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A Supplementary for Proposed Method

A.1 Training Scheme of Decompose-and-Reassemble Algorithm

As discussed in Section 3.2 of the main manuscript, we propose a training scheme to train our
intersection module I such that it can well decompose the common concepts between (seen) attributes
for obtaining the base attributes. The workflow of our proposed training scheme is as follows:

Algorithm 1: Decompose-and-Reassemble
Given: trained detectors Ms of seen attributes As

Result: parameters θ of the transformer for I
for every attribute a ∈ As do

randomly sample attributes ak, al from As with
βc(a) = βc(ak) = βc(al), βp(ak) ̸= βp(al);
obtain the embedding mc of base attribute βc(a) via intersection I(ak, al);
randomly sample attributes ak′ , al′ from As with
βp(a) = βp(ak′) = βp(al′), βc(ak′) ̸= βc(al′);
obtain the embedding mp of base attribute βp(a) via intersection I(ak′ , al′);
synthesize attribute ã via union U(βc(a), βp(a)) with its embedding
m̃ = (1/2) · (mc +mp);
θ ← argmin

θ
Lrec(m

s
k, m̃);

end

Recap that: (1) As is the seen attribute set; (2) Bc and Bp are the base attribute sets of the adjectives
and object parts respectively; (3) βc(a) and βp(a) are the corresponding base attributes respectively
of the adjective part and the object part for a given attribute a (i.e. βc(a) ∈ Bc and βp(a) ∈ Bp); (4)
we denote the intersection operation as I and the union operation as U, where I is built as a neural
network (specifically based on the encoder architecture of vision transformer [10]) with parameters θ,
and U adopts a simple average function; (5) ms

k denotes the embedding of the seen attribute ak.

A.2 Model Architecture

Figure 6: The implementation of our intersection I and union U operations to realize the decompose-
and-reassemble procedure, where I adopts the architecture extended from the vision transformer [10]
while U simply adopts the average operation.
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A.3 Implementation Details

To train the seen attribute detectors Ms, we use the Adam optimizer with a learning rate of 10−3,
weight decay of 10−4, and beta values of (0.5, 0.9). We adopt the ImageNet-pretrained ResNet101
network as our feature extractor f , in which the feature map extracted by f has C = 2048 channels.
Although the feature extractor f can be jointly trained with the detectors Ms in our proposed
framework, we choose to keep it fixed to follow the common setting in [38]. For our intersection
operation I, it has one transformer block and 16 heads in its multi-head attention layer; the dimension
of each head is 64. To train the transformer, we use Adam optimizer with a learning rate of 10−4,
weight decay of 10−4, beta values of (0.5, 0.9), and a dropout rate of 10−1. Moreover, as cosine
similarity is used to compute attribute response map, attribute detectors Ms, Mn and their base
attributes are L2-normalized during training; thus, the model does not need to care about their scale
of vectors.

A.4 The Assumption of Uni-modal Constraint

Figure 7: Examples and their response maps for the attribute that appear at multiple locations: a
California gull with spread wings (top image) and a family of slaty backed gulls (bottom image).
During the training of seen attribute detectors, we utilize uni-modal constraint to encourage the single
peak of attribute response map assuming that an attribute only appears at only one location or a
small region on the image. Such an assumption might not be true for all cases. For instance, as
shown in Figure 7, a flying bird has spread wings (i.e. left-wing and right-wing) located far from
each other; or birds of one species in a single image have duplicated attributes occurring at different
places. Although the assumption behind the uni-modal constraint is sometimes violated, an attribute
detector is able to work well even if it is forced to focus on only one location. That is, “white wing”
detector can learn what is “white wing” no matter by the left-wing or the right-wing (top image in
Figure 7); similarly, the detector can get the concept of “orange leg” by seeing any bird with that
attribute (bottom image in Figure 7).

B Supplementary for Dataset

B.1 Attribute Selection

As previously stated in our main manuscript, the CUB dataset has 312 attributes in total, each of which
could be decomposed into an adjective and an object part. (e.g., “solid” and “breast” for attribute
“solid breast”; “red” and “throat” for attribute “red throat”). The meanings behind the adjectives
contain color, texture, shape, and others, while color (to which 239 of 312 attributes are related) is
the dominant one. We thus focus on these 239 attributes (which have adjectives for color) in CUB
and construct a table summarizing their corresponding base attributes (in total, 16 base attributes
of object parts and 15 base attributes of colors) as shown in Figure 8 (please check the caption for
interpreting this table). Please note that, though ideally there should be 240 attributes produced by all
the combinations from 16 base attributes of object parts and 15 base attributes of colors, we do not
have the attribute “iridescent eye” as it has no example shown in the CUB dataset. Therefore, the
number of attributes used in our experiments is one less 240 (i.e., 239 attributes in total).
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Figure 8: Colorized cells in this table present the indexes of 239 CUB attributes used in our
experiments (i.e. As ∩Au), in which their corresponding base attributes are indicated in the black-
shaded cells (i.e. Bc on the left-most column while Bp on the top row). For instance, the 279th

attribute in CUB is “blue beak”, so we put “279” in the cell where its horizontal position in the table
coincides with the one of the base attribute “beak”, and its vertical position in table coincides with
the one of the base attribute “blue”. Cells with the same background color are in the same group.

We divide the 239 attributes into 15 groups such that each of them has all the base attributes (i.e.,
16 for object parts and 15 for colors) included (except for group 10, owing to the absent attribute:
“iridescent eye”). The attributes assigned to each of these 15 groups can be found in Figure 8 (grouped
by the cells with different color backgrounds). Such grouping helps us select the minimum number
of seen attributes required for learning to synthesize the novel ones in a more efficient way, as the
attributes from any two different groups (excluding group10) can be used to factor out all the base
attributes via our intersection function I. Please note that there exist more than one possible ways of
grouping to achieve the same goal; here, we only describe the way used in our experiments.

In our experimental settings, we use group1 and group2 as seen attributes As for the experiments
of Ns = 32 (cf. Table.1 and Table.2 in our main manuscript). For the experiments of Ns = 64,
group1, group2, group3, and group4 are used as seen attributes. Moreover, for the experiments
of Ns = 96, group1 to group6 are used together as seen attributes. Next, we conducted a study
to verify the consistency of our proposed method to different combinations of seen attributes. We
randomly select two groups as seen attributes (i.e., Ns = 32) to train our decompose-and-reassemble
procedure and evaluate the performance of synthesized novel attribute detectors. In total, we repeat
this experiment for six rounds. The standard deviations of three metrics (i.e., mAUROC, mAP@50,
and mLA) among these 6 rounds are 0.0056, 0.0124, and 0.0175, respectively. The relatively low
variance thus successfully verifies the consistency of our proposed method to various combinations
of seen attributes.

B.2 Details of α-CLEVR

Figure 9: Samples from our α-CLEVR dataset. Classes in α-CLEVR dataset are defined by the
specific combinations of toy bricks (where toy bricks with different color-shape combinations are
treated as different attributes). Note that the images of the same class would have variances in terms
of material, size, and relative locations of the toy bricks.
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Figure 10: Colorized cells in this table present the indexes of 24 attributes used in our α-CLEVR
experiments (i.e. As ∩Au), in which their corresponding base attributes are indicated in the black-
shaded cells (i.e. Bc on the left-most column while Bp on the top row). For instance, the first attribute
in α-CLEVR is “gray cube”, so we put “1” in the cell where its horizontal position in table coincides
with the one of the base attribute “cube”, and its vertical position in the table coincides with the one
of the base attribute “gray”. Cells with the same background color are in the same group.

Figure 11: Train/test split of ZSLA (left part) and GZSL (right part): For the scenario of ZSLA,
we will first use the training data to obtain seen attribute detectors and then use decompose-and-
reassemble algorithm to synthesize unseen attribute detectors; For the scenario of GZSL, we
annotate/re-annotate the dataset via attribute detectors synthesized by ZSLA and use them to compute
the class-attribute matrix for GZSL training. Finally, we evaluate the quality of our attribute detectors
by the test data as shown in this figure (i.e. blue area in the left part, which is the same as blue and
green area in the right part).

α-CLEVR dataset is a modification of [13], in which [13] not only offers a well-known diagnostic
dataset: “CLEVR” for VQA tasks but also provides a framework for people to create their dataset
with different purposes. The official CLEVR dataset contains 100,000 images composed of several
toy bricks. Eight colors and three shapes are used to describe these bricks. Due to the missing concept
of class in the official CLEVR dataset, we define ours based on the released program and name our
dataset α-CLEVR.

In detail, we adopt colors and shapes as the base attribute set and treat the color-shape combinations
for bricks as the attribute set (i.e., in total there are 24 attributes, representing red cube, blue sphere,
etc.). Figure 10 shows the base attributes and their combinations (in the same way as CUB shown in
Figure 8). The 24 attributes in α-CLEVR dataset are divided into three groups. Each of them contains
all of the base attributes. The grouping method is under the same scheme as what we used in the
CUB dataset to effectively utilize the seen attributes (group1 and group2 in our experimental setting).
On the other hand, a class can be defined as a specific combination of attributes (e.g. an image
having gray cylinder, blue cube, and purple sphere is belonging to the class “GrayCylinder-BlueCube-
PurpleSphere”). Furthermore, since real-world datasets usually would contain many non-class-related
factors, such as items that appear in different poses or color variance caused by different cameras, we
hence introduce several factors of variance (such as the relative location, materials, and the size of
the bricks) into our α-CLEVR to mimic the real-world scenario. We show some image examples of
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our α-CLEVR dataset in Figure 9, where the images from the same class have the same combination
of toy bricks (i.e. the same color-shape attributes) but would have variances in terms of materials,
sizes, and relative locations between toy bricks.

Figure 11 shows the train/test split on our α-CLEVR dataset for the two scenarios: learning our
proposed ZSLA task (i.e. Zero-Shot Learning for Attributes) or learning GZSL (i.e. Generalized
Zero-Shot Learning). As mentioned in Section 4 of the main manuscript, each class has 30 images;
80 classes are used for GZSL training on α-CLEVR dataset, and the other disjoint 80 classes are set
as unseen test data. Among the 80 seen classes, 50 classes (39 classes for training, 11 classes for
validation) composed of seen attributes As are used to synthesize unseen attribute detectors in ZSLA,
and the other 30 classes containing novel attributes Au will be isolated from ZSLA training. We
use the unseen attribute detectors together with the seen ones to annotate all attribute labels in the
α-CLEVR dataset and obtain the class-wise statistics of attribute labels to form the class-attribute
matrix (i.e., the semantic information for classes). Note that we even use our seen attribute detectors
to re-annotate the attributes of the training images in Section 4.3 of the main manuscript due to their
noisy attribute labels. After that, the annotated dataset with the class-attribute matrix can be further
utilized by GZSL algorithms. During the evaluation period, we use the same test data to measure the
quality of our unseen attribute detectors via: (1) mAUROC, mAP@50, and mLA of novel attribute
annotations to test for attribute classification, attribute retrieval, and attribute localization respectively;
(2) the performance of GZSL trained with the attribute labels which are re-annotated by the detectors
obtained from ZSLA.

C Supplementary for Experiments

C.1 Further Discussion on Experimental Results of Automatic Annotations for Learning
Generalized Zero-Shot Image Classification

Furthermore, we give a deeper discussion on why the annotations provided by our synthesized
attribute detectors can improve the GZSL performance compared with the results upon manual
annotations (cf. Table 2 in Section 4.2).

Figure 12: An example from the CUB dataset demonstrates the issue of attribute label inconsistency
across the bird images of the same species. The number before each attribute description is the
corresponding attribute index defined in Fig 8.

As mentioned in Section 4.2 of our main manuscript, the inconsistency between different human
annotators when building the CUB dataset would cause noisy/ambiguous attribute labels. Figure 12
shows an example with such ambiguity/noise, where two bird images of the same species sharing
similar visual appearance are manually annotated with quite different attribute labels. For the upper
image, the annotator may treat the crown, beak, and others as a whole to be the primary body,
thus only the adjective descriptions of the primary body part are labeled. The second annotator
distinguishes different parts and gives precise and more fine-grained part descriptions for the bottom
image. Such label inconsistency across images is harmful to model learning. In this example, the
confusing label “primary blue" (i.e., instead of the precise label “blue crown") would introduce
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unnecessary biases into the class-attribute matrix and hence have a negative impact on the final
performance for the GZSL task.

On the other hand, the machine-annotated δ-CUB dataset created by our synthesized attribute
detectors can mitigate this inconsistency issue from two aspects. First, the machine-annotated dataset
is labeled based on a unified model instead of multiple annotators and hence can somehow avoid
the issue of label inconsistency. Second, although our model learns the seen attribute detectors
from noisy human attribute annotation, the extracted attribute classifiers could be more robust to the
inconsistency of attribute labels due to the usage of many training images as well as the location
information for training. By extracting the representative detectors from many images of the same
attribute (even some labels might be noisy), the influence from inconsistent labels can be implicitly
reduced. Also, the location information, forcing the representative detectors to highlight the target
parts accurately, can significantly clarify the ambiguous part labels introduced by annotators (e.g., the
primary and crown example mentioned before). Thus, the synthesized detectors, which are learnt
by our proposed method from a set of seen attribute detectors (that are less sensitive to inconsistent
labels) are able to provide more robust machine annotations.

C.2 Details of Obtaining Class-attribute Matrix for δ-CUB

Here we give a detailed discussion on how we generate the class-attribute matrix for δ-CUB. The
class-attribute matrix plays an essential role in the zero-shot classification task to associate the
categories by describing them as the composition of attributes. The meaning of each entry in the
class-attribute matrix (in size of “number of categories” × “number of attributes”) can be roughly
understood as "what percentage of instances in a category are considered to have a certain attribute".
In the CUB dataset, to build the class-attribute matrix, they random sample some images from a
category and ask multiple workers to annotate these images several times, and then the percentage
of assigning different attributes to the images will be treated as the attribute composition of this
category. As our proposed method is able to automatically annotate instance-level attribute labels, in
order to mimic the way CUB works, we binarize the posterior probability of detecting an attribute
given a test image (i.e. σ(r̃k(x)) as Equation.2 in our main manuscript, indicating the posterior
probability of having the k-th attribute in image x). Regarding the threshold to binarize the posterior,
it is determined by maximizing TPR−FPR over all the seen attributes, where TPR and FPR are
the true positive rate and the false positive rate respectively.

C.3 Baselines

As stated in Section 4 , existing GZSL algorithms cannot do ZSL on attributes directly. Hence, to
fit our proposed problem scenario, there are several modifications on their original formulation to
achieve the adaption: (1) replacing class/attribute with attribute/base-attribute, (2) changing the task
setting from multi-class to multi-attribute binary classification, and (3) switching image-wise feature
representations to patch-wise ones.

Note that the three modifications we list are not simple for every GZSL algorithm. For example, some
embedding-based methods like [1, 2] learn the mapping function from image feature space to latent
space defined by side information. Such approaches classify the categories based on the distance to
each prototype, which makes it not easy to turn the task setting from multi-class to multi-attribute
binary classification. Furthermore, generative-based GZSL methods like [39, 33, 40] are much more
complicated and the hyper-parameters in each approach must be re-tuned to fit the new task.

On the contrary, the idea of ESZSL [32] and LAGO [3] based on the implicit assumption of logical
operation on multiple classifiers are more suitable to be treated as the baseline methods. Note that we
actually implement LAGO-Singleton mentioned in [3], which could be viewed as the relaxed version
of DAP [17].

C.4 Additional Results of α-CLEVR

As described in Section 4.3 of the main manuscript, we show the robustness of ZSLA against the noisy
labels in terms of mAUROC. In addition to attribute classification, we also adopt attribute retrieval
and attribute localization (with mAP@50 and mLA as metrics, respectively) to further demonstrate
the robustness of ZSLA. As the mAP@50 and mLA plots provided in Figure 13, we observe that: (1)
our ZSLA surpasses baselines in attribute retrieval and localization for all the WALRs; (2) our ZSLA
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Figure 13: Evaluation (in terms of attribute retrieval and attribute localization, with mAP@50 and
mLA as metrics respectively) on the robustness against noisy attribute labels for various methods
which learn to synthesize the novel attribute detectors. The shaded bands around each curve represent
the 95% confidence interval over 5 runs of different noisy label sets.

is more robust than baselines as indicated by having less performance drop when WALR is increased;
(3) in comparison to baselines, our ZSLA has a lower variance over multiple runs of different noisy
label sets. All three statements coincide with our observations in Section 4.3 of the main manuscript
and further verify the robustness of our proposed ZSLA.

D Extensive Experiments

D.1 Ablation Study

Table 3: Quantitative evaluation (in terms of attribute classification, retrieval, and localization) on the
novel attribute detectors learnt by three model variants, in order to have ablation study on the usages
of uni-modal constraint (abbreviated as “UMC”, implemented by Lumc) and location information
(abbreviated as “Loc Info”).

Loc Info UMC mAUROC mAP@50 mLA
✓ ✓ .689 .320 .846
✗ ✓ .701 .296 .613
✗ ✗ .702 .325 .348

Here, we conduct an ablation study and investigate the influence/impact of 1) the “uni-modal
constraint” (abbreviated as UMC, implemented by Lumc in our proposed method, cf. Equationof
our main manuscript), and 2) the usage of the ground-truth of the attribute locations (i.e. knowing
where an attribute appears on the image, denoted as “location information”) in training the seen
attribute detectors. Note that Lbce in Equation 2 and Lrec in Equation 5 are the fundamental objective
functions to train the seen attribute detectors and the intersection model I, respectively; thus, these
two functions are must-have components in our proposed ZSLA approach and are excluded from
the ablation study. Ideally, we expect that: if the seen attribute detectors are better trained, it is more
likely to obtain the synthesized attribute detectors with better performance (as those seen attribute
detectors are the input materials for learning decompose-and-reassemble procedure).

The evaluation results on the synthesized novel attributes learnt by adopting different usage combina-
tions of the uni-modal constraint and the location information are summarized in Table 3. We are
able to observe that: (1) With the help of uni-modal constraint, the mLA (i.e. average localization
accuracy) of synthesized novel attributes clearly improves (i.e. from 0.348 to 0.613); (2) In addition
to the uni-modal constraint, if the location information is also considered during the model training,
the mLA can even go further to gain an extra boost by 0.233 (i.e. from 0.613 to 0.846). The overall
improvements in terms of mLA made by having both uni-modal constraint and location information
adopted in training our proposed method clearly indicate their effectiveness to help precisely extract
and synthesize novel attributes.

This study also finds that: as both mAUROC and mAP@50 metrics (which are related to attribute
classification and retrieval) do not aim to localize the image regions of the target attributes, they are
hence relatively insensitive to the usage of uni-modal constraint and location information. Some
qualitative examples of this ablation study are provided in Figure 14. We can see that: Without
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Figure 14: Example results of attribute retrieval and localization for the novel attribute detectors
learnt by three model variants, in order to have ablation study on the usages of uni-modal constraint
(abbreviated as UMC, implemented by Lumc) and location information. These three model variants
are trained (left) with UMC and location information, (middle) with UMC but without location
information, and (right) with neither UMC nor location information. For each example set, we show
the top-5 retrieved images and their response maps for a synthesized novel attribute, where the images
marked with red borders are the false positives according to CUB ground-truth.

using uni-modal constraint and location information (cf. the right portion of Figure 14), the response
maps of the target novel attributes show multiple modes on wrong locations; after introducing the
uni-modal constraint, the response maps turn to have more concentrated distribution (i.e. uni-modal)
but occasionally have the modes on the incorrect locations for the target attributes (cf. the middle
portion of Figure 14); upon further taking the location information into consideration for model
training, the localization of the target attribution is improved and becomes more accurate (cf. the left
portion of Figure 14).

D.2 The Usage of Location Information

In our previous experiments, both our ZSLA and baselines are trained with the auxiliary location
information, which might not be available in other dataset (or might be viewed as an extra cost for
dataset establishment). Besides, from the ablation study that we discussed previously, we observe
that the additional location information mainly benefits attribute localization ability while having
a relatively minor impact on attribute retrieval and classification, which are the crucial metrics for
attribute annotations. Consequently, we replicate our experiments of Section 4.1 and Section 4.2 of
the main manuscript in the same setting except that we do not utilize the auxiliary location information
provided by CUB dataset.

Table 4: Without the usage of location information during model training, the evaluation of syn-
thesized novel/unseen attributes on attribute classification (mAUROC), retrieval (mAP@50), and
localization (mLA). Ns is the number of seen attributes.

Ns mAUROC mAP@50 mLA
32 .565 .235 .184
64 .608 .277 .265A-ESZSL
96 .638 .294 .269
32 .608 .231 .324
64 .633 .260 .371A-LAGO
96 .654 .284 .389
32 .700 .296 .613
64 .720 .332 .662Our ZSLA
96 .738 .339 .662
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Table 5: Experiments results to replicate the ones in Section 4.2 of our main manuscript but particularly
without using the auxiliary location information provided by CUB dataset.

CADAVAE [33] TFVAEGAN [26] ALE [1] ESZSL [32]
S U H GAIN S U H GAIN S U H GAIN S U H GAIN

Manual
(Ns=32 for CUB) 42.9 27.3 33.4 - 45.5 31.2 37.1 - 26.4 9.2 13.7 - 29.8 10.8 15.9 -

Manual
(Ns=312 for CUB) 53.5 51.6 52.4 +19.0 64.7 52.8 58.1 +21.0 62.8 23.7 34.4 +20.7 63.8 12.6 21.0 +5.1

A-LAGO 50.5 48.4 49.4 +16.0 62.5 48.0 54.3 +17.2 44.0 19.7 27.3 +13.6 55.5 12.2 20.0 +4.1
A-ESZSL 46.9 49.9 48.4 +15.0 60.6 49.2 54.3 +17.2 44.3 22.2 29.6 +15.9 64.6 7.5 13.4 -2.5
Our ZSLA

(Ns=32, Nu=207 for δ′-CUB) 50.0 57.7 53.6 +20.2 61.9 58.4 60.1 +23.0 52.2 32.0 39.7 +26.0 55.7 22.4 32.0 +16.1

Table 4 shows the performance in terms of mAUROC, mAP@50, mLA of ZSLA, and baselines
with Ns set as 32, 64, 96. Similar results are observed as what we have in Section 4.1 of the main
manuscript, our ZSLA outperforms baselines on all Ns settings and evaluation schemes, verifying
the superior ability of our ZSLA in terms of attribute classification, retrieval, and localization in
comparison with baselines no matter if the location information is accessible or not.

Afterwards, we utilize the 32 seen attribute detectors and 207 synthesized novel attribute detectors
to re-annotate CUB dataset as δ′-CUB. (to be differentiated from δ-CUB, which adopts location
information during the training of seen attribute detectors); in parallel, baselines are also used to
re-annotate CUB dataset. Then GZSL algorithms (i.e. CADAVAE, TFVAEGAN, ALE, ESZSL) are
trained and evaluated by δ′-CUB and the results are summarized in the row shaded by the orange
color of Table 5. Apart from the orange part, we report the experimental results on training the four
GZSL methods by using only 32 attributes or using all 312 attributes provided by the original CUB
again and summarize them in the rows respectively shaded by the blue and green color of Table 5.
From the results, we can clearly see that GZSL algorithms make significant improvement when using
either baselines or our ZSLA to automatically annotate all the attributes in δ′-CUB and our ZSLA
has relatively large gains on the performance of GZSL algorithms in comparison to the baselines.
This experiment setting makes sure that the rows shaded by the orange color are exactly at the same
cost (in terms of the human efforts to annotate the seen attributes) as the rows shaded by the blue
color, which further verify the usefulness of our ZSLA (i.e. improving the performance without any
additional cost on human annotations).

D.3 Comparison to CZSL

As stated in Section 2 of our main manuscript, compositional zero-shot learning (CZSL) is conceptu-
ally related to (but different from) our task scenario. Here, we would like to again emphasize that
there exists significant differences between our proposed scenario and the existing CZSL setting: (1)
An image in our problem scenario would have multiple attributes while there usually exists only a
single state-object composition for CZSL; (2) The attribute detectors synthesized by our proposed
ZSLA are able to automatically provide the labels of novel attributes (i.e. these novel attributes do not
have any manually labeled samples in the training set) for all the images thus leading to more detailed
descriptions for all the categories, while CZSL typically aims to increase the number of categories.
Furthermore, many of the CZSL algorithms [25, 20, 30, 12, 24] proposed utilizing auxiliary infor-
mation such as word2vec [22] or GloVe [29] to get a better initialization for the embedding, which
raises the additional cost. On the other hand, RedWine [23] (a representative approach of CZSL)
proposed to train a set of SVM and take the weight parameters as the initialized embedding for CZSL.
However, training the SVMs for the base attribute can be suffered from the extreme label distribution
of the base attributes. In our problem scenario, an image usually contains multiple attributes which
are the combinations of the shared set of base attributes; in other words, it is common to see some
base attributes to appear in almost every image. We demonstrate the extreme label distribution of the
base attribute in CUB in the second and third columns of Table 6. What’s worse, the base attributes
with their positive labels in a high ratio might even co-occur in the training images frequently. These
challenges obstruct the SVM to capture correct features for each base attribute and thus make the
SVM fail to be representative. Comparing the AUROC of every single SVM on the training set and
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the testing set in the fourth and fifth column of Table 6, it is clear that the learned SVMs are not
generalized at all.

Table 6: The table demonstrates the extreme label distribution of base attributes in the CUB dataset
as well as the performance of SVMs trained upon the labels, which would cause problems for
the representative CZSL baseline RedWine [23]. During training the compositional network, the
embedding of the base attribute “Primary" is set as a random weight due to the fact that it appears in
every single image, and thus it is impossible to train an SVM for “Primary".

Positive label ratio (%) AUROC Positive label ratio (%) AUROC
Name of the

base attribute Training set Testing set Training Testing Name of the
base attribute Training set Testing set Training Testing

Beak 98.7 98.7 1.000 0.52 Blue 10.3 11.0 0.515 0.497
Wing 94.7 93.1 0.999 0.581 Brown 43.8 42.6 0.486 0.473

Upper-parts 87.4 85.9 0.963 0.63 Iridescent 5.8 8.5 0.484 0.487
Under-parts 90.3 90.3 0.999 0.645 Purple 2.1 2.8 0.457 0.482

Breast 92.1 92.2 0.998 0.574 Rufous 7.5 6.9 0.516 0.484
Back 80.6 80.8 0.923 0.634 Grey 67.6 66.5 0.501 0.500

Upper-tail 67.1 65.0 0.675 0.54 Yellow 27.1 37.6 0.421 0.413
Throat 95.2 95.2 0.551 0.508 Olive 6.5 10.2 0.420 0.443

Eye 95.0 95.0 0.724 0.539 Green 3.8 6.2 0.534 0.468
Forehead 95.2 94.6 0.783 0.542 Pink 5.2 3.8 0.520 0.627

Under_tail 74.6 74.1 0.523 0.479 Orange 22.2 18.8 0.551 0.513
Nape 92.8 91.9 0.706 0.548 Black 95.5 95.7 0.538 0.557
Belly 89.2 89.6 0.68 0.616 White 64.4 61.1 0.457 0.452

Primary 100.0 100.0 N/A N/A Red 16.9 13.7 0.463 0.407
Leg 82.4 82.8 0.744 0.608 Buff 48.9 46.7 0.420 0.391

Crown 95.4 94.7 0.483 0.472

Nevertheless, in order to demonstrate that our propose method does provide the state-of-the-art
performance for the scenario of zero-shot learning on attributes, we try our best to adapt several CZSL
algorithms into such scenario for making comparison, including: RedWine [23], LE+ [23] (which
uses word2vec as the auxiliary information), AttOps [25], and CGE [24]. Particularly, in order
to enable these algorithms to tackle our problem scenario of zero-shot learning on attributes, we
apply several modifications: (1) replacing state-object compositions (respectively, states or objects)
with attributes (respectively, base attributes), and (2) changing their task setting from multi-class
to multi-attribute binary classification (as in our scenario of zero-shot learning on attributes, an
image could have multiple attributes), (3) switching image-wise feature representations to patch-wise
ones, and (4) providing the additional location information during their training (for the purpose of
making fair comparison as our method does use the location information). Moreover, regarding some
specific objectives designed for predicting only a single state-object composition in an image (e.g.
AttOps [25] has several such objective functions), we respectively sample an attribute (i.e. “attribute”
is analogous to “state-object composition" in CZSL’s scenario) from each image in the batch to
calculate these objectives during each training iteration. Other than the modifications described
above, we keep their original hyperparameter settings as well as their original ways of initializing the
embedding weights. Eventually, these CSZL algorithms after our adaptation/modification are able to
tackle the unseen attributes and re-annotate the CUB dataset, hence we can make comparison with
them (following the same evaluation schemes as shown in the main manuscript) for the scenario of
zero-shot learning on attributes.

The performance in terms of attribute classification, retrieval, and localization are summarized in
Table 7. It is clear to see that, for all the evaluation metrics, our ZSLA consistently outperforms
the CZSL algorithms. The results for the re-annotation experiments (as conducted in Section 4.2
of the main manuscript) are provided in Table 8, where the performance of CZSL algorithms are
shown in the purple-shaded rows. We can see that, the gain (with respect to the setting of using
32 manually-labeled attributes, i.e. the blue-shaded row) produced by our proposed ZSLA method
(in the last orange-shaded row) is again significantly superior to the ones produced by the CZSL
algorithms, even when some of the CZSL algorithms use the extra/auxiliary information such as
word2vec. Such experimental results verify again the efficacy and the efficiency of our proposed
ZSLA method.
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Table 7: Evaluation of synthesized novel/unseen attributes on attribute classification (mAUROC),
retrieval (mAP@50), and localization (mLA) on modified CZSL and our ZSLA. Ns is the number of
seen attributes.

Ns mAUROC mAP@50 mLA
32 .590 .184 .443
64 .604 .200 .410RedWine [23]
96 .622 .240 .415
32 .596 .210 .499
64 .615 .240 .485LE+ [23]
96 .638 .260 .485
32 .630 .253 .382
64 .640 .293 .380AttOps [25]
96 .670 .322 .490
32 .601 .266 .363
64 .652 .305 .444CGE [24]
96 .671 .332 .409
32 689 .320 .846
64 .704 .327 .860Our ZSLA
96 .717 .329 .867

Table 8: The extended version of Tablein Section 4.2 of the main manuscript, where we additionally
provide the results produced by ZSLA-Base as shown in the red-shaded row (cf. Appendix D.4) and
the modified CZSL algorithms as shown in the purple-shaded rows (cf. Appendix D.3).

CADAVAE [33] TFVAEGAN [26] ALE [1] ESZSL [32]
S U H GAIN S U H GAIN S U H GAIN S U H GAIN

Manual
(Ns=32 for CUB) 42.9 27.3 33.4 - 45.5 31.2 37.1 - 26.4 9.2 13.7 - 29.8 10.8 15.9 -

Manual
(Ns=312 for CUB) 53.5 51.6 52.4 +19.0 64.7 52.8 58.1 +21.0 62.8 23.7 34.4 +20.7 63.8 12.6 21.0 +5.1

A-LAGO 45.4 55.4 49.9 +16.5 57.4 53.0 55.1 +18.0 51.8 27.2 35.6 +21.9 49.7 17.1 25.4 +9.5
A-ESZSL 41.5 48.7 44.8 +11.4 56.0 48.5 52.0 +14.9 46.1 19.0 26.9 +13.2 61.3 9.2 16.0 +0.1
Our ZSLA

(Ns=32, Nu=207 for δ-CUB) 50.3 56.4 53.2 +19.8 59.0 55.9 57.4 +20.3 52.4 27.5 36.1 +22.4 65.1 16.4 26.2 +10.3
RedWine [23] 46.8 59.6 45.4 +12.0 54.0 49.7 51.8 +14.7 39.0 23.2 29.0 +15.3 59.6 14.1 22.8 +6.9

LE+ [23] 46.6 41.3 43.8 +10.4 54.6 44.3 48.9 +11.8 41.0 22.8 29.3 +15.6 43.4 15.0 22.2 +6.3
AttOps [25] 56.0 28.0 37.3 +3.9 54.7 40.8 46.7 +9.6 45.3 14.3 21.7 +8.0 53.5 5.6 10.1 -5.8
CGE [24]

(Ns=32, Nu=207) 41.7 39.2 40.4 +7.0 58.5 36.3 44.8 +7.7 40.6 17.7 24.7 +11.0 58.6 8.7 15.1 -0.8

ZSLA-Base
(N = 31, Nu = 239) 33.7 36.2 34.9 +1.5 57.4 24.0 33.9 -3.2 19.1 13.5 15.8 +2.1 36.0 8.9 14.2 -1.7

D.4 Train Base Attribute Detectors Directly

We already show that novel attributes Au could be obtained via our ZSLA, which starts by train-
ing several seen attributes As, then decomposes them into base attribute Bc and Bp, and finally
reassembles Bc and Bp as Au. Here, we conduct experiments to discuss if we can train base attribute
detectors (i.e. detector of Bc and Bp) directly rather than using seen attribute As and the intersection
model I. For example, instead of learning detectors for “blue crown”, “red crown” and the intersec-
tion model to get “crown”, we use the given annotations to train base attribute detector “crown”.
Since images in CUB and α-CLEVR are described by attributes, we first turn the “attribute”-wise
annotations in both datasets into “base attribute”-wise ones (e.g. a bird with “blue crown” annotation
will be re-labeled as “is blue” and “has crown”). Then we utilize these base attribute annotations
and apply the method we proposed in Section 3.1 to train the corresponding base attribute detectors,
which can then be assembled into novel attributes detectors by our union model U.

In order to distinguish this approach from our ZSLA, we name it ZSLA-Base and conduct experiments
to measure its performance and robustness. For CUB dataset, ZSLA-Base uses 31 base attributes to
synthesize 239 attributes, and ZSLA can use 32 seen attributes to generate the other 207 novel ones.
The number of seen attribute or seen base attribute annotations could be viewed as the manual-cost to
construct the dataset (i.e. imagining the process to annotate attributes: human annotators are requested
to answer whether the image has a certain attribute or a base attribute, and the number of questions is
just the same as the number of seen attributes or the seen base attributes), we hence conclude that
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Table 9: Evaluation of synthesized novel/unseen attributes on attribute classification (mAUROC),
retrieval (mAP@50), and localization (mLA). N is the number of questions that human annotators
have to answer when building CUB dataset. In other words, N is the number of seen attributes (i.e.
Ns) for A-ESZSL, A-LAGO and ZSLA; is the number of base attribute for ZSLA-Base.The highest
scores are marked in bold red, while the second-highest ones are marked in bold blue.

N mAUROC mAP@50 mLA
A-ESZSL 32 .626 .223 .756
A-LAGO 32 .600 .173 .782

ZSLA 32 .689 .320 .846
ZSLA-Base 31 .639 .243 .833

the manual-costs for our ZSLA method and the ZSLA-Base approach are almost on the same level.
Table 9 evaluates the performance of attribute detectors obtained via ZSLA and ZSLA-Base in terms
of mAUROC, mAP@50, and mLA. We can observe that ZSLA-Base outperforms A-ESZSL and
A-LAGO, while is inferior to our ZSLA in terms of attribute classification, retrieval, and localization
(while our ZSLA and ZSLA-Base are at about the same manual-cost).

Regarding the experiment using automatic annotations for learning generalized zero-shot image
classification (cf. the experiments in Section 4.2 of our main manuscript), we simply select 0.5 as the
threshold to binarize posterior, since ZSLA-Base synthesizes/generates attribute detectors from the
base attributes directly thus the thresholds cannot be decided in the same way as we do for ZSLA
(i.e. as described in Section 4.2 of the main manuscript where the thresholds are determined by
maximizing TPR − FPR over all the seen attributes). In Table 8 we provide the experimental
results where the attribute labels are annotated by ZSLA-Base method (i.e. the red-shaded row). We
observe that using ZSLA-Base to automatically annotate the attribute labels is unhelpful for the GZSL
algorithms even it has acceptable performance on attribute classification, retrieval, and localization
as shown in Table 9. This contradiction is caused by the poor threshold selection due to the lack of
reference of seen attributes, which becomes the major problem of ZSLA-Base.

Following the experiment setting as described in Section 4.3 of the main manuscript, we measure
the robustness of ZSLA-Base using the mAUROC, mAP@50, mLA metrics, where the resultant
performance curves are shown in Figure 15. It is clear to observe that: (1) ZSLA and ZSLA-
Base surpass other baselines (i.e. A-LAGO and A-ESZSL) in attribute classification, retrieval and
localization for all the WALRs, while ZSLA has the best performance; (2) ZSLA and ZSLA-Base are
more robust than baselines as indicated by having less performance drop when WALR is increased;
(3) both ZSLA and ZSLA-Base has a lower variance than baselines over multiple runs of different
noisy label sets. All three statements show that ZSLA-Base is more robust than the other baselines
while still having room for improvement compared to our ZSLA.

Furthermore, we utilize ZSLA-Base to synthesize the attribute detectors under various WALR settings,
re-annotating α-CLEVR automatically, and use the new α-CLEVR to train the four GZSL algorithms,
whose result is shown as the orange curve in Figure 16. It is clear to see that when WALR is set as
0 (i.e. no noisy labeling), ZSLA-Base has the worst performance owing to the improper threshold
setting (as described above by two paragraphs ahead); nevertheless, compared to the other baselines
(i.e. A-LAGO and A-ESZSL), ZSLA-Base is far more robust as shown in the previous paragraph,
hence achieving a better result than the baselines while WALR goes high. To sum up, our proposed
ZSLA is no doubt the leading method to automatically annotate instance-level attribute labels over
the four approaches (i.e. ZSLA, ZSLA-Base, A-LAGO, A-ESZSL) owing to its robustness.

D.5 Comparison with the baseline of adopting word2vec embedding

In this section, we demonstrate the comparison in terms of the performance of four GZSL algorithms
(i.e. CADAVAE [33], TFVAEGAN [26], ALE [1], and ESZSL [32]) trained by using either “attributes
as the auxiliary semantics to associate classes” or “word2vec as the auxiliary semantics to associate
classes” on the CUB dataset. We can see from the experimental results summarized in Table D.5 that,
even only leveraging 32 manually annotated attributes to construct the associations across classes (i.e.
the blue-shaded row), it already contributes to achieve a better GZSL performance in comparison
with using word2vec [22] (i.e. the yellow-shaded row), thus demonstrating the benefits of adopting
attributes as the class semantics. However, annotating attributes usually requires expensive cost
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Figure 15: Evaluation (in terms of attribute classification, retrieval, and localization, with mAUROC,
mAP@50, mLA as metric respectively) on the robustness against noisy attribute labels for various
methods which learn to synthesize the novel attributes. The shaded bands around each curve represent
the 95% confidence interval over 5 runs of different noisy label sets.

and that becomes its main burden of applications. To this end, our proposed method of zero-shot
learning for attributes directly contributes to alleviate such problem, in which our ZLSA is able to
offer additional high quality automatic attribute annotations to construct the zero-shot learning dataset
with little cost. For instance in the CUB dataset, given merely 32 seen attributes, we can synthesize
another 207 novel attribute detectors for performing attribute annotation, where the promising quality
of these additional annotated attributes (acting as the auxiliary semantics to associate classes) is well
reflected by the significantly increased GZSL performance (observable in the improvement from the
blue-shaded row to the green-shaded row).
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Figure 16: Evaluation on the quality of automatic re-annotations produced by different methods,
where the performance is based on the average harmonic mean of four GZSL algorithms using the
re-annotated attributes (cf. the last paragraph in Section 4.3 for details).

Comparison with the baseline of adopting word2vec embedding as the class semantic for
the GZSL task (where the word2vec embeddings are provided by [33]) on the CUB
dataset. The number in bold red represents the best performance. From the results, we
can observe that the class semantics stemming from the attribute annotations produced by
our ZSLA (shaded in green) can lead to better performance in comparison to the ones
based on word2vec embeddings (shaded in yellow) under four different GZSL algorithms.

CADAVAE [33] TFVAEGAN [26] ALE [1] ESZSL [32]
S U H S U H S U H S U H

word2vec [33] 65.5 11.3 19.3 45.2 28.1 34.7 60.1 3.3 6.3 63.5 1 2
Manual

(Ns=32 for CUB) 42.9 27.3 33.4 45.5 31.2 37.1 26.4 9.2 13.7 29.8 10.8 15.9

Our ZSLA
(Ns=32, Nu=207 for δ-CUB) 52.8 58.1 55.3 59 55.9 57.4 52.4 27.5 36.1 65.1 16.4 26.2

E Supplementary for Limitation

E.1 Dataset

Aside from CUB dataset, Animals with Attributes 2 dataset [38, 18, 19, 27, 14] (usually abbreviated
as AWA2) and Scene Understanding dataset [28] (usually abbreviated as SUN) are also widely used
to evaluate the performance of GZSL tasks. Nevertheless, neither AWA2 nor SUN have compound
attributes for ZSLA to obtain base attributes by our intersection model (and it is hard to re-annotate
the whole datasets to satisfy our experimental settings); therefore, we do not leverage these two
datasets in our experiments. In turn, we build an artificial dataset, α-CLEVR, in order to further
demonstrate the potential of ZSLA and make our experiments convincing.

In particular, we are expecting that our proposed ZSLA is able to motivate the building of new
datasets with the help of ZSLA: Before our work of ZSLA, no matter how the attributes are defined,
proposing new datasets requires equally massive costs for manual annotations. Now, our ZSLA
provides a new choice: If we can define the attributes of a new dataset in the format that is extendable
by the combination of intersection and union operations, ZSLA can help to provide novel attribute
annotations in a human-like style during establishing the new datasets and reduce the attribute labeling
cost efficiently at the same time.

E.2 Attribute Synthesis

In Section 4.2, we adopt 32 seen attribute detectors and synthesize 207 novel attribute detectors to
re-annotate the CUB dataset as δ-CUB dataset. It is clear to see that δ-CUB has 239 attributes in total,
which does not cover the whole 312 attributes in the original CUB. The 73 attributes are excluded
owing to the missing common basic concept with the others. For example, the adjective “hooked”
is only used to describe “beak”; that is, “hooked beak” is the only attribute that contains the base
attribute “hooked”; we thus fail to obtain base attribute “hooked” with intersection model. In our
setting, we just view these 73 attributes as don’t care and observe that we could achieve comparable
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Table 10: Extended experimental results of Section 4.2 to study the impact of don’t care attributes,
where Ns is the number of seen attributes, Nu is the number of unseen attributes and Nd is the
number of auxiliary attributes that we view as don’t care (where we adopt human annotations to train
their detectors)

CADAVAE [33] TFVAEGAN [26] ALE [1] ESZSL [32]
S U H S U H S U H S U H

Ns = 32, Nu = 207 50.3 56.4 53.2 59.0 55.9 57.4 52.4 27.5 36.1 65.1 16.4 26.2
Ns = 32, Nu = 207, Nd = 73 52.8 58.1 55.3 65.4 59.0 62.0 50.4 29.1 36.9 58.0 19.9 29.6

(or even better) GZSL results with 239 attributes only. However, it is possible that the don’t care
attributes are important. In this case, we can adopt the first training stage of ZSLA (cf. Section 3.1)
to obtain the attribute detectors with the help of human annotations.

Here, we conduct an experiment to see what happens if we expand our δ-CUB dataset from 239
attributes to 312 attributes following the above steps (i.e. we adopt human annotations to train the
detectors for the don’t care attributes) and summarize the results in Table 10. From the results,
we observe that: with the auxiliary 73 attributes (i.e. the purple-shaded row of Table 10), GZSL
algorithms have a subtle improvement compared to ignoring these 73 attributes (i.e. the orange-shaded
row of Table 10). The slight advance implies that the extra information for these don’t care attributes
is useful but might not be so powerful, which explains why we could just omit them in the previous
experiments.
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