Zk measures the correlation between x(¢) and x(¢). This argument
therefore uses the insight that, if X(¢) and x(¢) have nontrivial correlation, some of the
process noise w(t) must be exciting the filter state X(¢).

Lemma J.10. For all t, we have

t|CII* |11yl
E[t] =< Sy . E[t]
22w = Amin(VVQ) v

In particular, E[Qt;K > 0 if and only ifﬁg] = 0.7

Note that this lemma and its conclusion only requires Assumption 2.3. It does not even require stability of
Ax.
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Proof. From Lemma J.3, we have that

t /OT exp((r — s1)Ak)BkC exp(sA)dsl) W, (/OT exp((T — s2)Ak)BkC exp(sA)d32> : dr

T

/
t T T
:/ 72 (1/ exp((Tsl)AK)BKCexp(sA)Wi/zd&) <1/ exp((T — s2)Ax)BkC exp(sA)W}/QdSQ) dr
0 0 T Jo
@ o, ! 1/2 12\’
= / T -7/ exp((T — s)Ak)BkCexp(sA)W; ) (exp((T—s)AK)BKC exp(sA)W; ) dsdr
/ / Texp((T7 — s)Ak)BkC exp(sA)W exp(sA) T C By exp((1 — s)Ak) " dsdr
= t/ / exp((T — 5)Ax)BkC exp(sA)Wj exp(sA) T CTBy exp((T — 5)Ak) ' dsdr.

Here, inequality (¢) invoked Lemma J.15. Using the mtegral re-arrangment

/ / NT—SSdeT—/ N(7 — s,s)drds
7=0 s=0J1r=s
/ / N(r, s)drds
s=0Jr=

j/ N(r, s)drds
s=0J7=0

for any PSD-matrix valued function N(-, -) : [0,¢]> — S7, we obtain that

=0, <t / / exp(TAk)BKC exp(sA)W; exp(sA) T C B[ exp(rAk) Tdsdr

t t
= t/ exp(TAk)Bk (C (/ exp(sA)W; eXp(SA)TdS> CT> By exp(TAk)"d
0 0

t
t/ exp(TAk)Bk (CE[ﬂ sySCT) By exp(TAk)"dr
0

t
:t/ exp(rAx)Bxk WL/ (W‘Wcz” CTWQ‘W) WL2B[ exp(rAx) T dr.
0

11,sys
We render the above integral as

t
t/ / exp(s1Ak)BkCexp(s2A)W, exp(szA)TCTB—Kr eXp(SlAK)Td81d82.
S2 0

11,sys Amin (W2 Amin

Bounding [W; /2Cxl] _cTw; /) < IS [Byonel < I [Zecl e have

(t] t”CH 1211 5ysl K T T
Sy S / exp(TAk)BkW2Byg exp(TAk) ' dr
’ )\min(WQ) 0
OB sl g
)\min(WQ) Y
The last point follows from E[t] K= 2[;;,10 +xl by Lemma J.4. O

Lemma J.11. Suppose that t is sufficiently large such that

||E Amin (322,K ) Amin (ZK)

11 sys” =
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Then, it holds that

/\min(EQQ K))\min(ZK)
)\min (E[t] ) > )
) = 4B sys

Therefore, in view of Lemma J.10,

/\min (WQ))‘min(EQZK))\min(ZK)
At B sys 21 CI1?

>
£
=]
/N
|\
=
N~——~
v

Proof. We assume that A,in (Zk) > 0 for otherwise the lemma is vacuous. We compute

1 _
Urnin(ElQ,K)2 = )\min(zlleirQ,K) = ||2 || mm <212,K2221’K21TQ7K) = )\min(222,K)>\min(ZK);
22,K
J.6)
and take ¢ sufficiently large that
1 1
IZ500 < 5 Amin (2200 Ain(Ze) < 50min(B12.0): 0.7

Now invoking Eq. (J.3) on the (1, 2)-block of X, then if Eq. (J.7) holds,
1
Yok =Biow = 2[1%@ + E[Sti,, so that oin (E[f%,w) > Omin(Bi2,K) — HE[S%,” > 20n11n(212 K).

(]

Next, since ¥, > 0, the Schur complement test implies that

t t|T t -
s, = s (s,) 7 s,

1 T sl
M E
11w
B S (e S SR et
[ ”211710” 12,w<12,w Hzll,sysH 12,w12,w>

where above we use EH w 2 = X11,w, and X114, = 311 g5 in view of Eq. (J.3). Here, invertibility
of EH,w is guaranteed by Lemma J.5. Therefore, if Eq. (J.7) holds,

1 1 Amin (Z22.K) Amin (Zk)
)\min (E[t] ) Z T~ 7 %min E[t] 2 Z T 7 %min by 2 Z : )
22w ||211 SyS” ( 12,w) 4||§]11 sys” ( 127K) 4”211 Sys”

where the last inequality applies Eq. (J.6). Lastly, we simplify the condition HE[S?UH

2/ Amin (B22,6) Amin (Zk) in Eq. (J.7). We have

()
Hzﬁéflu\\?sHzﬁflvu-uzééfluu ||2[ﬁi£|| 1220 S ISEL - [ Zak

11,sys

where (7) uses Lemma J.13, (i¢) uses E[Q?lj = X992 4, and (#4¢) uses both that 3ag ,, = 222 k by

Eq. (J.3) and that 2[1?1) = E[ﬁﬂys by Lemma J.4 part (b). Therefore, the condition ||Z)12 wll <

%\/)\min(ZQQJ())\min(ZK) is met as soon as

)\min(EQQ,K>)\min(ZK)
||211 syb” —=
4|[322.k||

J.2.5 Bounding the decay of the true system

Recall that both Lemma J.9 and Lemma J.11 require us to bound the decay of ||Eﬁtiy5|| This is
achieved in the following lemma.
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Lemma J.12. Foranyt > 0, we have
tAmin (W1) ||2117sys||2

2 <e H7311 Jsysll L A

11 sys
Proof. Define N(s) = exp(tA)X1 oys exp(tA) . We compute
d
&N(s) = exp(tA)AZ 1 oy exp(tA) T + exp(tA) D1 oy AT exp(tA) '
= eXp(tA) (AzlLsys + 2117sysAT) eXp(tA)T
— exp(tA) (~Wy) exp(tA)T
_Arrlin(wl) .
13115yl
Applying Lemma J.16,

_Amin (Wl )

Xp(tA) D11 sys exp(tA) " = 1211, sys]l
,SYyS

-N(s).

—tAmin (Wy) —tAmin (Wy)

exp(tA)S11 oy exp(tA)T = N(t) < N(0) - e el = i1 ays € el
As a consequence,

[>1] o T © — 82 min (W1)
X ays = / exp(sA)Xi; gys exp(sA)  ds < / Si1,sys - € Pl ) ds
s=t

s=t
||211 sys” *t>‘min(w1)
=y L Rt 0 LN T=11,sysll |
Hhsvs )\min (Wl)
The bound follows by taking the operator norm of both sides. O

J.2.6 Concluding the argument

It remains to bound Cpy(K) < Ciyap(K), where Cpy(K) = %
min (2K ) Amin (g

Lemma J.8. Consolidating Lemma J.9 and Lemma J.11, we have that if

)\min(222,K)>\min(ZK) }
4||211,sy5||

was given in

(1.8)

11,sys

1
=59 | < min {QAmm(zu,sys),

Then,

)\min(WQ)Amin(EQQ K))\min(ZK) . A1'1'1in(2311 s S)
Amin (E[t]> > : ~min { 1, T T oAYE
8t(| 11,55/ CI1? 4Bz k|
Or by inverting,
2 2
S IS —_ . TR §
)\min (El[z]) >\min(WZ)Amin(ZQQ,K)Amin(ZK) )\min(zll,sys)

Hence, if ¢ satisfies Eq. (J.8), then
82| Bk | [[Z11,5ys 12 €I { 4 Za2.k]l }
C(K) < Sy max 1, —=22KIL_L g g)
[t]( ) )\min(EK))\min(W2)>\min(222,K)>\min(ZK) )\min(zll,sys)
It remains to select ¢ large enough to satisfy Eq. (J.8). From Lemma J.12, it is enough to take
HEH SySH (211 sySH2 { 2 4HEII svs” )
t=1t,(K)= : lo : max ,

( ) Amin(wl) & )\min(wl) Amin(zll,sys) )\min(zll sys m1n ZK
Substituing ¢, (K) into Eq. (J.9) yields the desired upper bound Ciyap(K). To see that Chyap(K) is at
most polynomial in (||X|[, =" [l 1 Z I, W], W3 ), we observe that Cy(K) and
t,(K) are at most polynomial in

Hzll,sysHa )\min(Wl)_la Hzll,sysHy )\min(zll,sys)_la Hzll,sysHy
Amin (Z22,6) ™ Amin (Zk) 7, s Amin (k) 71 Amin (Wa) ™
Noting that 317 gys and 3o k are submatrices of Xk, so that Amin(Zi11sys), Amin(Z22,k) >
Amin (k) and || X171 sysl, | < [1Zkll, Cpy(K) and t,(K) are polynomial in
121155l Amin(W1) ™5 Amin (Zk) ™5 Amin(Zi) ™5 [C s Amin (k) ™ Amin (W2) 71,
Replacing Ayin (+) ! with ||(-) 7| verifies the simplification.

(J.10)
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J.3 Supporting technical tools

We first begin with two linear algebra matrices, both of which pertain to partitioned matrices

A A on
A= [AB AQJ e s, J.11)

Lemma J.13. Let A € S" be PSD be partioned as in Eq. (J.11). Then ||Az|| < v/[[A11]]||Azz].

Proof. Letv = (v1,va) € R?", then
vIiAv = VIAHVl + V;—AQQVQ + 2VIA12V2 > 0.

By considering the same inequality with the vector v.= (vq, —v2), we have that for all v =
(Vl,Vg) (S RQn,

1
Vi Aiava| < 3 (Vi A11vi + vy Aava) .
By considering scalings v, := (a'/?vy,a~/?v,) € R*" for o > 0, we have

1
T : T -1, T
‘Vl A12V2| S - H;% (ozvl A11V1 + o Vo AQQVQ)
[

T T
\/V1 Ay1vy - vy Axavy

< VA Agz | [[vall[vall,

which completes the proof. O

Lemma J.14. Let A € Si” be PSD and be partitioned as in Eq. (J.11). Then any given Ay € ST,
we have

0 0 1 . Amin(A11)
o (A0 2,]) 2 Gt min {1 57250}

Proof. Without loss of generality, may assume Ay, A1 > 0 since otherwise the lemma is vacuous.
For compactness, denote

A=A+ [8 180].

It suffices to exhibit A such that Amin(A) > A. From the Schur complement test, we have that
Amin(A) > X aslong as Aj; = AL, and

Aoy — AL, = Al (A — AL,) Ay,
so, substituing in the form of A, we have A;; = AI,, and
Ago + Ao — AL, = Ay (A — ML) T Aqs.
If we take A\ = aA\pmin(A) for some o < 1, then
AL (A = AL) M A < (1= ) TAL(AL) T AL X (1 - @) Ag,
where the last step applies the Schur complement test to A. Thus, it is enough
Az + Ao — AL, = (1—a) Ay,

so that, with rearranging and substituing in the definition of ), it suffices to choose o < 1/2 and
«
Ao = ——Ags + adnin(A11).
l—«

Thus, it is enough that o > 0 satisfies
Amin(Ao) = @ (2||Ag2|| + Amin(A11)), < 1/2.
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Hence, choosing the maximal a which satisfies the above display,
Amin (A0) Amin (A1) }

_ 1
Amin(A) > a)\min(All) = min {)\min(All)a

2 (2[[Az2[| + Amin(A11))
@ (1 1 Amin (A0) Amin(A11)
> = Amin (A ,*>\min A )
2 min { 5 ( 11) 9 ( 0) 4HA22”
(i) . 1 1 Amin(AO)Amin (All)
> 7)\min A 7>\min A )
Z min { 5 ( 11) ) ( 0) 4||A22 + AO”

@iy . [1 Amin (A0)Amin (A11) }

="min< =Anin(Ap), .
(o), e

Here (i) used that bi—c > min{g;, 5}, (44) that since Ag, Aoz > 0, we can replace || Ao + Aol >

| A22]|, and (i44) that Wm < 1 (again, for Asa, Ag > 0). The bound follows by factoring. ]

Lemma J.15. For any continuous matrix valued function X(s) € R™*m
T
( s X(sl)dsl> ( s X(sl)d51> =< [ X(5)X(s) T ds.

Proof. Tt suffices to show that for any vector vy € R™, the function v(s) = X(s) T v satisfies

/ o] < / v(s)lPds.

We can view both integrals as expectations over a random vector v.= v(s), where s is drawn
uniformly on [0, 1]. With this interpretation, it suffices that |[E[v]||? < E[||v||?], which is precisely
Jensen’s inequality. [

Lemma J.16. Let N(-) : [0,00) — S be continuously differentiable PSD-matrix-valued function
satisfying

el
&N(t) =< —alN(s), for some a > 0.

Then, N(t) < e~ *'N(0) for all t > 0.
Proof. For fixed v # 0, define f(-;v) = v N(-)v. Then, f(-;v) > Oand & f(t;v) < —af(t;v)

for all t. Hence, by a scalar ODE comparison inequality, v N(t)v = f(t;v) < e f(0;v) =
e~ . vTN(-)v. The lemma follows. O

K Smoothness (Proof of Proposition G.5)
This section bounds the first and second derivatives of £ (K), and of K — 3, for K € Kipgo.
Specification of Derivative Norms. To prove Proposition G.5, we formally define the norms of the

relevant derivatives. Let Ax = (Aa, Ap, Ac) denote a perturbation of filter K = (Ag, Bk, Ck),
with

1Akl = /I AAlE + | AB[2 + [Acl.

Definition K.1 (Euclidean Norm of Derivatives). We define Euclidean norms of the gradient
VL (K), operator-norm of the Hessian V2L (K), and /2 — op-norm of the gradients of Xk as

IV2LA(K)[ley e, :=  sup (A, VPLA(K) - Ak)
AK5”AKH1/,2:1
IVEA(K)|[e, = sup  (Ak, VLA(K))
Ak:l|Aklle, =1
VEkley—o0p = sSup [VEK - Axllop
AK5”AKH£2:1
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We shall compute these bounds by considering directional derivatives, using that

d2

VLA (K)|lgy—se, ==  sup — L (K+tAK)|,

” ( )” 2—L2 AK:HAKl\e2:1 dtQ ( )|t70
d

IVEA(K)lle, = sup | = La(K+1AK)|
Ax:ll Ak, =1 | dE

N s [ Span)|
Kllty—op = = K4+tA _
2—op Al Ay =1 dt ( k) lt=0 op

Stability preliminaries. For any K € K¢, (and thus K € Kgiap), Acik is Hurwitz stable, and
the solution to the Lyapunov equation A kXK, y + EK,YA;K +Y =0forany Y € S%rn can be
written as

/ exp(sAak)Y exp(sACl’K)Tds,
0

which recall from Proposition 4.3 that satisfies
1k xllo = Cryap(K) - [[Y o,
for || - ||o denoting either operator, Frobenius, or nuclear norm. The explicit form of Cyap(K) is

given in Proposition J.1.

Covariance derivatives. We start with derivatives of 3. Define

d d?
2HAK] = *EKHA ) EK[AK] = 7EK+tA .
dt ‘ t=0 dt? ‘ t=0

We first compute these derivatives. In what follows, given a symmetric matrix Y € S™, we define
its nuclear norm as || 'Y [|nuc := >y [Ai(Y)].

Lemma K.1 (Bounding derivatives of k). For any K € Kgtap, we have that K — 3y is €2 ina
neighorhood containing K, and 3} [Ax] and X [Ak] solve the Lyapunov equations

ACI,KE;»([AK] + Ell([AK]A;rLK + Y1 [AK} = O, Acl,KE&[AK] + Eﬁ[AK]A;rLK + Yg [AK] = O7

where

Vi = [0 O lseasm[ 0, 0] L0 0
=K = AC A K K AC Ana 0 ABW2B—KF+BKW2A]—;

0 0 o o]" o 0
YQ[AK]:[ABC AA} I Ak] + D[ Ax] [ABC AA} +[o ABWQA;;]'

Hence,
1k [AK]l[F < Cuyap(K) - poly (|[Zk]l, Bkl [IC[ [[Wall) - [[Axlle,
IZK[AK] nue < Cryap(K)? - poly ([|Zkll, Bk, ICI, W) - [AlZ, -

Proof. The existence of the derivatives 3} [Ak] and 3} [Ak] in open neighbrhoods is standard (see
, e.g. [Tang et al., 2021, Lemma B.1]). We compute the derivatives by implicit differentiation.

A%Y% 0
PYkttak = AclK+tAx DK+tAc T EK+tAKAZLK+tAK + [ 01 (B + tAR)W(Bx + tAB)T] .

Differentiating both sides with respect to ¢ and evaluating at t = 0, we have

S[Ak] = AakZi[Ak] + Zk[AK]A ] k

.
0 0 0 0 0 0
+ [ABC A,J B+ Zx [ABC AA] + [o ABW2B;+BKW2A,§]'

::Yl [AK]
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. . . . . 2 .
Differentiating twice (and notice that %ACl’KHAK ‘ 0 = 0), and evaluating at ¢ = 0, we have

TU[AK] = A kZK[AK] + SK[AKIA Lk

}
0 0]g , 0 0 0 0
+ {ABC AA] e [ABC AA] + [o ABWQAﬂ'

2:Y2 [AK]

To prove the second part of the lemma, we use Proposition J.1. Since K € Ciu¢, and thus K € Kgiap,
we know the solutions to the Lyapunov equations above, i.e., 3} [Ax] and X [Ak], can be written
as ||clyap(Ack, Y1[Ak])|lo and ||clyap(Aeik, Y2[AKk])||o, and can be bounded by

IZk[Ak] e < Cryap(K)[Y1 [Ax] ||

0 0
< Cuoml)- (2121 | [oRy s [ + 218R 1B
F

< Cryap(K) - poly ([ 2k, [Cl 1Bkl [Wall) - [[Aklle, -
Using the above computation and recall that Cyap(K) > 1,
12k [Ak]lnue < Cryap(K) - [[Y2[Ax]|lr

0 0
< Cupm(K)- (2300 | [ || +21nIRIW21 )

< Cayap(K) (1 + [ICIZK[AK]IE [ Akle, + Cryap (K) W] AklIZ,
< Cayap(K)?poly (13, [|C, Bkl W) - [| AklIZ, + Cuyap (K) [ Wa|[[| AkllZ,
< Cayap(K)? - poly (| B[, [CIL B ll, W) - [ AklIZ,

which completes the proof. O

Derivatives of OF loss and regularizer. Next, we compute the derivatives of Loz(K) and tr[Z ']
in terms of the above derivatives.

Lemma K.2 (Bounding derivatives of Log(K)). We have that Log(-) is €2 in the neighborhood of
any K € Kggap and

d
5 Los(K+tA) ‘

O‘ < Vn - Cryap(K) - poly (|G|, [[Cll, 2kl Bkl ICIL WD) - [ Akl

t=

d2
‘dtQﬁOE(K + tAK)

O‘ < Cayap(K)? - poly (|G|, [ICk1, 12k, Bl [CIL [TW]) - [[AKIIZ, -

t=

Proof. Recall from the computaton in Eq. (I.2) that

Los(K) = tr [[G —CK]EK{GT” —trHGTG GTCK] .EK}

~Cy -CiG CJCk
Since Lemma K.1 verifies K — 3 is 4 in an open neighborhood around K, we readily see Log(K)
is as well. Thus,
d _ G'G -GTCk / 0 -GTAc
qplorK 80| = HCIG ciok | EKAH | ATe alokt cpac] TN
Thus,

\izom +tAK) | ] < poly (|Gl ICx )|k Ak e + Ol (G, K1 Ak ez 1 E A 1
< Vnpoly(| G|, |Ckll) (IIZk[Ak]llF + [[Axlle; [ Zx[Ak])
< Vi oty (1G] [l Casap (K) - poly (12 [Bc . [l W)
(ke + 1Ak e, [E[A))

(i)
< Vn- Cayap(K) - poly (|G|, [[Cill; Bk, 1Bk, ICIL W) - | Akl
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where (i) uses Lemma K.1, and (7%) uses Chyap(K) > 1. Next,

d? G'G -G'Ck]|
T Loe(K+180) | —tr[[_C;G Cror | SHiad
0 ~-GTACc / 0 0
L SA S
Jr{—AEG AECK—kCIAC} A+ 10 ATAg| Zx
Using Matrix Holder’s inequality, it follows that
d2
’dtgﬂtm(K +180) || < oty (IGI, IOk IZk[ARlme + poly (1G], IOk ) Al 15[ A + |Zx [ Acl)
Again, invoking Lemma K.1 and appropriate simplifications, we have
2
\ SLas(K+ 1A \ < Cayap(K)? - pOly (IG, i, 1 Zcl, 1Bl € W) - 1Ak

O

Next, we turn to controlling the derivatives of the regularizer. Here, we require that K € IC;y¢,, not
just K € Kgtap as above. Introduce Zj [Ak] = %ZBKHAK , and define Zy[Ak] analogously.
t=0

Lemma K.3 (Bounding derivatives of Zk). Zy is €2 in a neighborhood of any K € Kinso, and

1Zk [A]llr < Cryap(K) - poly ([ Zam il [kl Bl ICIL [[Wa]) - [[ Akl
1ZK[AK] e < Cryap(K)* - poly (B k|l k1, 1Bk, [CIl, (W) - | A7, -

Proof. Using (212,K2§2{KEI27K) and the facts that (a) K — X is 4 on some neighborhood, and
X = X 1is%?on ST, we see Z is 62,

To compute derivatives, let us partition the derivatives 3} [Ax] and 3% [Ak] into two-by-two blocks

¥}, k[Ax] and 37, | [Ak] in the obvious way. We have

Zy[Ak] = %ZBKHAK’H) dt(zlz Kttak Baa katae 12,6+ a0 1o
b K[AK]222 kS12.k + T2k S5, Kaetag( /12,K[AKDT
+ 212»K222,K 52 k[Ak]Z 22,K+tAK212,K'
Thus,
I1Zk[Ak]ll < poly (I B2k, [ Zo0 k) (IZ12 k [Ak] 7 + S50 k[A]lI¥)
< poly ([ Szl 125« NI Sk [Ax]l|r
< poly (5, IZ2x D13k [Ak] e

Thus, the intended bound on ||Zj [Ak]||r follows from Lemma K.1. By the same token, more
tedious computations reveal,

d2 _ T
HZK[AK]HHUC = ||@(2121K+tAK2221K+1‘AK212 K+tAK)|t—0”““C

= poly (B 12k, 1Bk 1) (1512 k[AkIlE + 15 k[ Akl vl 352, k[Ak] P + 1572 k[Ak] e + 1352 k[Ak]|luc)
< poly (|| Zkl: 1Bk ) (kA + [ZR[AK] [lne) -
Thus, the intended bound on ||Z{{[Ak]||nuc follows from Lemma K.1. O

Lemma K.4 (Bounding derivatives of Rinso(K)). Recall Ringo(K) := tr[Zy']. We have
4
dt

i

Rinfo(KﬂLtAK)L_O’ < VnCyap(K) - ply (| Zic I, 1S5 [ 13- 1Bl [CIL W) - 1Ak e,

dtQRinfo(KHAK)L_O’ < Cuyap(K)? - poly (|1 Zc I, 1S 1B 1Bk, I TWl) - 1Ak 7, -
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Proof. We compute

d d —1 —1 —1
aRinfo(K "‘tAK)L:O = atr[ZK+tAK] —o —tr[Zy Zi[A]Zy -
Thus, invoking Lemma K.3,
d _ _
7 Ramto (K 1A o | < 12 IP1ZK[AK e < v/nl|Zi |21 Zi [Ax] e
< VnCuyep(K) - pOly (1 Zic |, 1Bl Ikl 1Bk, ICHL [Wl) - | Akl
Next,
d? _ _ _ _ _
17 Raneo(K+1AK)| _ = 122 Zi [AK)Zic Zic[ Ak Zic + Zig Zi[ Ak 2,
so again applying Lemma K.3,
d? _ _
32 Ramto (K 1AK) o | < 212 P Zic[ Akl + 12 1P 1ZR[AK] e
< Chyap(K)? - poly (|2 1, (155 1 112l 1Bkl (IS (W) - ([ AklIZ,
we complete the proof. O

Concluding the proof We now turn to the proof of Proposition G.5.
Proof of Proposition G.5. Combining Lemmas K.2 and K 4,

d d d
&ﬁ)\(K + tAk) < ’thOE(K + tAk) ‘ . ‘ + A ‘RinfO(K + tAk) ‘

dt t—O‘
< (14 NV - Cryap(K) - poly (|G| [|Cx . [1Zcl 1Bkl [CIL TWall, 124 1) - [[Ak]le,

‘t—O‘

and

2

d
L LK +tA ]
dtQL)\( +1t K)

2

d 2
‘ < ‘dtQ»’;oE(K + tAk) ‘t

d
Y ‘MRMO(K +1AK) ]t_o‘

< (14 N)Chyap(K)? - poly (|G|, [kl 1Bkl Bkl ICHL Wl I Z 1) - Ak, -

=0

These verify the first two bounds of the proposition. The derivative bound for Xk is proven in
Lemma K.1,noting that

sup || Zg[Aklllp = sup Bk [Ax]llep = sup {389 k[Akllop = [[VE22,kllez—op-
Ax:l| Aklley =1 Ax:l|Aklley =1 Ax:l|Axlley =1

Lastly, we have shown above that Lgg(K) and Z is € in a neighborhood of any K € Ki,s,. Since
Z is invertible on K € KCjpz,, this implies that £, = Log(K) + Atr[Zgl} is €2 in a neighborhood
of any K € Kipnso- O
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