A Derivations

A.l p3 is a valid density

Proposition A.1. p% () is a proper probability density function.

Proof. Recall that

Eriqmir, {Z?:l 6(z = f)mt}

T
ETl;T,ml;T [Zt:l mt:|

A function is a probability density function if it is non-negative, continuous, and integrates to 1.
By construction, p%(§) is non-negative since m; > 0 and 6(z; = £) > 0. Further, 6(z; = §)

pz(§) =

is continuous in £ so the numerator E+.7-,m1.r, [Zthl 0z =¢)mt} , an expectation containing
Z1:T
§(z¢ = &), is also continuous in &. Finally,

/p:(g) d€ = ! /éE‘l’l:Tﬂnl;T,Zl:T [Z 6(zt = €>mt] d§

J— -
3 Erirmar Zt:l my t=1

— 1 —Er .o omur.zir [Z (/ 0(z¢ = §)d§> mt] (Fubini’s theorem)
13

[T
EleTaml:T Zt:l my t=1

1
= B E‘l’l:T7m1:T7Z1:T [Z 1. m;|

[T
]ETI:T7m1:T Zt:l my t=1

=1.

Therefore, p% (§) satisfies all 3 properties of a probability density function. O

Remarks. This result generalizes to the case for discrete z by replacing the delta with an indicator
function and integration with summation.

A.2 Two expressions of Lcy,

Proposition A.2. The expected coding length of a trajectory is equal to the expected number skills
multiplied by the marginal entropy:

T
L (0) = —Eriqmur, [Z logpz(zt)mtl = ngHp; [2].

t=1

Proof.

- ETI:T7m1:T;ZI:T [Z Ing: (zt)mt‘|

T
= —Eri.rmir,zir [Z (6(zt = f) Ing; (g)df) mt‘|

t=1 V&
T
= —Erirmir,z1r l/thé(zt =¢) logp;(f)dfl (Fubini’s theorem)
€ =1
T
= — /ETl:T,ml:T,zLT lz md(z; = 5)] log px(£)d¢ (Linearity of expectation)
3 t=1

. _
/gEm [T mid(e =) log p} (§)d¢

T
ETl:T»ml:T [thl mt:|

T
= —Erirmip § my
t=1

17

T

= ETI:T7m1:T7z1:T th /gp;(g) Ing;(g)dg

t=1

Mg Hp; [z]
= ns’Hp; [Z}
O

Remarks. This result generalizes to the case for discrete z by replacing the delta with an indicator
function and integration with summation. Further, this rewriting not only offers an insightful
interpretation of the objective but also has different finite-sample gradient compared to the original
form. We discuss its implication further in Section 4.4.

A.3 Connection between LOVE and Variational Inference

Is the compression objective a prior in the framework of variational inference (VI)? The answer to this
question is surprisingly nuanced. A bridge that connects VI and source coding is the bits-back coding
argument [31, 32]. Under this scheme, the additional cost of communicating a message is equal to the
KL divergence between the approximate posterior and the chosen prior distribution. This is because
the posterior often does not match the prior and the sender must use more bits to send the message
compared to using the prior exactly. In modern deep latent variable models such as VAE [41], the
prior is in general chosen to be an isotropic Gaussian distribution or a sequence of isotropic Gaussian
distributions that decomposes over the time steps. The bit-back coding argument shows that VI as a
coding scheme is asymptotically optimal (in the limit of sending large numbers of messages), but it
does not immediately guarantee good representation learning. As a thought experiment, imagine we
choose the dimension of the latent variable in a VAE to be equal to the dimension of the data itself. It
is clear that the model is not incentivized to perform good representation learning, but the bit-backing
coding scheme still guarantees asymptotic optimality. Instead, good representation can only emerge
if the prior is chosen properly.

Contrary to this prevailing design choice, our latent variables z1.7 and m .7 are not independent
from each other and the timesteps are not independent from each other. In fact, the interaction
between the latent variables is crucial for compressing the trajectory optimally in our framework.
Therefore, our objective takes into account the global structure of the latent variables. Note that
L also has the natural interpretation of measuring the average number of bits that is required to
send a trajectory under the coding scheme of this work. As both quantities measure the cost of the
communication, the philosophical parallel between KL divergence and Ly is likely not a coincidence.
In practice, we observe that L also has comparable regularization effect on the latent code, and in
some cases it is possible to learn a good model without any KL divergence if Lcy is present. From
this perspective, our compression objective is indeed a “prior" insofar as it specifies the desired
properties of the posterior. Another interpretation of LOVE is that it is optimizing the prior directly.

Nonetheless, it is an open question whether L¢p. has a precise counterpart in Bayesian inference,
that is, it is not immediately obvious if it can be written as the KL divergence between the posterior
q(z1.7,my.7 | ®1.7) and some prior distribution p(z1.7, m1.7). One complication, for example,
is the fact that the log density of 1.7 does not participate in the computation of Lcp. It may be
possible to construct some form of hierarchical priors that enables a fully Bayesian interpretation of
Ly, but it is also well-known that the MDL framework can accommodate codes that are not Bayesian
(e.g., the Shtarkov normalized maximum likelihood code [76]). We do not offer a definitive answer
to this question in this work, but the connection between Bayesian inference and L¢y is certainly an
interesting direction for future works.

B Evidence Lower Bound

B.1 VTA

We reproduce the data generating process of Kim et al. [39] here:

T
p@rr, 21, st mar) = [[pa | s)p(me | s0)p(se | 81, ze,mi1)p(ze | 214, mi1).
t=1

18

VTA [39] shows that the ELBO can be written as:

T
Lepo(0, @) ~ Z logpg(x:+ | st) + D (go(me | T1.7) || pp (e | 8¢))

=1
+ Dxi (qo(2¢ | 8¢, mup, x1.7) || Do (2 | St—1,M8-1))
+ Dxi (qo(se | si—1, M1, 1.7) || Do (St | S1—1, 2¢,Mu—1)) -

Like most ELBO, this ELBO can be deconstructed into a reconstruction term:

T

Erec(ev ¢) = Zlogp¢($t | st)a

t=1

and the remaining KL term Lk (6, ¢).

B.2 LOVE

We reproduce the data generating process of LOVE here. Instead of using ¢ for the parameters of
priors and decoder, we will merge all parameters into 6:

plarr, zir, st mar | wr) = [plad | s)p(me | so)p(se | @,z me1)p(z | @, 210, mi).
t=1

For LOVE, the ELBO is re-written as:

T
Luso(6) ~ Y logpe(a | s1) 4)

=1
+ Dxi (go(my | ®1.4) || po(mye | s¢)) + Do (g0 (2t | mu, T1.r, @1.7) || p(24))
+ Dk (qgo(s¢ | ze,e) || po(se | S¢—1,m4-1))

Since z; is a categorical distribution, we chose the uniform prior p(z;) similar to Oord et al. [65].
Similar to VTA, the loss is also decomposed into a reconstruction term and a KL term.

C Sensitivity to Compression Objective Weighting

Here we study how sensitive LOVE is to the choice of A, the coefficient of Lc. We tested 5 values of
A € [0.01, 1] on Simple and Cond. Colors and applied dual gradient descent to automatically tune \.
Stopping point is selected based on the shortest code length achieved.

Table 3: The effect of different values of A and dual GD on F1 scores of Simple Colors and Conditional Colors
over 5 seeds.

A=0.01 A=0.03 A=0.1 A=0.3 A=1.0 X (dual GD) VTA

Simple (F1) .67+ .27 80+.21 91+.02 .95+£.06 .74+.08 .99+.00 .82+.13
Cond. (F1) .84+.06 .92+.02 .90£.03 .824+.08 .87+.08 .99+£.00 .83+.19

We see that while A\ can change the quality of solutions found, the performance is stable within a
=+ 3% regions around A = 0.1. Further, using dual GD consistently outperforms handpicked \ with
an ELBO threshold C slightly (e.g., 5%) higher than the Lg; go achieved without compression, which
can be obtained with minimal prior knowledge about the task. Hence A likely can be tuned without
strong prior knowledge. This contrasts with the other methods such as Kipf et al. [42] which require
knowing the number of skills in each demonstration to perform well while achieving the similar or
better performance.

19

D Architecture

D.1 Frame Prediction

Our base architecture is similar to Kim et al. [39]> and we highlight the difference blue. The
parameters of the posteriors are implemented with neural networks. First, the observation x;.7 are
encoded into a lower dimension embedding &,.7 with a observation encoder. The embedding is
then passed through a boundary posterior decoder that outputs the parameters of mi.7. The
embedding is further passed through a GRU [10], fsinnfwa Which runs on &1.7 and give the cell state
hy.7. For z1.7, we have two GRU’s with cell, f,nn-bwa and f;nn-bwd, Which run on ;.7 in different
temporal direction (i.e., f,.mnbwa Sees the future) to generate cell states cfl‘?’% and c?‘f’j‘i. For each
time step ¢, a candidate 2/ is sampled from a n.-dimensional categorical distribution® whose log
probability is a linear projection of c!*4||c?™d. The sampled z} are embedded linearly into a vector
of size 128. If m; = 1, the z; = z}; otherwise, z; = z;_1 *. Then we concatenate h; 1||z; and
linearly project the vector into the mean and standard deviation of a isotropic Gaussian in R®. A 3; is
sampled from this Gaussian.

Th model also keeps two “belief” vectors that keep track of the history of the computation. These
vectors are modulated by two RNN, f i and fenn. The abstraction belief ¢; = my;- fon (2, c—1)+
(1 — my) - ¢;—1. The observation belief hy = mci—1 + (1 — my) -+ foomn(8t||ct]|2t, Re—1). Finally
the state abstraction is computed as the linear projection of s; = proj(h;||8;). The projection layer is
256 % 128. Finally, s; is passed through a observation decoder and decode into the reconstruction
of x;. Refer to Kim et al. [39] for more details and an illustration of the computation graph.

For each convolutional layer or transposed convolution layer, the tuple’s values correspond to input
channel, output channel, kernel size, stride, padding. With that notation in mind, the specific
hyperparameters for each components are:

* observation encoder: 4-layer convolutional neural network with {(3, 128, 4, 2, 1), (128,
128,4,2,1), (128, 128, 4, 2, 1), (128, 128, 4, 1, 0)} with ELU activation [11] and batch
normalization [33]. The output is flattened linearly projected to vector of size 128.

* boundary posterior decoder is a 5-layer 1-D causal temporal convolution [64] with
{(128, 128, 5, 1,2) x 5,(128, 2, 5, 1, 2)} with ELU activation and batch normalization. The
output is the logits for the m.7.

* fz—rnn—bwda fz—rnn—fwda fs—rnn—fwd7 fc—rnm fh—rnn: GRU with cell size 128

* observation decoder: 4-layer transposed convolutional layers {(128, 128, 4, 1, 0),
(128, 128, 4, 2, 1), (128, 128, 4, 2, 1), (128, 3, 4, 2, 1)} with ELU activation and batch
normalization on all but the last layer. The last layer has no normalization and has tanh
activation.

Removing Boundary Regularization. An important difference from Kim et al. [39] is that we do
not enforce maximum number of subsequence Ny,.x and the maximum length of subsequence /.«
through the boundary prior (This effectively amounts to setting both to a value larger than the sequence
length). These two hyperparameters’ effect are similar to that of picking the number of segments in
ComplLE [42] and provide strong training signal. This assumption is in general problematic since we
cannot expect to know a priori what the good values are for these hyperparameters. Kipf et al. [42]
demonstrates that the performance can suffer if this kind of supervision is wrong. On the other hand,
we do not assume anything about the the duration of the subsequence or how many subsequences
there are in each demonstration.

We do, however, enforce a minimum length on the skill. While it is largely an optimization choice, we
believe this prior is significantly weaker since useful options are almost always temporally extended.
Indeed, with only the minimum length constraint, VTA is unable to learn good skills conducive for
downstream tasks.

*https://github.com/taesupkim/vta
3Kim et al. [39] uses a isotropic Gaussian.
“This is the COPY action in Kim et al. [39].

20

D.2 Multi-task Grid World Environment

For trajectories, we make some larger changes to the architecture to encode properties we want in a
model for learning options, e.g., Markov property. Though similar in spirit, a large portion of the
architecture is different from the base VTA model, so the difference will not be highlighted.

For the posterior, we have an observation encoder and an action encoder that embeds both
the state observation 1.7 and actions a1.7 to get embedding a;.7 and xy.7 each of size 128. The
concatenation a;||x, linear projected down to a vector of size 128. The embedding is then passed
through a boundary posterior decoder that outputs the parameters of m;.7. The embedding
is further passed through a GRU [10], fs.nn.fwa Which runs on &1.7 and give the cell state hy.7. For
z1.7, we have two GRU’s with cell, f,unbwa and f;mnbwa, Which run on &1.7 in different temporal

P : fwd bwd
direction (i.e., fz-mn-bwda sees the future) to generate cell states c;V and c77p.

For sampling z is done differently for interaction data for better gradient and representation learning.
Instead of doing straight-through estimator for the categorical random variable, we opt to use
vector-quantization [65] with straight-through estimators. First, c*¢||c?™¢ is linearly projected into
dimension 128. Then a ReL.U is applied and another 128 by 128 linear layer is applied. The VQ
codebook is of size n, x 128. Instead of taking argmax of the codebook, we approximate the
distribution to be proportional to the softmax over the distance over a temperature tyq. We can
sample from this distribution and apply the straight-through gradient on the sampled code candidate

z).p. If my = 1, the z; = z}; otherwise, z; = z;_1.

We construct directly s; = z¢||x;. and linearly project the vector into the mean and standard deviation
of a isotropic Gaussian R®. s, is sampled from this Gaussian and then decoded with the action
decoder into the reconstructed action in .A.

For each convolutional layer or transposed convolution layer, the tuple’s values correspond to input
channel, output channel, kernel size, stride, padding. With that notation in mind, the specific
hyperparameters for each components are:

* observation encoder: This takes as input the 10 x 10 X Ny + 2 and is implemented
as a two 2D convolutional layers with ReLU activations, followed by a linear layer with
a ReLU activation and a linear layer with no activation. The convolutional layers have
hyperparameters (12,64, 3,1,0) and (64, 64, 3, 1, 0) respectively. The first linear has input
dimension 6 x 6 x 64 and output dimension 128. The second linear layer has input and
output dimensions 128.

* action encoder: The actions are embedded with an embedding matrix with embedding
dimension 128.

* boundary posterior decoder is a 5-layer 1-D causal temporal convolution [64] with
{(128, 128, 5,1,2) x 5,(128, 2, 5, 1, 2)} with ELU activation and batch normalization. The
output is the logits for the m.7.

M fz—rnn—bwda fz—rnn—fwda fs—rnn-fwd: GRU with cell size 128

* action decoder: The decoder is implemented as three linear layers with ReLU activations,
followed by a linear layer with no activation. The (input, output) dimensions of these layers
are as follows: (128,128),(128,128),(128,128),(128,5), where the last layer outputs
logits over the actions.

D.3 3D Navigation Environment

The architecture used in the 3D navigation environment is identical to that of the multi-task
environment detailed above, with the exception that the observation encoder is changed to
handle visual inputs. Specifically, the observation encoder is a a 3-layer convolutional neu-
ral network parameters (3,32, 5,2,0), (32,32,5,2,0), (32,32,4,2,0), followed two linear layers
(7520, 128), (128, 128) with a ReLU activation in between.

D.4 Hierarchical Reinforcement Learning

For all approaches, we parametrize the policy as a double dueling deep Q-network [56, 86, 83]. The
parametrization of the Q-function consists of a state embedding followed by two linear layer heads for

21

the state-value Vp(s) function and the advantage Ay (s, a) function. Then the Q-function is computed
as QQ(Sv a) = ‘/9(3) + AF)(Sa a) - ﬁ Za’EA AQ(Sv CL).

The value function Vp(s) and advantage function Ag(s, a) are computed as linear layers with output
dimension 1 and |.A| respectively on top of the embedding e(s) of the state s. Recall that the state
s consists of two portions: the observation o of the grid or 3D environment, and the instruction @
corresponding to the next object to pick up, where the instruction is not present in the demonstra-
tions. The embedding e(s) of the state s is computed by embedding the observation e(o) with the
observation encoder defined in the previous sections, and embedding the instruction e(i) with
a 16-dimensional embedding matrix. Then, the embedding e(s) is a final linear layer with output
dimension 128 applied to a ReLU of the concatenation of e(0) and e(i).

E Hardware

All our experiments are conducted on a GeForce RTX 2080 Ti or a GeForce RTX A6000.

F Hyperparameters

F.1 Frame Prediction

For these set of experiments, we use the same architecture and hyperparameters as Kim et al. [39].
The hyperparameters used for both Simple Colors and Conditional Colors are:

» KL divergence weight 5 : 1.0

* MDL objective weight A (fixed) : 0.1

* Mini-batch size: 512

* Training iteration: 30000

¢ Number of skills n, = 10

F.2 Multi-task Grid World Segmentation

We use the following hyperparameters for skill learning from demonstrations on the multi-task grid
world environment experiments.
» KL divergence weight 8 = 0:

— We found that the compression objective readily provides strong and sufficient regular-
ization for the latent code. Adding additional KL divergence often results in the model
not being able to reconstruct the actions properly.

* MDL objective weight \:

— We use a adaptive scheduling that approximate dual gradient descent. A is initialized
to 0. After every gradient step, X is increased by 2.0 x 107° if Lg go < 0.05 (Since
B = 0, this is effectively L..); otherwise, A is decreased by 2.0 x 1075, After each
update, the value of A is clipped to [0, 0.05]. We find this setting provides the most
stable training.

* Mini-batch size: 64

* Training iteration: 20000

e Number of skills n, = 10

e tyg=0.1

* Learning rate: 0.0005 with Adam Optimizer

F.3 3D Visual Navigation Segmentation

We use the same hyperparameter as Multi-task grid world experiments except that the maximum
ﬁELBO is capped at 0001, i.@., LELBO S 0.001.

22

F.4 Hierarchical Reinforcement Learning

We use the same hyperparameters for training the policy for all approaches. Specifically, these
hyperparameter values are as follows:

* e-greedy schedule: We linearly decay € from 1 to 0.01 over 500K timesteps for dense
reward settings and over 5 timesteps for sparse reward settings in the multi-task grid
world environment. In the 3D visual navigation environment, we decay over 250K timesteps.

* Discount factor v: We use v = 0.99 in all of the DQN updates.
* Maximum replay buffer size: SOK

* Minimum replay buffer size before updating: 500

* Learning rate: 0.0001 with the Adam optimizer [40]

* Batch size: 32

» Update frequency: every 4 timesteps

 Target syncing frequency: every 50K updates for multi-task grid world environment, every
30K updates for 3D navigation

* Gradient /3-norm clipping: 10

* Marginal threshold o = 0.001
Since the demonstrations do not contain the instruction list observations, we set those to 0 in the
demonstrations for the behavior cloning approach. Though we use o = 0.001 in all of the experiments

for consistency, we also found that slightly higher values of « yielded greater sample efficiency for
LOVE.

G Algorithm

The Lagrangian for the unconstrained optimization problem is:

mein max ALcL(0) + (Lepo(0) — C).

In standard KKT condition, the dual variable is introduced on the ELBO, but the two problems are
equivalent by inverting the dual variable. Since the only constraint on A is that it is non-negative, this
transformation does not change the optimal solution. Further note that we find that in many cases,
choosing a fixed constant value for A is sufficient for solving the problem.

Algorithm 1 Learning Options via Compression (LOVE): We highlight differences between our
method and prior work (VTA) in blue.

1: Initialize model parameters 6
2: while not converged do
3: Sample a trajectory (xg, ao, . . . , &) from the pre-collected experience D
4 fort=1,2,...,T do
5 Sample boundary conditioned on entire trajectory m; ~ qg(my | ©1.4)
6: Sample skill from skill posterior z; ~ qg(2¢ | My, 1.1, @1.¢)
7 Sample abstraction from abstraction posterior s; ~ qg (St | 2,)
8: Compute probability of the correct action from the decoder pg(a; | s¢)
9: end for
10: Compute lower bound on maximum likelihood objective Lg; go according to Equation 4
11: Compute compression objective L, according to Equation 1
12: Update 6 + 6 — nV (Lggo + ALcr) and A
13: end while

23

Algorithm 2 Executing skill 2z

while skill has not terminated do

1:

2 Compute state abstraction jis, = Eg g (s,|2,2:) [5]
3 Take action a; = arg max, pe(a | us,)

4: Observe next state ;4

5 Terminate if Epp, . | ~qq(myii|@er) [M41] > 0.5
6: end while

24

H Visualization of Learned Skills

skill 1 skill 2 skill 3 skill 4 skill 5
EEEEEEEEEE (e EEEE
L] B [[[[[=
E | = = =] || B
L] EpEE | = EEE | [=] | e [| [
= [® ® = = [] |
= EECE EESE
| (Ot = B
E] ale =
= EEEE
EEEEEEEEEE

O [E =

Figure 8: Skill visualization for all 10 skills of LOVE.

Skill 1 Skill 2 Skill 3 Skill 4 Skill 5

-7
-5
-3
-1

-7-5-3-11357 -75-3-11357 -75-3-11357 -7-5-3-11357 -7-5-3-11357

Vertical change
=

~N oW

Skill 6 Skill 7 Skill 8 Skill 9 Skill 10

-7
-5
-3
-1

-7-53-11357 -7-53-11357 -7-5-3-11357 -7-5-3-11357 -7-5-3-11357
Horizontal change

Vertical change
=

~N 0w

Figure 9: Heat map the agent’s end position minus the agent’s start position after applying each skill. In other
words, this shows what direction the agent moves in after following each skill.

In Figure 8, we visualize the behavior of following each of LOVE’s 10 skills on an example task.
Each skill moves to and picks up an object, and the total set of skills covers 3 of the 4 object types in
the task. These skills pick up both nearby objects, such as the tree in skill 2, as well as more distant
objects, such as the diamond in skill 1. This contrasts DDO and VTA, which do not learn skills that
move to and pick up objects.

To further understand what each of LOVE’s skills does, we analyze whether there is a correlation
between each skill and either the type of object it picks up, or the location of the object it picks up.
We find that there appears to be little correlation between each skill and the type of object it picks up.
Plotting the frequency of picking up each object type by skill shows that each skill picks up each
object type with roughly the same frequency. Instead, there appears to be a correlation between each
skill and the location of the object it picks up, illustrated in Figure 9. For example, skill 1 appears to
specialize in moving to and picking up objects that are above the agent, while skill 7 tends to pick
up objects that are up and to the right of the agent. It is also interesting to note that some skills are
much more biased to move in certain direction (e.g., skill 1, 6, 7) while some appear to be more
general (e.g., 4, 5, 8, 9) and move in any direction. Note in Figure 8, it may seem LOVE’s skills
seem short / redundant. This is due to the fact that LOVE’s skills each pick up an object, so they

25

naturally appear short when the agent is close to the objects, as in Figure 8. However, when the
agent is far away from the objects, the skills still pick up the objects and are much longer. From
Figure 9, we can see from the heatmap that even the skills that appear to do same thing in Figure 8
have very distinct behaviors depending on the state they are in. Also, recall LOVE imposes a sparse
distribution over skills (Section 5). After filtering, skill 3, 7 and 10 in Figure 8 are dropped since
they have low marginal probability and are not used to describe a significant part of the trajectories.
Figure 8 includes redundant skills LOVE does not use; the used skills in the sparse distribution have
little redundancy.

I Option Critic Results

Npick = 3 (Dense) Npick =5 (Sparse)

2.001
1.754 0.04 4
1.50

O 1.254
=

°
©
= 1007 g 0.004
g

E 0.751

0.50 1
0.254

0.001

[50000 100000 150000 200000 6 IDUbOD 206000 300‘000 AOUbOD

step step
Figure 10: Results of running option critic [4] on 2 of the settings we considered in Figure 5.

Option critic [4] is a classical online HRL algorithm. We show the results of running option critic’
on two of the four RL tasks we considered in Figure 10. The best return achieved over the training
is shown in Table 4. We set the number of option to 8 following Bacon et al. [4] and leave other
hyperparameters untouched. Npyicx = 3 with dense reward is the easily setting and Npiex = 5 with
sparse reward is the hardest setting. We see that in Vpicxk = 3, option critic is able to reach reward of 2
(maximum possible is 3) at around 1M environment steps but the performance deterioates afterwards.
In Npiex = 5, the algorithm fails to make any meaningful progress. These observations may suggest
online HRL algorithms like option critic may be insufficient for solving these tasks.

Npick = 3 (Dense) Npick = 5 (Sparse)

Option-Critic 2.0 0.0
LOVE (Ours) 3.0 0.7

Table 4: Comparison between LOVE and Bacon et al. [4] on the two RL tasks we consider in this work. Each
entry is the maximum average return achieved during the course of training for both algorithms. For Npick = 3
(Dense), 3.0 is the maximum possible return. For Nk = 5 (Sparse), 1.0 is the maximum possible return.

J Comparison to Zhang et al. [90]

Simple Colors Conditional Colors Navigation
MDL LovE MDL LOVE MDL LOVE

Precision 0.87 0.99 0.84 0.99 0.79 0.90
Recall 0.78 0.85 0.82 0.83 0.34 0.94
F1 0.82 0.91 0.83 0.90 0.48 0.92

Table 5: Comparison between LOVE and Zhang et al. [90] on the three segmentation tasks we consider in this
work. We refer to Zhang et al. [90] as MDL in the table.

*https://github.com/lweitkamp/option-critic-pytorch

26

Zhang et al. [90] learn open-loop skills, which do not condition on the state and therefore cannot
adapt to different states. Further, the MDL used in Zhang et al. [90] is equivalent to the variational
inference used by VTA (on a different graphical model), which can be seen as greedily compressing
each skill independently, rather than compressing a whole trajectory as LOVE does. Table 5 reports
segmentation results on the Color domain and grid world, akin to Tables 2 and 3. Zhang et al. [90]
performs the same as VTA on the Color domains — as they both use variational inference and there is
no state — which achieves lower precision / recall than LOVE. On the grid world navigation, Zhang
et al. [90] fails to recover the boundaries, unlike LOVE, because skills that navigate to objects require
observing the state. This problem is shared by all open-loop approaches.

K Number of Initial Skills Ablation

K=2 K=5 K=10 K=15 K=20 K=30 K=50

Precision 0.27 0.80 0.90 0.96 0.96 0.95 0.95
Recall 0.53 0.91 0.94 0.96 0.95 0.96 0.93
F1 0.35 0.86 0.92 0.96 0.95 0.95 0.94

Table 6: Performance of LOVE on the grid navigation task with varying number of initial skills (K).

The number of skills to extract from demonstrations is often not known a priori, so choosing an
appropriate value of the number of initial skills before filtering K is important. Intuitively, we
hypothesize that K can be set conservatively: LOVE requires at least a minimum number of skills
in order to fit the behaviors in the demonstrations, but may be able to gracefully prune out skills
if K is set too high via the filtering described in Section 5. We test this intuition by varying
K €{2,5,10, 15,20, 30,50} and measuring the segmentation performance on the grid world multi-
task domain, and find that it appears to hold true in Table 6. For smaller values of K, such as K = 2
and K = 5, LOVE’s F1 scores significantly degrade. However, performance remains high for all
values where K is sufficiently large. Hence, we conservatively sizing K to be a large number.

L. Comparison to Different Regularizers

entropy num switch VTA(3,5) VTA(3,10) VTA(5,5) VTA(5,10) LOVE

Precision 0.26 0.80 0.34 0.40 0.34 0.95 0.90
Recall 0.53 0.93 0.46 0.60 0.50 0.43 0.94
F1 0.35 0.86 0.39 0.48 0.40 0.37 0.92

Table 7: Comparison of different kinds of regularizers that have been used in the literature for skill segmentation.
LOVE outperforms all significantly.

Several prior methods encourage skills to act for more timesteps or prevent skills from switching too
frequently, which can similarly help avoid degenerate solutions like LOVE. We note that such prior
methods do not necessarily yield skills that help learn new tasks, while the maximum of LOVE’s
objective achieves the information-theoretic limit of compressing the trajectories (under a fixed
function class), which is not done in other works. We empirically compare LOVE with several such
methods on the segmentation of the multi-task grid world domain, including:

1. Entropy: This approach regularizes the entropy of skill marginal akin to Shankar et al. [72],
which they refer to this as parsimony. Specifically, this approach adds a regularization term
Hyp: [2] to the objective Leppo.

2. Num switches: This approach penalizes switching between skills, similar to Harb et al. [27],
a variant of the Option-Critic framework [4]. Specifically, this approach adds a penalty ng to
the objective Lg go equal to the number of switches (i.e., the number of times m; = 1) in a
demonstration.

27

3. VTA(Nmax, Imax): VTA includes a prior on its boundary variables, which effectively sets the
maximum number of skills per episode to be N, and sets the maximum number of actions
a skill can take to l;,,x. We experiment with several settings of Nyax and ljax, including
those that use prior knowledge about the domain not used by LOVE.

The results are summarized in Table 7. We find that regularizing the number of switches performs
fairly well, but LOVE achieves higher F1 than other approaches that regularize the skills.

28

