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A Experimental details

A.1 Architecture
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Figure 1: LSTM architecture for h}: one level of C2FAR at time ¢ and level i (see Fig. 4 in main paper).
Network layers do include bias weights. The same number of hidden units are used in each LSTM
layer and is given by hyperparameter n_hidden. Dropout probability is given by hyperparameter
Istm_dropout.

Regarding the sequence model, all C2FAR-RNN models use 2-layer LSTMs [[10] with intra-layer
dropout [19, 12]l, as depicted in Fig. [l Multi-level C2FAR-RNN models use the same LSTM
architecture at each level, with the same number of hidden units in each LSTM layer of each level.
We follow DeepAR [18] in using the same network to encode (i.e., process the conditioning range)
and decode (i.e., generate values in the prediction range). However, unlike DeepAR, during training
we only compute loss over the prediction range.

For generating the parameters of the Pareto distribution, we use a feed-forward neural network with a
single hidden layer (followed by a softplus output transformation). The number of units in this hidden
layer is also controlled by the n_hidden hyperparameter.
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A.2 Features and input/output preparation

Toward our goal of universal forecasting (§4.3 of the main paper), we exclude covariates for series-
specific meta data, series “age”, and lagged historical values (all of which are used in [18]]). We use
min-max scaling [[14] to normalize conditioning ranges prior to forecasting. Autoregressive inputs
are represented with 1-hot-encodings.

A.3 Training and testing details

We use Optuna [[1] for tuning, with the TPESampler [4], and use both MedianPruning (pruning
unpromising trials compared to previous trials) and early stopping (stopping trials when results no
longer improve). We stop early if we see n_stop_evals_no_improve evaluations without a new top
score (currently set to 37, see Table E])

We filter instances with constant conditioning ranges from training and testing. We do not oversample
training instances from the higher-amplitude series, as DeepAR does [18].

We vectorize across multiple series during both the computing of likelihood (in training) and during
the sampling of future values (in prediction). The number of series that we parallelize over is referred
to as our “batch size” (e.g. n_train_batch_size).

We also vectorize across different multi-step-ahead rollouts during the Monte Carlo procedure to
generate the forecast distribution. We use 500 separate rollouts during the forecasting process
(n_rollouts = 500), unless otherwise stated. We compute rolling evaluations with a stride of 1, i.e.,
we forecast and evaluate over overlapping prediction ranges, as in [9]].

A.4 Computational resources

C2FAR is implemented in PyTorch [13], version 1.9.1+cu102. We use GPUs from Nvidia: four
Tesla P100 GPUs with 16280MiB and two Tesla K80 GPUs with 11441MiB. To maximize the
utilization of the GPUs, we usually ran two trials in parallel on each of the six GPUs, for 12 trials
running in parallel in total at any one time for a given tuning study.

B Distribution recovery

Here we expand on the results in §5.1 of the paper, evaluating each of our our implemented systems
on the task of recovering synthetic distributions.

B.1 Training details

Rather than tuning the models for this (simple) task, we use a fixed learning rate of 2e-2, a weight
decay of le-6, and 64 hidden units, which are settings that worked well during development experi-
ments on the elec validation set. We also used an Istm_dropout of 1e-3 and training batch size of 1024
(as in Table E]) The (normalized) binning extent is taken from -0.01 to 1.01. We use a conditioning
range of 96 and a prediction range of 24, following [8]. We take the final four days as the testing
period.

B.2 Computational performance

The time to execute the training runs varied between 53 minutes and 84 minutes for all systems on
the synthetic Gaussian Mixture Model (GMM) data, and between 10 minutes and 30 minutes for all
systems on the synthetic discrete data.

B.3 Further results

Fig. [2| shows the ability of each of our implemented systems to recover the synthetic distribution
(repeating the C2FAR-RNNj results, also given in Fig. 5 in the main paper). The frequently-used
Gaussian output distribution [[L1} 18} 5] cannot recover the Gaussian mixture since it has only a single
mixture component, while it fits the discrete data as well as can be expected. For the C2ZFAR-RNN
models, we use 60 total bins across all the levels, which amounts to much greater precision for the
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Figure 2: Distribution recovery supplemental results on the Gaussian mixture model synthetic data
(GMM, left) and the discrete uniform synthetic data (Discrete, right) for each of our implemented
systems.



Table 1: Negative log likelihood (NLL) of test data for different models on synthetic data

GMM Discrete
DeepAR-Gaussian  0.2526  0.2775

C2FAR-RNN; -0.4150 -1.564
C2FAR-RNN; -0.4198  -4.479
C2FAR-RNN3 -0.4203  -6.664

Table 2: Information about the azure dataset. Flavor names are automatically generated from each
VM’s allocated VCPUs and Memory requirement via the template az-{ VCPUs}-{Memory/VCPUs).
Flavor types are defined purely by the Memory:VCPUs ratio via the template az-{Memory/VCPUs}.

Duration 30 days

Num. unique VMs 2,013,767

Num. unique subscriptions 5,958, with top 250 used for customer-specific series.
Unique VM categories {Delay-insensitive, Interactive, Unknown }

{az-1-1.75, az-1-2, az-16-7, az-2-1.75, az-2-2, az-2-7, az-2-8, az-4-1.75,
az-4-2, az-4-7, az-4-8, az-8-1.75, az-8-2, az-8-7, az-8-8}
Unique flavor types {az-0.75, az-1.75, az-2, az-7, az-8}

Unique flavor names

multi-level models. Qualitatively, C2FAR-RNN; fits the data fairly well, not quite overlapping the
true GMM distribution, and struggling to generate the sharp increases in the CDF seen in the discrete
data. The C2FAR-RNN; and C2FAR-RNN3; models fit each distribution nearly perfectly.

Quantitatively, we can evaluate each of these fits by computing the negative log likelihood (NLL)
of the test data, as computed by each model. These results are presented in Table[I] which shows
C2FAR-RNN;3 is only very slightly better on GMM, but significantly better on the discrete data. Of
course, by adding more layers and bins, we may achieve arbitrarily low NLL on the discrete dataset.
Whether such precision is beneficial will depend on the application.

C Empirical study on real-world data: further details

C.1 Azure VM demand dataset

We generated the azure dataset in order to provide real-world data reflecting the types of time series
seen in the context of large-scale compute clouds. Cloud decision making can benefit from predicted
future resource demand, e.g., for capacity planning or scheduling optimization [3]. A dominant
workload type in compute clouds is the virtual machine (VM), which is typically available in one of a
limited number of specific configurations or flavors; essentially, a flavor represents a specific bundle
of resource requirements, including VCPU and Memory needs. Forecasts for the total demand (in
terms of VCPUs or Memory, in GB) of specific flavors, customers, and workload categories are all
valuable. Furthermore, aggregations of these basic time series are also valuable. For example, VM
flavors with a common VCPUs:Memory ratio, known as a VM flavor #ype, are often run on shared
physical servers, and therefore forecasts of flavor type demand are directly actionable in terms of
provisioning of server resources.

We obtained real-world data reflecting these dimensions of cloud resource demand by leveraging
the publicly-available Azure Public Dataset', originally released in [7] under a Creative Commons
Attribution 4.0 International Public License. This dataset contains create, delete, and CPU utilization
information (as a % of allocated VCPUs, over time) for over 2 million cloud VMs, reflecting both
internal and external customer workload over a 30-day period. We converted this data into time
series by counting the total VCPUs and Memory requirements over time for different combinations
of flavors, subscriptions (customer IDs), categories, and flavor types, as noted in Table 2] Although
we count VMs from all customers, we build customer-specific time series for the top 250 subscription
IDs by VM frequency. We also combined lower-level time series to form a hierarchy of time series,
as is common in real-world demand data [20, [15]]. We also defined a stopped VM as any VM whose

"mttps://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV1.md
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Figure 3: azure sample time series: total aggregate VCPUs demand. A strong daily seasonality is
apparent.
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Figure 4: azure sample time series: total VCPUs demand of delay-insensitive VMs of flavor type
az-1.75. Delay-insensitive VMs exhibit strong weekly seasonality, apparently being used mostly on
weekends.

CPU utilization% drops below 1%. We then created two different versions of our time series, in each
case aggregating the data with a 1-hour sampling period:

1. The time series aggregated with the maximum of each 1-hour period.

2. The time series aggregated with the minimum of each 1-hour period, and excluding stopped
VMs at each time point.

In a way, the first set of time series represents a pessimistic view of how many resources we require
each hour, while the second version represents an optimistic view, as we only provision for the
minimum and assume we can re-use the resources from stopped VMs.

We provide some examples of these time series in Figs. 3] through [§] Fig. 3] represents the total
demand across all VMs, and we can see the strong daily seasonality. Demand of the delay-insensitive
category, for a particular flavor type, is shown in Fig. ] while Fig. 5] gives the demand for the same
category and flavor type, but for customer 1108 specifically (note all the original IDs are anonymized
and represented in the dataset using placeholder values). Demand of the unknown category, for flavor
name az-8-1.75, is given in Fig.[g]

Although the azure dataset covers 30 days, for experiments we use 20 days as training, 3 days for
validation, and 3 final days for testing, leaving the remaining few days unseen and available for future
experiments.
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Figure 5: azure sample time series: customer 1108, total VCPUs demand of delay-insensitive VMs of
flavor type az-1.75. This particular customer seems to consume resources exclusively on weekends.
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Figure 6: azure sample time series: total VCPUs demand of unknown VMs of flavor name az-8-1.75.
Unknown VMs exhibit strong daily and weekly seasonality, requiring resources during the periods
where delay-insensitive VMs are lower (i.e., during weekdays).

Table 3: Dataset details for the empirical study.

Num.

Binning  Binning Num Num. validation Num. Prediction
Dataset  extent extent .~ Domain  Freq. vals per test vals .
series . vals per - range size
start end series . per series
series
elec -0.01 1.01 321 Discrete  Hourly 21212 168 168 24
traff -0.01 1.01 862 Real Hourly 14204 168 168 24
wiki -0.2 3.1 9535  Discrete  Daily 912 50 150 30
azure -0.1 1.3 4098  Discrete Hourly 719 72 72 24




C.2 Other datasets and dataset details

Beyond azure, the elec, traff, and wiki datasets were obtained using scripts in GluonTS [2]], with
the objective of replicating the training/validation/test splits used in prior work [17, (14, 9]]. Table[3]
provides the details of these datasets and azure. Note the binning extent was selected in order to
cover from roughly the 1% to the 99% percentiles of normalized values in the training data for each
series (normalized using min-max scaling on the conditioning range; the prediction range can go
below the min and above the max).

C.3 Metrics

Let 7 index the time series, and ¢ index the time step. Let N be the total number of points z; ; on

which we evaluate. Let Z(-) denote the indicator function. Let z(q#)

’\(QO 8) -

be the g+ quantile of the forecast

distribution for time series ¢ at point ¢, e.g. 2
point z; ; are expected to be below this value.’

is the value such that 80% of possible values for

We define pinball loss and quantile loss as part of the derivation of weighted quantile loss. Weighted
quantile loss, normalized deviation, calibration, and sharpness are reported in the main paper.

Pinball loss:
Aalg,2) = (@ —Z(2 < q))(z — q)

Quantile loss:

QL# = Ei,t 2A(Q#)(27;(,qt#)a Zi,t)
Zi,t |zi,t|

Weighted quantile loss:

wQL = é(QLO.l +QLO2 + -+ QLO.Y)

Normalized deviation:

i lzie — Zigl

ND =
2,
Calibration:
LT <y < 59
calibration = =% (% t < Zi")
N
Sharpness:
5 qu) A(qz)
sharpness = Z |

Zi,t |2i.¢]

Where calibration and sharpness are reported together as the CovX metric. E.g., Cov80 gives the
coverage and sharpness of the 80% prediction range where q; = ¢g.1 and g, = qo.9. Note that for all
metrics we use 500 Monte Carlo samples in order to generate our forecast distribution, except for
generating the Cov99 metrics in Table 1 of the main paper, for which we used 5000 samples, as the
extreme percentiles are by definition more rare and require more samples for good estimation.



Table 4: Tuning ranges for hyperparameter optimization.

Hyperparameter Range Sampling type
n_hidden [16, 288] integer
learning_rate [le-5, 1e-1]  loguniform
weight_decay [le-7, 1e-2]  loguniform
n_bins, for C2FAR-RNN; [4, 1024] integer
n_bins_level_i, ith level of C2FAR-RNNpg, B > 1  [4, 128] integer

Table 5: Fixed hyperparameters used in the empirical study.

Hyperparameter Value Note

n_max_total_parms 1,000,000 Enforced via a cap on n_hidden

Istm_dropout le-3 Intra-layer dropout

n_lstm_layers 2

n_conditioning_range-hourly 168 For elec, traff, azure, as in prior work

n_conditioning_range-daily 30 For wiki, as in prior work

n_rollouts (validation) 25 For computing ND on validation set

n_rollouts (test) 500 For evaluation on test set

n_train_batch_size 1024 Total num. prediction ranges per batch
n_train_ranges_per_checkpoint 32768 Total num. prediction ranges in one checkpoint (train loss reported)
n_validation_set 32768 Total num. prediction ranges per validation evaluation
n_max_checkpoints 750 Maximum num. checkpoints (sets of n_train_ranges_per_checkpoint)
n_validation_eval_period 2 Num. train checkpoints per validation evaluation
n_validation_eval_warmup 11 Num. train checkpoints before first validation evaluation
n_stop_evals_no_improve 37 Num. validation evaluations without improvement before stopping

C.4 Background and motivation for our experimental setup

As mentioned in the main paper, multi-level C2FAR models actually include shallower models as
special cases (i.e., a three-level C2FAR model is equivalent to a one-level model with a single bin
in both the second and the third levels). So given enough tuning, C2FAR is strictly more powerful
than a flat binning. Moreover, any shallower model (including a flat binning) could potentially be
improved by adding additional finer-grained C2FAR levels, increasing the precision without making
the problem any more complex for the original shallower model. We initially used this approach,
adding a second C2FAR level to our production flat binning system and finding gains across all our
internal and publicly-available datasets. In essence, the finer-grained C2FAR level acts as a kind of
“reconstruction function” [14] for the coarse, flat binning model; the lower-level network maps the
top-level bin to a more precise location. Adding another lower-level model increases the precision
further, again, without any cost to the coarser predictions, and further levels can be added recursively
until the optimum level of precision is obtained for the task at hand.

However, adding additional levels does have two practical costs: each level increases both the number
of parameters (via the added networks at each level) and the number of hyperparameters (that is,
the number of bins at each new level). Based on both theory and initial experimental results, we
are therefore confident that we can pay this cost in order to achieve superior forecasting accuracy.
However, for the purposes of this paper, we elected to pursue a different experimental question: for
a fixed parameter budget (counting parameters across all levels in the C2FAR hierarchy), can we
jointly tune the number of bins at each level in order to achieve superior predictions compared to
traditional approaches? And can we do this without any additional cost for hyperparameter tuning?
To answer this question, we established a fixed parameter budget of one million parameters for each
system, and a budget of 100 tuning trials for each system.

C.5 Tuned and fixed hyperparameters

The specific parameters that are tuned are given in Table[d] Given tuning search space grows expo-
nentially with added hyperparameters, we elected to fix some hyperparameters to values that proved
effective in preliminary experiments (e.g., Istm_dropout and n_Istm_layers); other hyperparameters
are either set to follow prior work (e.g., the conditioning range parameters), or are set for practical
reasons in order to help maximize the use of our available compute resources. See Table [5|for a list
of all fixed hyperparameters.



Table 6: Tuning results, tuning for normalized deviation, in the empirical study.

Dataset  System nhidden NBinsl NBins2 NBins3 Total bins Total intervals
elec DeepAR-Gaussian 141 - - - - -

elec C2FAR-RNN; 248 110 - - 110 110
elec C2FAR-RNNj 189 12 35 - 47 420
elec C2FAR-RNNj3 156 5 25 21 51 2625
traff DeepAR-Gaussian 165 - - - - -

traff C2FAR-RNN; 236 163 - - 163 163
traff C2FAR-RNNj 184 28 13 - 41 364
traff C2FAR-RNNj3 146 17 9 5 31 765
wiki DeepAR-Gaussian 153 - - - - -

wiki C2FAR-RNN; 146 968 - - 968 968
wiki C2FAR-RNN3 176 21 18 - 39 378
wiki C2FAR-RNNj3 139 79 16 11 106 13904
azure DeepAR-Gaussian 249 - - - - -
azure C2FAR-RNN; 83 75 - - 75 75
azure C2FAR-RNN» 64 16 71 - 87 1136
azure C2FAR-RNNj3 130 16 11 94 121 16544

Table 7: Training time in hours for top system on validation set in empirical study.

elec traff wiki azure  Average
DeepAR-Gaussian  18.2 313 1.0 5.0 13.9

C2FAR-RNN; 287 271 12.8 128 20.3
C2FAR-RNN; 70.0 721 225 6.8 429
C2FAR-RNN3 295 571 323 315 37.6

Recall that for forecasting, we tune for multi-step-ahead normalized deviation (ND) on the validation
set. Whether tuning C2FAR models or tuning DeepAR-Gaussian, this requires running the Monte
Carlo sampling procedure to generate a forecast distribution; we use the median of this forecast
distribution as the point forecast for evaluation. Since sampling is relatively expensive, we evaluate
only every second checkpoint, only after 11 warm-up checkpoints, on only 32768 validation pre-
diction ranges, and only using 25 rollouts to generate the forecast distribution (note corresponding
hyperparameters in Table[5]). We also use smaller batch sizes for generating forecasts (testing) than
we do in training (since we simultaneously vectorize over Monte Carlo rollouts for each series).

C.6 Tuning results

Table [6] provides the results of our tuning procedure in terms of the selected number of hidden
units and bins. While prior work used a fixed 1024 bins in their flat binning [[14], our tuner often
selected quite fewer bins for C2FAR-RNN; on our datasets. C2FAR-RNN, and C2FAR-RNNj3
models generally use fewer total bins than flat binning, while having very many more total actual
intervals.

C.7 Computational performance and resource requirements

Table [7) has the training times for the top systems found on the validation set. Training time naturally
reflects both the speed of convergence in learning (number of training epochs) and the speed of
operating the specific architecture.?

Testing time roughly follows a similar pattern (Table [§), taking longer on the multi-level C2FAR
models, although more efficient implementations than ours are certainly possible. Meanwhile,
Table [0 gives the memory requirements of the different systems. Overall, we may say that in our
implementation, multi-level C2ZFAR models run slower than a flat binning, but with less memory.

Note that the baseline systems Naive, Seasonal-naive, and ETS do not require training; ETS parameters
are fit separately for each input history at inference time.



Table 8: Time per 100 forecasts in seconds (running on NVIDIA Tesla P100) by top system on test
set. All systems ran with common test batch sizes (60 for daily wiki dataset, 22 for hourly datasets)
and number of samples (500) for each dataset.

elec traff wiki azure  Average

DeepAR-Gaussian 1.28 1.57 0.55 2.72 1.53

C2FAR-RNN; 373 379 171 134 264
C2FAR-RNN; 422 412 150 1.68 2.88
C2FAR-RNN3 481 445 192 473 3.98

Table 9: Amount of memory consumed for prediction in MiB (measured via nvidia-smi on NVIDIA
Tesla P100) by top system on test set. All systems ran with common test batch sizes (60 for daily wiki,
22 for hourly datasets) and number of samples (500) for each dataset. The flat binning, C2ZFAR-RNN{,
consumes significantly more memory on three of the four datasets; memory requirements depend
directly on the number of bins selected by the tuner (see Table @

elec  traff  wiki azure  Average
DeepAR-Gaussian 4295 4873 3113 4845  4281.50
C2FAR-RNN; 8264 7465 12619 3389  7934.25
C2FAR-RNN, 6233 6147 5577 4209  5541.50
C2FAR-RNN; 5657 5111 6372 6037  5794.25

C.8 Evaluation by forecast horizon

Figure [/|shows the forecast error of the systems as a function of the forecast horizon. Compared to
three baselines (Naive, Seasonal-naive and DeepAR-Gaussian), we find C2FAR-RNN3; is the best
performer across virtually all horizons on all datasets, except the last couple horizons on azure.
Interestingly, before C2FAR, practictioners faced a very nuanced problem when selecting a forecast
method for their own dataset. E.g., on the cloud demand data that we are most interested in (azure),
and ignoring C2FAR, it seems that on some horizons, Naive is best, on others, DeepAR, and on others
still, it is Seasonal-naive. C2FAR combines the best aspects of all of these systems, outputting highly-
precise predictions when doing so makes sense (similar to Naive), but generating seasonally-adjusted
estimates during the middle forecast horizons.

D Stability of Empirical Results

In this section, we investigate the stability of our empirical results. Random seeds are used in both
our testing process (via Monte Carlo sampling of predicted future values) and our tuning process
(via sampling of hyperparameters), and it is important to quantify the stability of these sources of
randomness separately [[6]. Ideally, we would repeat our entire tuning procedure multiple times
with different random seeds, allowing us to determine the reliability of our process for fitting both
model parameters and hyperparameters. While such repetition is not practical given the total time
required, we can nevertheless investigate tuning randomness in other ways, and use this to assess the
stability of our empirical results. Note that stability of results may depend on both the systems under
investigation (e.g., models with more hyperparameters may be more unstable with respect to tuning),
the datasets and splits used in the experiments (e.g., larger data sets may be more stable), and the
tuning/training/testing processes (e.g., more tuning runs may lead to more stable results).

We summarize the results as follows, but provide full details in the following subsections:

* The Monte Carlo sampling process is very stable with respect to the random seed: we
repeated the sampling 6 times and found negligible differences in normalized deviation

(§D.1).

* Results are fairly stable when moving from the validation set to the test set: on all validation
sets and all test sets, the top C2FAR models improve on the top DeepAR-Gaussian model.
On all validation sets and all test sets, C2FAR-RNN> performed better than C2FAR-RNNj.

10



10.0% 4 & 35.0%1 i ‘et Naive :
: : —@— Seasonal-Naive T
elec trajf ~M - DeepAR-Gaussian :
9.0% 1 : 30.0% 1 . —4 - C2FAR-RNN;
a : a :
z : <
S 8.0% : g : H
% III’.’.’.....? % 25.0% { 0000000000000 0000000000
> . > N
o .... H o 4
(=] =}
3 7.0% 1 WM“OM: 9
N N
= = 20.0% A
E TRy e Al i
£ 60%{ W “.M g
“ W “ ssasansERE
!’) .4+ Naive .l“........
4 7 —@— Seasonal-Naive 15.0% 1 ’
5.0% ]
o / ~M- DeepAR-Gaussian N VMHH-HHH4H 000
" —4 - C2FAR-RNN; (
4.0% - . . . . 10.0% i i . .
0 5 10 15 20 25 0 5 10 15 20 25
Forecast horizon Forecast horizon
50.0% - f
4.5% A '.l
45.0% 1 azure A g
4.0% - ’ *
2 40.0% - g
=1 = 3.5% A
=} =}
£ 35.0% 1 £
3 % 3.0%
(=} A
2 30.0% - “ 3
N P N
S : ‘“““ S 2.5% |
E : Lo g
g 0% e Z 2.0%
: 0% A PR
_';_ m -+4+  Naive /‘ ,‘ ==+ Naive
20.0% W“ —®— Seasonal-Naive 1.5% - -'f/‘ —@— Seasonal-Naive
_Q' =M~ DeepAR-Gaussian ’ ’ =M - DeepAR-Gaussian
150% 1 ¢ —§ - C2FAR-RNN; Lo%d # —4 - C2FAR-RNN3
0 5 10 15 20 25 30 0 5 10 15 20 25
Forecast horizon Forecast horizon

Figure 7: Comparison of different forecasting systems with normalized deviation (ND) calculated
separately at each forecast horizon. For elec, traff, and azure, we forecast forward for one 24-hour
seasonal cycle, while for wiki, we predict for slightly-more-than-four 7-day cycles. Seasonal-naive is
flat over a cycle because we evaluate using rolling predictions: every datapoint is forecast once at ev-
ery horizon, and always gets the same prediction. Vanilla Naive becomes first less accurate, then more
accurate as we approach the end of the cycle, at which point it becomes equivalent to Seasonal-naive.
Aside from wiki, where DeepAR-Gaussian fails to learn a good model, DeepAR-Gaussian is com-
petitive with C2FAR-RNN3 at earlier horizons, but the gap widens over time.
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Figure 8: elec sampling stability: distribution of normalized deviation (on test set) across different
random seeds as a violin plot.
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Figure 9: traff sampling stability: distribution of normalized deviation (on test set) across different
random seeds as a violin plot.

However, in testing three of the four datasets, C2FAR-RNNj3 improved over its ranking on
the validation set (§D.2)).

* Results are less stable with respect to the tuning. If we use the second-best validation-set
model on each test set, C2ZFAR-RNNj3 and C2FAR-RNNj, suffer larger drops on test than
C2FAR-RNN;, while DeepAR-Gaussian improves in two cases. However, even with the
second-best models, C2FAR models perform better than DeepAR-Gaussian across all test
sets, and C2FAR-RNNj remains the top system on three of the four test sets (§D.3).

Note we do not assess the stability of re-training the models with the same hyperparameters, but
different shuffling of the training data, as such re-training is not currently part of our operations.
However, as future work, we plan to investigate the stability of re-training-without-re-tuning in the
context of slight increases in the training data over time, which is very common in real-world ML
pipelines.

D.1 Sampling stability

Recall that prediction of each example creates a forecast distribution using 500 different Monte
Carlo rollouts of the time series. We take the median of this distribution to compute the normalized
deviation (ND). Overall ND is the average over all test examples, and we report this in Table 1 of the
main paper. We repeated the ND evaluation of our models 6 times using different random seeds, and
plotted the distribution of the 6 results as violin plots in Figures [8|to[IT] The distributions are very
narrow, showing that average ND is very stable with respect to the random seed. We conclude that
evaluation is very stable with respect to the random seed used in Monte Carlo sampling.
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Figure 10: wiki sampling stability: distribution of normalized deviation (on test set) across different
random seeds as a violin plot.
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Figure 11: azure sampling stability: distribution of normalized deviation (on test set) across different
random seeds as a violin plot.

D.2 Validation/test stability

Another possible source of instability is different behavior of systems on the validation set versus
the test set. We summarize this behavior in our data by showing the ranking of the systems on the
validation set and test set in Table [I0] (note we exclude DeepAR-Gaussian from this table as it is
always ranked 4th on all validation and test sets). Results are fairly stable moving from validation to
test. On all validation sets and all test sets, all C2FAR models improve over DeepAR-Gaussian. Also,
on all validation sets and all test sets, C2ZFAR-RNNjy improves over C2FAR-RNN;. The ranking in
traff is the same on validation and test set, but on the others, the only difference is C2ZFAR-RNNj
moved to first place on test.

Table 10: Validation/test stability

elec traff
Ist 2nd 3rd 1st 2nd 3rd

Val. C2FAR-RNN> C2FAR-RNN3 C2FAR-RNN C2FAR-RNN» C2FAR-RNN; C2FAR-RNN3
Test ~ C2FAR-RNNj3 C2FAR-RNN> C2FAR-RNN; C2FAR-RNN> C2FAR-RNN; C2FAR-RNN3

wiki azure
Ist 2nd 3rd Ist 2nd 3rd

Val. C2FAR-RNN» C2FAR-RNN; C2FAR-RNN3 C2FAR-RNN3 C2FAR-RNN3 C2FAR-RNN;
Test ~ C2FAR-RNN3 C2FAR-RNN> C2FAR-RNN C2FAR-RNN3 C2FAR-RNN> C2FAR-RNN;
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Figure 12: elec tuning stability: difference in normalized deviation (on test set) from top-1 tuned
model (in blue) to second-best tuned model (in red).
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Figure 13: traff tuning stability: difference in normalized deviation (on test set) from top-1 tuned
model (in blue) to second-best tuned model (in red).

D.3 Tuning stability

We assess the stability of our tuning results by considering the consequences had the optimizer
not found the top model on the validation set. We therefore evaluate the second-best models from
the validation set on the test set. We hypothesize that the second-best models may have larger
drops for C2FAR-RNN, and C2FAR-RNN3, as these models have more hyperparameters and are
therefore more vulnerable to sub-optimal tuning. Figures [I2]to[T5]show the results, with the blue
lines indicating the original top-model result, and the red lines indicating the result after switching to
the second-best validation model.

We do see larger drops for the multi-level C2FAR models, especially C2FAR-RNN», which drops
significantly on the elec dataset. However, even with the second-best models, C2ZFAR models perform
better than DeepAR-Gaussian across all test sets, and C2FAR-RNN3 remains, as before, the top
system on three of the four test sets (§D.3). Overall, this suggests that we may wish to use more
tuning trials for the multi-level C2FAR models, or, as suggested in the main paper, simply use the
same number of bins at each level, reducing the number of bins to a single hyperparameter, as in the
flat binning.

E Test-set likelihood experiments

In this section, we report some supplementary results comparing our systems for their ability to
estimate the log-likelihood of held-out test data. As mentioned in the main paper in §4.2, log-
likelihood is sometimes regarded as the de facto standard for evaluating generative models [21]], and
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Figure 14: wiki tuning stability: difference in normalized deviation (on test set) from top-1 tuned
model (in blue) to second-best tuned model (in red).
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Figure 15: azure tuning stability: difference in normalized deviation (on test set) from top-1 tuned
model (in blue) to second-best tuned model (in red).

Table 11: Tuning results, tuning for NLL, on azure with noise added. Compare to Table |§|f0r tuning
for ND.

Dataset ~ System nhidden NBinsl NBins2 NBins3 Total bins Total intervals
azure DeepAR-Gaussian 74 - - - - -

azure C2FAR-RNN; 165 638 - - 638 638

azure C2FAR-RNN; 126 70 31 - 101 2170

azure C2FAR-RNN3 141 6 14 67 87 5628
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Table 12: NLL results on noisy and original datasets

Experimental configuration System
Dataset Trained Tested Tuned Trained  Tested DeepAR- C2FAR- C2FAR- C2FAR-
for for for on on Gaussian  RNN; RNN, RNN3
azure NLL NLL NLL +Noise  +Noise 1.355 -2.011 -2.075 -2.075
azure NLL NLL ND Original +Noise  0.766 -1.739 -1.574 -1.504
azure NLL NLL NLL +Noise Original  2.307 -3.300 -4.110 -4.043
azure NLL NLL ND Original ~ Original  0.094 -2.533 -4.475 -6.309

results on log-likelihood estimation are regarded as a proxy for the effectiveness of models on other
tasks such as anomaly detection or missing value imputation. Since we cannot fune C2FAR models
directly for log-likelihood on discrete data (as this leads to narrower and narrower density spikes), we
investigate models trained under two other regimes:

1. Models tuned for ND (that is, the same models used in the forecasting experiments)

2. Models tuned for negative log likelihood (NLL), but on dequantized data, i.e., data with
Uniform[0, 1] noise added, as in prior work [16]

For the models tuned for NLL on the noise-added data, we use the same tuning setup as in forecasting,
doing 100 tuning evaluations for each system and using the same tuned and fixed hyperparameters as
described in We performed this experiment on azure data only.

The resulting tuned hyperparameters are given in Table[IT] Interestingly, the tuner selects quite many
more bins for the C2FAR-RNN; model as were selected when tuning for ND (Table[6), suggesting
precision is important even in noise-added data.

We evaluated both the NLL- and ND-tuned systems on both the original test data and the test data
with Uniform[0, 1] noise added. Results are given in Table Likelihood is computed in the
normalized domain (after min-max scaling) for all time series.

We can divide the evaluation into two objectives: NLL on the noise-added data, and NLL on the
original data. If our objective is NLL on the noise-added data, then we see that multi-level C2FAR
models still offer benefits over a flat binning. One may have expected this to not be the case, as
adding noise removes some of the precision in the data and thus one of the advantages of C2FAR, but
we see that both C2FAR-RNN; and C2FAR-RNN3 still prove superior to the flat binning in this case.
Even on noise-added data, multi-level C2FAR models use many more total intervals than those used
by a flat binning (Table[TT), illustrating that precision is still important even in noise-added data.

Now, regarding NLL of the original data, we see that multi-level C2FAR models are again superior to
flat binning, and moreover, multi-level C2FAR models trained for ND are superior to those trained for
NLL on the noise-added data. This illustrates that, if our objective is to achieve maximum likelihood
on the original data, adding noise to dequantize the data may not be a good solution; here it results in
worse NLL than simply tuning for ND on the original data. We repeat the point in the main paper that,
in reality, for tasks such as anomaly detection, missing value imputation, denoising, compression,
etc., we should not tune for NLL at all, but rather tune for the application-specific metric of interest.
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