
A Proofs and Analysis of Privacy

A.1 Proof of Differential Privacy (DP)

The privacy risk of FedSim incurred by similarities can also be formalized by a strong metric
differential privacy [15]. This metric, however, requires more additional noise, thus seriously
affecting the accuracy. In the beginning, we introduce some background of traditional Gaussian
mechanism (Theorem 3) [15] as ε ∈ (0, 1).

Theorem 3. ([15]) For any (ε, δ) ∈ (0, 1), the Gaussian mechanism M(x) = f(x) + N(0, σ2I)

with σ = ∆
√
2 log(1.25/δ.

According to [5], the traditional Gaussian mechanism can be extended to Theorem 4 to support ε > 1.

Theorem 4. ([5]) Let f : X → Rd have global L2 sensitivity ∆. Suppose ε > 0 and 0 < δ <
1/2− e−3ε/

√
2πε. If the mechanism M(x) = f(x) +N(0, σ2I) is (ε, δ)-DP, then σ ≥ ∆/

√
2ε.

Theorem 3 suggests that the Gaussian mechanism as ε > 1 (Theorem 3) requires different scale
of noise compared to the Gaussian mechanism as ε ∈ (0, 1) (Theorem 4). Specifically, to achieve
(ε, δ)-DP, Theorem 3 requires σ = Θ(1/ε), while Theorem 4 requires σ = Ω(1/

√
ε). Notably,

Theorem 4 indicates the smallest scale σ of noise required for (ε, δ)-DP, thus further implying the
lowest ε that can be proved from the given scale of noise (σ ≥ ∆/

√
2ε). Focusing on the case of

FedSim, given the dataset kS to be protected, we restate procedure G as follows.

Then, we prove the differential privacy of G in both cases when ε ∈ (0, 1) and ε > 1 according to
Gaussian mechanisms.

Procedure G: Take kS as the input. Each kPi ∈ kP is linked to multiple kSj ∈ kS ; the similarities

between kPi and kSj are calculated by sij = −∥kP
i −kS

j ∥2+µ0

σ0
+N(0, σ2), where N(0, σ2) refers to

Gaussian distribution with variance σ2. Output the similarities s.

Theorem 5. Let ε, δ ∈ (0, 1). Suppose the size of kP is n × β. Procedure G is (ε, δ)-DP if

σ ≥ ∆G
√
2 ln (1.25/δ)/ε, where ∆G = n ·max

{∣∣∣ 1+µ0

σ0

∣∣∣ , ∣∣∣−1+µ0

σ0

∣∣∣}.

Proof. The change of a single of one Bloom filter on party S may change the distance by 1; therefore,
the sensitivity of ∥kPi − kSj ∥2 = 1. The sensitivity of a single similarity sij , which is a linear
transformation of ∥kPi − kSj ∥2, is

max

{∣∣∣∣1 + µ0

σ0

∣∣∣∣ , ∣∣∣∣−1 + µ0

σ0

∣∣∣∣} (3)

Since each kSj ∈ kS might be linked to all n instances in kP , modifying one instance in kS results in
the change of at most n similarities. The sensitivity of procedure G can be derived as

∆G = n ·max

{∣∣∣∣1 + µ0

σ0

∣∣∣∣ , ∣∣∣∣−1 + µ0

σ0

∣∣∣∣} (4)

According to Theorem 3, if σ ≥ ∆G
√
2 ln (1.25/δ)/ε, procedure G is differential privacy (ε, δ)-

differential privacy according to Gaussian mechanism.

Theorem 1. Suppose ε > 0 and 0 < δ < 1/2 − e−3ε/
√
2πε. Suppose the size of kP is n × β. If

procedure G is (ε, δ)-DP, then σ ≥ ∆G/
√
2ε, where ∆G = n ·max

{∣∣∣ 1+µ0

σ0

∣∣∣ , ∣∣∣−1+µ0

σ0

∣∣∣}.

Proof. According to Equation 4, it holds

∆G = n ·max

{∣∣∣∣1 + µ0

σ0

∣∣∣∣ , ∣∣∣∣−1 + µ0

σ0

∣∣∣∣}
According to Theorem 4, if G is (ε, δ)-DP, then σ ≥ ∆G/

√
2ε.

15

A.2 Proof of Theorem 1

Theorem 2. Given a finite set of perturbed similarities sij (i ∈ Q) between |Q| bloom-filters
kPi (i ∈ Q) in party P and one Bloom filter kSj in party S, if an attacker knows the scaling parameters
µ0, σ0 and follows the procedure of the attack method, the probability of the attacker’s predicted
Bloom filter k̂Sj equaling the real Bloom filter kSj is bounded by a constant τ . Formally,

Pr
[
k̂Sj = kSj

∣∣∣ {sij |i ∈ Q}, {kPi |i ∈ Q}, µ0, σ0,A
]
≤ τ

where constant τ = erf
(√

σ2+1
2
√
2σσ0

)
; erf(·) is the error function, i.e., erf(x) = 2√

π

∫ x

0
e−t2dt; event

A: attackers follow the given attack method.

Proof. According to the attack method, the attacker can predict based on any |Q| Bloom filters in
party P and their corresponding distances. We denote the negative distance between kPi and kSj as
lij = −dist(kPi , k

S
j). The attacker’s predicted value of lij is denoted as l̂ij . Then, we have

Pr
[
k̂S
j = kS

j

∣∣∣ {sij |i ∈ Q}, {kP
i |i ∈ Q}, µ0, σ0,A

]
= Pr

[
k̂S
j = kS

j , {l̂ij = lij |i ∈ Q}
∣∣∣ {sij |i ∈ Q}, {kP

i |i ∈ Q}, µ0, σ0,A
]

= Pr
[
k̂S
j = kS

j

∣∣∣ {l̂ij = lij |i ∈ Q}, {kP
i |i ∈ Q}, µ0, σ0,A

]
· Pr

[
{l̂ij = lij |i ∈ Q}

∣∣∣ {sij |i ∈ Q}, {kP
i |i ∈ Q}, µ0, σ0,A

]
= Pr

[
k̂S
j = kS

j

∣∣∣ {l̂ij = lij |i ∈ Q}, {kP
i |i ∈ Q}, µ0, σ0,A

]
· Pr

[
{l̂ij = lij |i ∈ Q}

∣∣∣ {sij |i ∈ Q},A
]

= Pr
[
k̂S
j = kS

j

∣∣∣ {l̂ij = lij |i ∈ Q}, {kP
i |i ∈ Q}, µ0, σ0,A

]
·
∏
i∈Q

Pr
[
l̂ij = lij

∣∣∣ sij ,A]

(5)

The first equation holds because of the assumption that the attacker predicts kSj through the most
likely distance l̂ij , and correctly predicting the |Q| correct distances is the prerequisite of predicting
the correct Bloom filter kSj , i.e., {k̂Sj = bSj } ⊆ {l̂ij = lij |i ∈ Q}. The second equation holds
because of the definition of conditional probability. The third equation holds because the attacker
predicts distances independently based on perturbed similarities, indicating that {l̂ij = lij |i ∈ Q} is
conditionally independent with µ0, σ0 and {kPi |i ∈ Q} given A. The fourth equation holds because
all the l̂ij (i ∈ Q) are predicted independently by the attacker from the corresponding sij , indicating
that each l̂ij = lij is conditionally independent with {skj |k ∈ Q, k ̸= i}.

According to the attack method, the attacker first predicts the similarity ρ̂ij based on Maximum a
Posteriori (MAP) estimation with one experiment sij . With Bayes’ theorem, we have

p(ρij |sij ,A) ∝ p(sij |ρij ,A)p(ρij |A) (6)

Since ρij ∼ N(0, 1) and sij ∼ N(ρij , σ
2),

p(ρij |sij ,A) ∼ N

(
sij

σ2 + 1
,

σ2

σ2 + 1

)
(7)

Note that the posterior distribution is also a Gaussian distribution. This property of Gaussian
distribution is also known as conjugate distribution [38]. With Equation 7, ρij is estimated by

ρ̂ij = argmax
ρij

p(ρij |sij ,A) =
sij

σ2 + 1
(8)

Then, ρ̂ij is scaled back to distance l̂ij
′

with known scaling parameters µ0, σ0, i.e.,

l̂ij
′
= σ0ρ̂ij + µ0 (9)

16

Since the distances between the Bloom filters are integers, predicting the correct distance, i.e.,
l̂ij = lij , implies that

lij = σ0ρij + µ0, |l̂ij
′
− lij | ≤

1

2
(10)

With Equation 8, 9 and 10, we can evaluate Pr[l̂ij = lij |sij ,A] by

Pr[l̂ij = lij |sij] = Pr

[
|l̂ij

′
− lij | ≤

1

2

∣∣∣∣ sij ,A]
= Pr

[∣∣∣∣ρij − sij
σ2 + 1

∣∣∣∣ ≤ 1

2σ0

∣∣∣∣ sij ,A] (11)

Note that we already know the probability density function p(ρij |sij ,A) in Equation 7. By shifting
the mean of the distribution, we have

p

(
ρij −

sij
σ2 + 1

∣∣∣∣ sij ,A) ∼ N

(
0,

σ2

σ2 + 1

)
(12)

Considering Equation 11 and 12, Pr[l̂ij = lij |sij] can be calculated by a simple integral

Pr[l̂ij = lij |sij ,A] =

∫ 1
2σ0

1
−2σ0

√
σ2 + 1√
2πσ

e−
x2

2σ2 (σ2+1)dx = erf

(√
σ2 + 1

2
√
2σσ0

)
(13)

From Equation 5, 11, and 13, we have

Pr
[
k̂Sj = kSj

∣∣∣ {sij |i ∈ Q}, {kPi |i ∈ Q}, µ0, σ0,A
]

= Pr
[
k̂Sj = kSj

∣∣∣ {l̂ij = lij |i ∈ Q}, {kPi |i ∈ Q}, µ0, σ0,A
]

·
∏
i∈Q

Pr
[
l̂ij = lij

∣∣∣ sij ,A]

≤
∏
i∈Q

Pr[l̂ij = lij |sij ,A] =

[
erf

(√
σ2 + 1

2
√
2σσ0

)]|Q|

(14)

The inequality in the fourth line of Equation 14 holds because the first probability is always less or
equal to 1. This relaxation implies that the properties of Bloom filters (e.g., size, value) does not
affect the proved bound.

According to the property of error function, 0 < erf(x) < 1 for any x > 0. Thus, for any set Q, we
have

Pr
[
k̂Sj = kSj

∣∣∣ {sij |i ∈ Q}, {kPi |i ∈ Q}, µ0, σ0,A
]
≤ erf

(√
σ2 + 1

2
√
2σσ0

)
(15)

Interestingly, Equation 14 implies that a larger |Q| leads to a lower success rate of the attack, which is
reasonable due to the noise added to each sij . Specifically, because of the added noise in Equation 2,
the attacker cannot accurately predict the real similarities in the first step of the attack. Though
the attacker has more predicted real similarities ρ̂i to infer kSj in the last step of the attack, these
additional ρ̂i bring more noise than information, thus leading to a higher success rate. In conclusion,
under the intuitive greedy attack model, the optimal choice of the attacker is to launch an attack
through a single Bloom filter and its similarity by setting |Q| = 1, the success rate of which can be
bounded by a small constant.

A.3 Comparison between Two Privacy Metrics

As observed from both Theorem 5 and Theorem 1, the noise scale σ derived from differential privacy
increases linearly by n. A such large scale of noise would seriously affect the performance of FedSim.
Taking house dataset as an example, µ0 = −46237.78, σ0 = 21178.86. Letting δ = 10−5, we can

17

derive the values of τ and ε under different noise scales σ as Figure 7. As observed from Figure 7,
setting σ = 4, the differential privacy parameter ε = 2.96 × 109 implies that there is almost no
privacy guarantee at all. Nonetheless, the attacking success rate τ = 1.94× 10−5 suggests that the
privacy risk from certain attacks can be very low.

Figure 7: Values of τ and ε under different noise scales σ

The main difference between the two metrics is the accumulation of privacy risk over various
similarities linked to the same kSj . In differential privacy, the overall privacy loss is a linear summation
of the privacy loss from each similarity. Nevertheless, in our proposed metric, the attacking success
rate τ decreases as the number |Q| of similarities used in the attack increases according to Equation 14.
In summary, differential privacy that protects against all possible attacks is impractical in this
scenario; as an alternative, our analysis suggests that the privacy risk against certain attacks
can be significantly reduced by adding Gaussian noise.

B Advanced Attacks on FedSim

B.1 Advanced Attacks

Since FedSim is the first VFL approach indicating that the proper use of similarities can benefit the
training process, the attacks on the similarities remain unexplored. In this paper, we have proposed a
greedy attack method and the corresponding defense as a start. Notably, more advanced attacks are
non-trivial but possible and their corresponding defense mechanisms are desirable. We provide three
potential vulnerabilities of FedSim for future attack design.

1) Background information of ρij: In step (1) of the greedy attack method, we assume the attack
adopts a Gaussian prior distribution to perform estimation, which is true when the attacker has
no knowledge of the distribution of distances ρij . Nonetheless, if some prior knowledge of ρij
is known to the attacker, one may carefully design a better prior than unit Gaussian and achieve
higher predictive accuracy. For example, if knowing ρij < 100, the attacker can truncate the prior
distribution by setting Pr[ρij ≥ 100] = 0. 2) Non-greedy attack: The greedy attack method assumes
the attacker predicts Bloom filters with the predicted values of distances. However, deriving an
accurate value of each distance may not be necessary. It remains an open direction to design a method
that directly exploits the distribution of distances to predict the target Bloom filter. 3) Correlation
between shared information: In Section 5.1, we list three shared information and discuss their
privacy risk respectively. Nevertheless, the privacy of each piece of shared information does not
imply the privacy of all three pieces of shared information. For example, if shared similarities s
are correlated with shared intermediate results cimi=1 in SplitNN, disclosing both could much more
damaging than disclosing each of them. The effect of such correlation, which remains unexplored,
will be left as our future work.

C Extension to Multiple Parties

As the effect of linkage on VFL receives increasing attention [39], to the best of our knowledge, all
the existing VFL approaches with non-exact linkage [22, 27, 39, 40] focus on the two-party setting.
Similar to these approaches, we also mainly focus on the two-party setting which has many real-world
applications (e.g., bank and fintech company [60]). In this section, we explain the major challenges of

18

multi-party VFL with non-exact linkage and present a simple extension of FedSim to the multi-party
setting.

The multi-party setting of VFL is far more than a trivial extension of the two-party setting because
the linkage among parties can be complex. For example, consider a three-party VFL of an e-bank, an
e-shopping company, and a delivery company. The e-bank and e-shopping company are linked by
customers’ names; the e-shopping company and the delivery company are linked by transaction IDs;
the e-bank and the delivery company are linked by address. In this case, we need to select two “best”
common features from name, transaction ID, and address to link the three parties and determine a
proper order for the linkage. Although in the exact linkage on the same common feature [7, 26, 60],
the choice and order of common features do not affect the linkage result, the result of non-exact
linkage can be significantly affected by both the choice and order of common features. How to handle
these data non-exactly linked as a circle (or even a complicated graph) is still an open problem of
VFL.

Additionally, even assuming that all the parties are linked on the same common feature and the order
of linkage is fixed, performing one-to-many linkage between each pair of parties suffers an efficiency
issue. Specifically, one intuitive approach is to link all possible pairs across the parties and expand oi

from K × lm to size Kn−1 × lm, where n is the number of parties (both primary and secondary).
This approach, leading to Kn−2 times more training cost than the cost of the two-party FedSim, is
not scalable on parties.

Fortunately, our empirical study on five real-world datasets suggests that, compared to secondary
parties, the primary party who owns labels usually also holds more important or at least
comparable features. Specifically, we first link each data record in the primary party with the most
similar data record in the secondary party (similar to Top1Sim). Then, each data record in both the
primary party and the secondary party has a label. Finally, we train the same model on the primary
party and the secondary party, respectively, and summarize the performance in Table 2. Compared
with the secondary party, we observe that the primary party has much better performance (thus much
more important features) on house, hdb, and song. Meanwhile, the primary party has slightly lower
but comparable performance (thus comparable features) on bike and game.

Table 2: Performance on a single party (either primary or secondary) on real-world datasets

Dataset house (RMSE) bike (RMSE) hdb (RMSE) game (Accuracy) company (RMSE)

Primary 58.31±0.28 272.83±1.50 29.75±0.15 85.27±0.29% 37.08±0.61
Secondary 150.27±0.17 265.79±0.06 134.82±0.10 88.21±0.06% 225.07±0.02

Relative diff.1 61.20% -2.65% 77.94% -3.34% 83.53%

1 Positive means primary outperforms secondary; negative means secondary outperforms primary. The value
means relative difference, i.e., |primary− secondary|/secondary.

This observation implies that the linkage between the primary party and the other parties is the most
vital in practice. Under this observation, to overcome the scalability issue of multi-party FedSim, we
propose an intuitive approach that extends FedSim to the multi-party setting. Specifically, we first
perform one-to-one linkage for all the secondary parties, then perform one-to-many linkage between
the linked secondary parties and the primary party. During the training process, each secondary
party holding a local model performs training according to multi-party SplitNN. This approach is
empirically evaluated in Appendix F.3.

D Applications

In this section, we discuss what datasets FedSim performs well on and how common such datasets
exist in real-world applications. As we have explained in Appendix F.6, the main assumption of
FedSim is

the similarity between identifiers is related to the similarity between data records.

If this assumption holds, FedSim probably outperforms Exact/Top1Sim. The potential improvement
can be estimated by our proposed metric ∆. If this assumption does not hold, e.g., the identifier

19

is unique ID, the experiment in Appendix F.6 indicates that FedSim has the close performance to
Exact/Top1Sim under a small K. Setting a large K is likely to significantly reduce the performance
due to overfitting.

This assumption commonly holds in real-world applications. Since VFL is a rather recent paradigm
with fewer real applications, we investigate the applications of a traditional area "record linkage"
which has many existing applications. The application scope of record linkage reflects the application
scope of VFL, because all the VFL algorithms require the data to be linked (either on ID or other
features) before training.

German Record Linkage Center (GRLC) published an article [4] to summarize its completed linkage
projects since 2011. We summarize the information of identifiers in Table 3.

Table 3: The identifiers of the completed projects in GRLC since 2011 (excluding two papers written
in German that we are unable to translate)

Application Reference Identifier Satisfy the Assumption

Employment

[2] name, birthday, street, house number, etc. ✓
[16] address ✓
[41] address ✓
[49] name, address ✓
[9] ID ✗
[58] ID ✗

Commercial [48] name, address ✓
[3] company name ✓

Migration [31] gender, age, address, municipality, etc. ✓

Medical [20] name, date of birth ✓

Education [19] ID ✗

Number of applications satisfying the assumption 8/11 (72.7%)

Two observations can be made from these projects. First, among the 11 completed projects, eight
projects require linking datasets without user ID. This implies that, in the majority (around 8/11)
of real applications, there does not exist a shared user ID. Second, the similarity of some fields can
reflect the similarity of the property, such as address (5/11 projects) in GPS or string format. Even
for the field whose own similarity does not reflect record property, such as name, birth date, and
postal code, the similarity of the quasi-identifier containing these fields (2/11 projects) can reflect the
property. This is because records with more matched fields are more likely to belong to the same user,
especially when considering typos that widely exist in practice. Therefore, the similarity of shared
features is related to the property of records in many (around 8/11) real-world cases, which supports
our main assumption.

E Experimental Details

Dataset. The basic information of these datasets is summarized in Table 4. Specifically, in house
dataset, party P contains housing data in Beijing collected from lianjia [44], and party S contains
renting data in Beijing collected from Airbnb [1]. Two parties are linked by longitude and latitude
and the task is to predict the housing price. In taxi dataset, party P contains taxi trajectory data in
New York from TLC [52], and party S contains bike trajectory data in New York from Citi Bike [8].
Two parties are linked by the longitude and latitude of the source and destination of the trajectory
and the task is to predict the time of the trip along this trajectory. In hdb dataset, party P contains
HDB resale data in Singapore collected from Housing and Development Board [23], and party S
contains recent rankings and locations of secondary schools in Singapore collected from salary.sg
[45]. Two parties are linked by longitude and latitude and the task is to predict the HDB resale prices.
In game dataset, party P contains game data (e.g., prices) and the number of owners (#owners) from
Steam [11]. party S contains game ratings and comments from RAWG [24]. Two parties are linked
by game titles and the task is to classify games as popular (#owners > 20000) or unpopular (#owners
≤ 20000) based on ratings, prices, etc. In song dataset, party P contains timbre values of songs
extracted from million song dataset [6], and party S contains the basic information of songs extracted

20

from FMA dataset [12]. Two parties are linked by the titles of songs and the task is to predict the
publication years of songs.

Table 4: Basic information of datasets

Dataset Type Party P Party S Identifiers Task
#samples #ft. ref #samples #ft. ref #dims type

sklearn Syn 60,000 50 [10] 60,000 50 [10] 5 float bin-cls
frog Syn 7,195 19 [13] 7,195 19 [13] 16 float multi-cls

boone Syn 130,064 40 [14] 130,064 40 [14] 30 float bin-cls
house Real 141,050 55 [44] 27,827 25 [1] 2 float reg
taxi Real 200,000 964 [52] 100,000 6 [8] 4 float reg
hdb Real 92,095 70 [23] 165 10 [45] 2 float reg

game Real 26,987 38 [11] 439,999 86 [24] 1 string bin-cls
company Real 77,225 91 [47] 220,583 157 [64] 1 string reg

Note: “#ft.” means number of features; “Syn” means synthetic; “Real” means real-world; “bin-cls”
means binary classification; “multi-cls” means multi-class classification; “reg” means regression.

These eight datasets have a wide variety in multiple dimensions. 1) Matching of common features:
Due to the property of common features, some datasets can be exactly matched (e.g., syn, frog,
boone without noise), some datasets can partially exactly matched (e.g, game, song), and some
datasets can only be soft matched (e.g., house, taxi, hdb). 2) Similarity metric: These datasets
cover three commonly used similarity metrics including Euclidean-based similarity, Levenshtein-
based similarity, and Hamming-based similarity. 3) Task: The selected datasets cover three common
tasks including binary classification, multi-class classification, and regression.

Hyperparameters. The number K of neighbors is chosen from {50, 100}. The sizes of hidden
layers are chosen from {100, 200, 400} and remain consistent across all VFL algorithms. The
learning rate is chosen from {3× 10−4, 10−3, 3× 10−3, 1× 10−2} and weight decay is chosen from
{10−5, 10−4}. Since FedSim and AvgSim process K times more samples per batch compared to
other algorithms, their batch sizes are 1/K times smaller than the others. The batch size of FedSim
and AvgSim are chosen from {32, 128}, while the batch sizes of other algorithms are set to 4096.
The training is stopped at the best performance on the validation set.

Hardwares. The training of all the experiments is conducted on a machine with four A100 GPUs,
two AMD EPYC 7543 32-Core CPUs, and 504GB of memory. The linkage of all the experiments
is performed on another machine with two Intel Xeon Gold 6248R CPUs and 377GB memory.
Additional 500GB swap space is needed to link large datasets like song.

Licenses. Our codes are based on Python 3.8 and some public python packages. No existing codes
are included in FedSim. We will release our codes under Apache V2 license1.

The datasets that we use in our experiments have different licenses as summarized in Table 5. All of
them can be used for analysis but only some of them can be shared or used commercially.

F Additional Experiments

F.1 Additional Experiment on Privacy

Due to the page limit, we present the experiment of Section 5 on company in Figure 8. We can make
similar observations to Section 5 that FedSim is robust to noise on similarities.

F.2 Effect of Hyperparameter K

In this subsection, we aim to illustrate that the baselines cannot achieve good performance even
by carefully tuning the number of neighbors K, while FedSim remains stable with large K and

1https://www.apache.org/licenses/LICENSE-2.0

21

https://www.apache.org/licenses/LICENSE-2.0

Table 5: Licenses of datasets
License Dataset Analyze Adapt Share Commercial

CC BY 4.0a [11, 64] ✓ ✓ ✓ ✓
CC BY-NC-SA 4.0b [44] ✓ ✓ ✓ ✗

CC BY-SA 4.0g [47] ✓ ✓ ✓ ✓
CC0 1.0c [1, 13, 14, 45] ✓ ✓ ✓ ✓

Singapore Open Data Licensed [23] ✓ ✓ ✓ ✗
NYCBS Data Use Policye [8] ✓ ✓ ✓ ✓

All rights reserved [24, 52] ✓ ✗ ✗ ✗

a https://creativecommons.org/licenses/by/4.0/
b https://creativecommons.org/licenses/by-nc-sa/4.0/
c https://creativecommons.org/publicdomain/zero/1.0/
d https://data.gov.sg/open-data-licence
e https://www.citibikenyc.com/data-sharing-policy
f http://millionsongdataset.com/faq/
g https://creativecommons.org/licenses/by-sa/4.0/

Figure 8: Performance with different scale of noise on similarities

consistently outperforms the baselines. With other hyperparameters fixed, we present the performance
under different K in Figure 9.

Figure 9: Performance with different K

As we expect, the performance of Top1Sim remains steady since the pairs with the largest similarities
remain the same. The performance of AvgSim and FeatureSim drops as K increases since they
cannot handle the redundant data properly. On the contrary, with increasing K, the performance
of FedSim increases and then remains steady, which means FedSim can effectively exploit useful
information in these additional data. In conclusion, FedSim is robust to large K; setting a relatively
large K achieves the best performance for FedSim.

22

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://data.gov.sg/open-data-licence
https://www.citibikenyc.com/data-sharing-policy
http://millionsongdataset.com/faq/
https://creativecommons.org/licenses/by-sa/4.0/

F.3 Multi-Party FedSim

In this subsection, we evaluate FedSim in multi-party setting on house. Specifically, we equally split
the dataset for secondary parties into three parties by features. In Table 6, we report the performance
when the party P conducts VFL with each combination of three secondary parties {S1, S2, S3}. It
can be observed that FedSim with more secondary parties produces better performance, which shows
that FedSim can effectively utilize the data of more parties.

Table 6: Performance of Four-Party FedSim on house
Secondary parties S1, S2, S3 S1, S2 S1, S3 S2, S3

R2 0.9475 0.9470 0.9481 0.9456

Secondary parties S1 S2 S3 Solo

R2 0.9469 0.9114 0.9457 0.8989

F.4 Time Consumption of FedSim

Linkage. We present the time for linkage in Table 7. All the datasets organically contain either float
or string identifiers. For float identifiers, Euclidean similarities are calculated; for string identifiers,
edit similarities are calculated. Meanwhile, all the identifiers can be converted to Bloom filters
according to [29] for privacy. The Hamming similarities between Bloom filters are calculated. As
can be observed from Table 7, linking Bloom filters for privacy is generally more time-consuming
than linking raw float/string features. This indicates that a more efficient PPRL approach is desired.
We leave this topic as our future study.

Table 7: Time for record linkage (min)
Type of Identifiers house taxi hdb game company

Float/String 3.48 12.95 0.98 3.62 13.20
Bloom Filter [29] 145.20 594.27 258.23 41.38 19.87

Training. FedSim has more parameters compared with other one-to-one baselines, thus leading to
a longer training time. For each dataset, we report the training time per epoch in Table 8, and present
the number of parameters of each model in Table 9. Note that the soft linkage procedure (including
similarity calculation and k-nearest-neighbor search), as a preprocessing step, is not included in the
training time.

Two observations can be made from Table 8. First, FedSim, AvgSim, and FeatureSim require longer
but acceptable training time compared to other baselines. This is because these three approaches
train K times more samples than other approaches, thus costing approximately K times longer time.
Second, FedSim requires similar training time compared to AvgSim and FeatureSim in each epoch.
Although FedSim contains around K times more parameters (mostly in merge model) than AvgSim
and FeatureSim, the trained samples in the merge model are also K times fewer than the original
batch size, because each dPi , together with its K neighbors dS

i , is regarded as one 2D sample in the
merge model. Therefore, the per-epoch training time of FedSim is similar to that of AvgSim and
FeatureSim.

Table 8: Training time (seconds) per epoch of different VFL algorithms on real-world datasets
Models house taxi hdb game company
Exact - - - <1 4

FeatureSim 15 51 5 1 23
AvgSim 6 35 4 1 15
Top1Sim <1 1 <1 <1 3
FedSim 9 38 6 4 62

23

Table 9: Number of parameters of each model
Models house taxi hdb game company
Exact - - - 63,301 85,401

Featuresim 76,201 116,801 76,201 32,801 45,201
Avgsim 76,001 116,701 136,601 63,301 75,701
Top1sim 76,001 11,971 76,001 63,301 170,601
Fedsim 3,469,806 1,846,490 1,869,806 1,826,506 494,474

F.5 Visualization of the Similarity Model and Merge Model

To provide more insights into FedSim, we visualize the similarity model and the merge model as
Figure 10, both of which are extracted from the converged FedSim on company dataset. For the data
records linked with “the village coffee shop” (left), we highlight similar records with deeper colors.
For the similarity model (middle), which has one-dimensional input and one-dimensional output,
we plot the model in a two-dimensional coordinate system when scaled similarities range in [-3,3].
For the merge model (right), we evaluate the feature importance of each feature in o′

t(50× 10) by
integrated gradients [51], which is widely used [43, 46] in model explanation. Larger vertical indices
indicate larger similarities due to the sort gate. The deeper colors indicate higher importance and the
lighter colors indicate lower importance.

Figure 10: Visualization of FedSim on a data batch of company dataset. The left figure includes
identifiers (“company name”) similar to “the village coffee shop”. The middle figure shows the
mapping from similarities to weights in the similarity gate. The right figure displays the feature
importance calculated by integrated gradients [51] of each input feature (50× 10) of merge gate.

Three observation can be made from Figure 10. First, “the village coffee shop” is soft-linked with
three categories of companies: (a) exactly matched “village coffee shop”, (b) other coffee shops,
and (c) other companies unrelated to the coffee shop (e.g., the village network). Intuitively, (a) and
(b) tends to have more similar feature values (e.g., number of employees) with “the village coffee
shop” than (c). Therefore, when training “the village coffee shop”, the linked pairs with (a) and (b)
should have a larger effect than (c). Second, as expected, in the similarity model, the record in (a) is
granted a dominant weight, the records in (b) are granted moderate-to-high weights, and the records
in (c) are granted small weights. Third, in the merge model, the linked records with high similarities,
as an input feature for the merge model, have a more significant effect on the merge model. These
observations imply that the weight gate and merge gate can effectively capture the key data records
and filter useless records according to the similarities.

F.6 Independent Common Features

In this subsection, we study a special case where there is no mutual information between common
features and unique features. We generate a synthetic dataset sklearn-random similarly to sklearn
dataset. The only difference is that sklearn-random generates random common features, while
sklearn selects existing features as common features. In this case, the similarity between common
features is independent of the other features. Thus, we expect FedSim to perform the same as

24

Top1Sim/Exact baseline at a reasonable K. After training FedSim with CNN merge model five times,
the results are summarized in Table 10.

Table 10: Performance on random common features
Method Accuracy

Solo 60.76±0.41
Top1Sim/Exact 92.15±0.33

Combine 94.70± 0.58
FedSim (K = 50) 87.79± 0.77
FedSim (K = 30) 92.80± 0.61

From Table 10, we observe that the performance of FedSim is similar to Exact and Combine when
K = 30 though dropping lower when K = 50 due to the noise. This demonstrates the basic
assumption behind FedSim: the similarity between identifiers is related to the similarity between
records. FedSim outperforms baselines when the relationship is tight (e.g. identifiers are GPS),
and provides similar performance to baselines when the relationship is weak or non-existent (e.g.
identifiers are hash value). Notably, by properly setting hyperparameters, FedSim will not degrade
under baselines because Exact and Top1Sim are special cases of FedSim when setting the number of
neighbors K to 1 with a linear merge model.

F.7 Different Similarity Metrics

In this subsection, we study how different similarity metrics affect the performance of FedSim. For
numeric identifiers, we test Euclidean similarity and Hamming similarity; for string identifiers, we
test edit similarity and Hamming similarity. The performance of FedSim is presented in Table 11.
We observe that the dataset with Hamming similarity is usually lower than other metrics because
generating Bloom filters introduces random noise. The only exception is the company dataset with
long strings of company names as identifiers. In these names, words can be dislocated or shuffled,
thus failing the edit similarity. For example, “Kentucky bank” and “bank of Kentucky” with a large
edit distance can be recognized as similar by Bloom filters built from q-grams. In general, the
similarity metric does not significantly affect the performance.

Table 11: Performance of FedSim on different similarity metrics
Similarity Metric house (numeric) bike (numeric) hdb (numeric) game (string) company (string)

Euclidean/Edit 42.12±0.23 235.67±0.27 27.13±0.06 92.88±0.11% 40.04±2.18
Hamming 50.03±1.09 238.81±0.50 28.29±0.22 92.70±0.48% 37.08±0.61

G Limitations

We discuss the limitation of FedSim in the following two aspects.

Accuracy. As discussed in Appendix D and Appendix F.6, the performance boosting of FedSim
is based on an assumption that the similarity between identifiers is related to the similarity between
data records. This assumption may not hold in a small portion of real applications (e.g., identifiers
are randomly generated IDs). In these cases, FedSim has no improvement on baselines and can even
be outperformed by baselines if K is too large (see Appendix F.6). Further improvements on these
cases are left as our future work.

Privacy. As stated in Section 5, we propose an intuitive attack and the corresponding defense.
Nonetheless, this approach does not fully guarantee the privacy of FedSim. We further discuss three
directions of advanced attacks in Appendix B. The design of these advanced attacks is non-trivial,
thus we leave these advanced attacks as well as their defense as our future work.

Scalability. In Appendix C, we propose an extension of FedSim to the multi-party setting under
the assumption that the primary party holds more important or comparable features than secondary

25

parties. In this case, FedSim is scalable on parties since secondary parties can be linked by one-to-one
mappings without significant performance loss. Nevertheless, if this assumption no longer holds,
performing one-to-many linkage between each pair of parties is infeasible due to the expensive
computational cost. Designing a non-exact VFL model for multiple parties remains an open problem
in VFL.

H Discussion

Potential negative societal impact. FedSim might be adapted to a linkage attack method, which
could threaten the privacy of released data. Since we provide an effective approach to exploit
information through fuzzy matched identifiers (e.g. GPS locations), this kind of identifier should be
paid special attention to privacy when releasing a dataset.

Consent of dataset. As discussed in Appendix E, all the datasets that we are using are publicly
available for analysis. Therefore, we naturally obtain consent of using these datasets by following
their licenses.

Personally identifiable information. To the best of our knowledge, the datasets that we are using
do not contain personally identifiable information or offensive contents.

Extension to other VFL algorithms FedSim makes a significant step toward practical VFL by
enabling VFL on a wider range of applications that requires fuzzy matching. Although FedSim is
designed based on SplitNN, the idea of working directly with similarities can also be developed in
other VFL frameworks. Unfortunately, the framework of FedSim cannot be directly applied to other
VFL algorithms, e.g., logistic regression and tree-based algorithms. This is because FedSim requires
the similarity model and merge model to be trained together with the main VFL model, which requires
the VFL algorithm to be neural-network-based. To adapt FedSim to other VFL algorithms, a possible
direction is to exchange the intermediate information in these algorithms like exchanging gradients in
SplitNN. We leave this topic as our future work.

Relation to other topics. Besides VFL, our main insight that the similarity between identifiers is
related to the similarity between data records has also been recognized in many other topics. For
example, k-nearest neighbors (k-NN) algorithm [42] predicts by averaging the most similar samples.
Graph neural networks (GNN) [21] adopt a loss function that encourages neighboring nodes to have
similar representations. Semi-supervised learning [65] can benefit from matching similar instances.
FedSim is the first approach that exploits this insight in VFL.

I Additional Background

FEDERAL [29] is a PPRL framework that theoretically guarantees the indistinguishability of bloom
filters. Suppose the size of bloom filters is set to N . For strings, it generates q-grams and encodes
q-grams to bloom filters of size N by composite cryptographic hash functions. For numeric values, it
first generates N random numbers ri (i ∈ [1, N]) and sets a threshold t. Next, it determines N hash
functions hi(x)

hi(x) =

{
1, x ∈ [ri − t, ri + t]

0, otherwise
(i ∈ [1, N])

Each numeric value is hashed by all the functions hi (i ∈ [1, N]) and is converted to a bloom
filter of size N . These bloom filters are used to calculate similarities on an honest-but-curious
third party. They prove that all the bloom filters have similar numbers of ones if we properly set
the size of bloom filters. Formally, denoting ω as the number of ones in a bloom filter, we have
Pr[ω ≤ (1 − ϵ)E[ω]] < δ, where ϵ < 1 and δ < 1 are tolerable deviations. Therefore, attackers
cannot infer whether the numeric values are large or small given the bloom filters. This method is
adopted in our experiment on hamming-based similarities.

26

