
A Additional details on quasi-refreshment

In this section, we extend marginal quasi-refreshment beyond what is discussed in the main text and introduce
conditional quasi-refreshment, which tries to match some conditional distribution of (ρt, θt) to that corresponding
distribution in the target.

Marginal quasi-refreshment We begin by presenting a more general version of Proposition 3.3.

Proposition A.1. Consider random vectors Y,Z, Y ′, Z′ ∈ Rd for some d ∈ N. Suppose that Y ⊥⊥ Z and that
we have a bijection R : Rd → Rd such that R(Y ′)

d
= Y . Then

DKL

(
R(Y ′), Z′||Y,Z

)
= DKL

(
Y ′, Z′||Y,Z

)
−DKL

(
Y ′||Y

)
.

Proof. Since R is a bijection,

DKL

(
R(Y ′), Z′||Y,Z

)
= DKL

(
Y ′, Z′||R−1(Y ), Z

)
.

Because Y ⊥⊥ Z, and R(Y ′)
d
= Y ,

DKL

(
Y ′, Z′||R−1(Y ), Z

)
= DKL

(
Y ′||R−1(Y )

)
+ E

[
DKL

(
(Z′|Y ′)||Z

)]
= E

[
DKL

(
(Z′|Y ′)||Z

)]
.

Then we add and subtract DKL(Y
′||Y ) to obtain the final result,

E
[
DKL

(
(Z′|Y ′)||Z

)]
= DKL

(
Y ′, Z′||Y,Z

)
−DKL

(
Y ′||Y

)
.

Then Proposition 3.3 follows immediately from Proposition A.1.

Proof of Proposition 3.3. By setting Y = ρ, Z = θ, Y ′ = ρt, and Z′ = θt, we arrive at the stated result.

More generally, in order to apply Proposition A.1, we first need to split the momentum variable into two
components (ρ(1), ρ(2)) in such a way that ρ(1) ⊥⊥ ρ(2) under (θ, ρ) ∼ π̄, and then set Y = ρ(1) and
Z = (ρ(2), θ). Since we know that ρ ∼ N (0, I), we have quite a few options. For example:

• Set Y = ρ, and Z = θ. Then

Y ⊥⊥ Z and Y ∼ N (0, I).

• Set Y = ∥Dρ∥22 and Z =
(

Dρ
∥Dρ∥2

, (I −D)ρ, θ
)

for any binary diagonal matrix D ∈ Rd×d. Then

Y ⊥⊥ Z and Y ∼ χ2(trD).

• Set Y = aT ρ for any a ∈ Rd such that ∥a∥ = 1, and Z =
(
(I − aaT )ρ, θ

)
. Then

Y ⊥⊥ Z and Y ∼ N (0, 1).

Note again that the first option recovers the marginal quasi-refreshment in the main text. Now we use the above
decomposition to design a marginal quasi-refreshment move. Suppose we have run the weighted sparse leapfrog
integrator Eq. (7) up to time t, resulting in a current random state θt, ρt. Let the decomposition of the current
state (θt, ρt) that we select above be denoted Y ′, Z′. Then the marginal quasi-refreshment move involves

finding a map R such that R(Y ′)
d
= Y . We can then refresh the state via (R(Y ′), Z′), and continue the flow.

In addition to the parametric approach to designing R presented in the main text, if Y is 1-dimensional—for
example, if we are trying to refresh the momentum norm Y = ∥ρ∥2—then given that we know the CDF F of Y ,
we can estimate the CDF F̂ of Y ′ using samples from the flow at timestep t, and then set

R(x) = F−1
(
F̂ (x)

)
.

For example, we could use this inverse CDF map technique to refresh the distribution of ∥ρ∥22 back to χ2(d), or
to refresh the distribution of aT ρ back to N (0, 1).
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Conditional quasi-refreshment A conditional quasi-refreshment move is one that tries to make some
conditional distribution of (ρt, θt) match the same conditional in the target. If one is able to accomplish this for
any conditional distribution (with no requirement of independence as in the marginal case), the KL divergence is
guaranteed to reduce.
Proposition A.2. Consider random vectors Y,Z, Y ′, Z′ ∈ Rd for some d ∈ N. Suppose for each s ∈ Rd we
have a bijection Rs : Rd → Rd such that (Rs(Y

′) | Z′ = s)
d
= (Y | Z = s). Then

DKL

(
RZ′(Y ′), Z′||Y,Z

)
= DKL

(
Z′||Z

)
.

Proof. By assumption the distribution of Y given Z = s is the same as that of Rs(Y
′) given Z′ = s; so the

result follows directly from the decomposition

DKL

(
RZ′(Y ′), Z′||Y,Z

)
= DKL

(
Z′||Z

)
+ E

[
DKL

(
(RS(Y

′)|Z′ = S)||(Y |Z = S)
)]

, S
d
= Z′

= DKL

(
Z′||Z

)
.

Conditional moves are much harder to design than marginal moves in general. One case of particular utility
occurs when one is willing to assume that (θt, ρt) are roughly jointly normally distributed. In this case,[

θt
ρt

]
∼ N

([
µθ

µρ

]
,

[
Σθθ Σθρ

ΣT
θρ Σρρ

])
,

so one can refresh the momentum ρt by updating it to Rθt(ρt), where

Rs(x) = Σ−1/2
(
x− µρ − ΣT

θρΣ
−1
θθ (s− µθ)

)
and Σ = Σρρ − ΣT

θρΣ
−1
θθ Σθρ.

Here Proposition A.2 applies by setting Y = ρ, Z = θ, Y ′ = ρt, and Z′ = θt. In order to use this quasi-
refreshment move, one can either include the covariance matrices and mean vectors as tunable parameters in the
optimization, or use samples from the flow at step t to estimate them directly.

B Details of experiments

We begin by describing in detail the differences between HIS-Full/UHA-Full and
HIS-Coreset/UHA-Coreset. It is worth noting noting that we were unable to train HIS/UHA with
full-dataset flow dynamics; even on a small 2-dimensional Gaussian location model with 100 data points, these
methods took over 8 minutes for training. Therefore, as suggested by [21, 23], we train the leapfrog step
sizes and annealing parameters by using a random minibatch of the data in each iteration to construct the flow
dynamics. To then obtain valid ELBO estimates for comparison, we generate samples from the trained flow with
leapfrog transformations based on the full dataset (HIS-Full/UHA-Full). As a simple heuristic baseline that
also provides a valid ELBO estimate, we compare to the trained flow with leapfrog transformations based on a
fixed, uniformly sampled coreset (HIS-Coreset/UHA-Coreset) of the same size as used for SHF.

We now describe the detailed settings that apply across all three experiments in the main text. In all experiments,
SHF uses the quasi-refreshment from Eq. (8) initialized using the warm-start procedure in Section 3 with a batch
of 100 samples. We use the same number of leapfrog, tempering, and (quasi-)refreshment steps for all of SHF,
HIS and UHA respectively. The leapfrog step sizes are initialized at the same value for all three methods. For all
three methods (SHF, HIS, and UHA), the unnormalized log target density used in computing the ELBO objective
is estimated using a minibatch of S = 100 data points for each optimization iteration. For both HIS and UHA,
the leapfrog transitions themselves are also based on a fresh uniformly sampled minibatch of size 30—the
same as the coreset size for SHF—at each optimization iteration. HIS and UHA both also involve tempering
procedures, requiring optimization over the tempering schedule 0 ≤ β1 ≤ · · · ≤ βR−1 ≤ βR = 1, where R
denotes the number of tempering steps (equal to the number of quasi-refreshment / refreshment steps in all
methods). We consider a reparameterization of (β1, . . . , βR) to (α1, . . . , αR−1), where αr = Logit(βr+1/βr)
for r ∈ {1, . . . , R− 1}, ensuring a set of unconstrained parameters. The initial value for each r is set to αr = 1.
For UHA, the initial damping coefficient of its partial momentum refreshment is set to 0.5. We estimate all
evaluation metrics using 100 samples. To estimate KSD, we use the IMQ base kernel with its parameters set to
the same values as outlined in [45] (β = − 1

2
and c = 1).

In addition to HIS and UHA, we also include adaptive HMC and NUTS in our comparison of density evaluation
and sample generation times. We tune adaptive HMC and NUTS with a target acceptance rate of 0.65 during a
number of burn-in iterations equal to the number of output samples, and include the burn-in time in the timing
results for these two methods. Finally, we compare the quality of coresets constructed by SHF against UNI
and Hilbert-OMP. For both UNI and Hilbert-OMP, we use NUTS to draw samples from the coreset posterior
approximation. For Hilbert-OMP, we use a random log-likelihood function projection of dimension 100d,
where the true posterior parameter is of dimension d, generated from the Laplace approximation [47].
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Figure 6: Linear (top row, Figs. 6a to 6c) and logistic (bottom row Figs. 6d to 6f) regression: posterior
approximation quality results. The lines indicate the median, and error regions indicate 25th to 75th

percentile from 5 runs.

B.1 Synthetic Gaussian

To train SHF, a total of 5 quasi-refreshments are used with 10 leapfrog steps in between; a similar schedule is
used in HIS and UHA for momentum tempering and refreshment respectively. The initial distribution is set to
θ0 ∼ N (0, I) and ρ0 ∼ N (0, I). For all methods, the number of optimization iterations is set to 20, 000, and
the initial leapfrog step size is set to 0.01 across all d dimensions. We train all methods with ADAM with initial
learning rate 0.001.

B.2 Bayesian linear regression

To train SHF, a total of 8 quasi-refreshments are used with 10 leapfrog steps in between; a similar schedule is
used in HIS and UHA for momentum tempering and refreshment respectively. The initial distribution is set to
θ0 ∼ N (15, 0.01I) and ρ0 ∼ N (0, I). For all methods, the number of optimization iterations is set to 50, 000,
and the initial leapfrog step size is set to 0.02 across all d dimensions except for the dimension for the log σ2

term, where the step size is set to 0.0002. We train all methods with ADAM with initial learning rate 0.002. We
also include the posterior approximation obtained from the Laplace approximation, where we search for the
mode of the target density at some location generated from the same distribution as that of θ0. Figs. 6, 8 and 7
provide additional results for this experiment. Fig. 6a shows that the ELBO obtained from SHF is a tighter lower
bound of the log normalization constant compared to HIS and UHA. Fig. 6b shows that SHF produces a posterior
approximation in terms of energy distance than all other methods; Fig. 6c shows that SHF is competitive, if
not better, than the other methods in terms of KSD. Figs. 7a to 7d show that the coreset constructed by SHF is
of better quality than those obtained from UNI and Hilbert-OMP in terms of all four metrics shown. Finally,
Figs. 8a and 8b show the computational gain of using SHF to approximate density and generate posterior samples
as compared to HIS and UHA.

B.3 Bayesian logistic regression

To train SHF, a total of 8 quasi-refreshments are used with 10 leapfrog steps in between; a similar schedule
is used in HIS and UHA for momentum tempering and refreshment respectively. The initial distribution is set
to θ0 ∼ N (15, 10−4I) and ρ0 ∼ N (0, I). For all methods, the number of optimization iterations is set to
100, 000, and the initial leapfrog step size is set to 0.0005 across all d dimensions. We train all methods with
ADAM with initial learning rate 0.001. We also include the posterior approximation obtained from the Laplace
approximation, where we search for the mode of the target density at some location generated from the same
distribution as that of θ0. Figs. 6 to 8 provide additional results for this experiment, where similar conclusions as
in the Bayesian linear regression experiment can be drawn.
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Figure 7: Linear (top row, Figs. 7a to 7d) and logistic (bottom row Figs. 7e to 7h) regression: posterior
approximation quality results. The lines indicate the median, and error regions indicate 25th to 75th

percentile from 5 runs.

(a) (b) (c) (d)

Figure 8: Linear (Figs. 8a and 8b) and logistic (Figs. 8c and 8d) regression: timing results based on
100 samples.

C Gaussian KL upper bound proof

Proof of Proposition 3.1. Suppose we are given a particular choice I ⊆ [N ] of N indices of size |I| = M ∈ N,
M ≤ N . Let WI =

{
w ∈ RN

+ : ∀n ∈ [N ], n /∈ I =⇒ wn = 0
}

. In the d-dimensional normal location
model, the exact and w ∈ WI-coreset posteriors are multivariate Gaussian distributions, denoted as N (µ1,Σ1)
and N (µw,Σw) respectively, with mean and covariance

Σ1 =
1

1 +N
I, µ1 = Σ1

(
N∑

n=1

Xn

)
and Σw=

I

1 +
(∑

n∈I wn

) , µw=Σw

(∑
n∈I

wnXn

)
.

The KL divergence between these two distributions is

DKL (πw||π) =
1

2

[
−d log

(
1 +N

1 +
∑

n∈I wn

)
− d+ d

(
1 +N

1 +
∑

n∈I wn

)
+ (µ1 − µw)

TΣ−1
1 (µ1 − µw)

]
.

We can bound this quantity above by adding the constraint
∑

n∈I wn = N , yielding

min
w∈WI

DKL (πw||π) ≤ min
w∈△M−1

N2

2(N + 1)

∥∥∥∥∥X̄ −
∑
n∈I

wnXn

∥∥∥∥∥
2

,

where X̄ = 1
N

∑N
n=1 Xn. and △M−1 is the M − 1-dimensional simplex w ≥ 0, 1Tw = 1. We aim to show

that with high probability (over uniform random choice of I and realizations of Xn, n ∈ [N ]), there exists a
w ∈ △M−1 such that X̄ =

∑
n∈I wnXn, and hence the optimal KL divergence is 0.

Since Xn
i.i.d.∼ N (0, I),

√
N X̄ ∼ N (0, I), so ∥

√
N X̄∥2 ∼ χ2(d) and therefore for any s >

√
d/N ,

P
(
∥X̄∥ > s

)
≤
(
s2N

d
e1−

s2N
d

)d/2

. (9)

In other words, as N increases, we can expect X̄ to concentrate around the origin. Therefore as long as the
convex hull of Xn, n ∈ I contains a ball of some fixed radius around the origin with high probability, we know
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that X̄ is a convex combination of Xn, n ∈ I. The radius of the largest origin-centered ball inside the convex
hull of Xn, n ∈ I can be expressed as

r⋆ = min
a∈Rd:∥a∥=1,b≥0

b s.t. ∀n ∈ I, aTXn − b ≤ 0 = min
a∈Rd:∥a∥=1

max
n∈I

aTXn.

By Böröczky and Wintsche [37, Corollary 1.2], Sd can be covered by

Nd(ϕ) =
C · cosϕ
sind ϕ

d
3
2 log(1 + d cos2 ϕ) ≤ ϕ−dAd, Ad = Ce

d
2 d

3
2 log(1 + d). (10)

balls of radius 0 < ϕ ≤ arccos 1√
d+1

, where C is a universal constant. Denote the centres of these balls

ai ∈ Sd, i = 1, . . . , Nd(ϕ). Then

r⋆ ≥ min
i∈[Nd(ϕ)],v∈Rd:∥v∥≤ϕ

max
n∈I

(ai + v)TXn

≥ min
i∈[Nd(ϕ)]

max
n∈I

aT
i Xn − ϕ∥Xn∥.

Therefore the probability that the largest origin-centred ball enclosed in the convex hull is small is bounded
above by

P (r⋆ ≤ t) ≤ P
(

min
i∈[Nd(ϕ)]

max
n∈I

aT
i Xn − ϕ∥Xn∥ ≤ t

)
≤ Nd(ϕ)P

(
max
n∈I

aT
i Xn − ϕ∥Xn∥ ≤ t

)
= Nd(ϕ)P

(
aTZ − ϕ∥Z∥ ≤ t

)M
,

for a ∈ Sd and Z ∼ N (0, I). Since Z has a spherically symmetric distribution, a is arbitrary, so we can choose
a = 1 0 . . . 0T . If we let U ∼ N (0, 1) and V ∼ χ2(d− 1) be independent, this yields

P
(
aTZ − ϕ∥Z∥ ≤ t

)
= P

(
U − ϕ

√
U2 + V ≤ t

)
= P

(
U − t ≤ ϕ

√
U2 + V

)
≤ P (U < 2t) + P

(
V ≥ ϕ−2(U − t)2 − U2, U ≥ 2t

)
≤ Φ(2t) + P

(
V ′ ≥ ϕ−2t2

)
,

where V ′ ∼ χ2(d) and Φ(·) is the CDF of the standard normal. Therefore as long as t > ϕ
√
d ,

P
(
V ′ ≥ ϕ−2t2

)
= P

(
V ′ ≥ d

(
t

ϕ
√
d

)2
)

≤

((
t

ϕ
√
d

)2

e
1−

(
t

ϕ
√

d

)2)d/2

.

We now combine the above results to show that for any t > ϕ
√
d ,

P (r⋆ ≤ t) ≤ Nd(ϕ)
(
Φ(2t) + d−

d
2 e

d
2 ϕ−dtde−

1
2
ϕ−2t2

)M
. (11)

Finally we combine the bound on the norm of X̄ Eq. (9), the bound on r⋆ Eq. (11), and the covering number of
Sd Eq. (10) for the final result. For any t > max{ϕ

√
d ,
√

d/N } and ϕ ≤ arccos 1√
d+1

,

P
(
X̄ /∈ conv(Xn)n∈I

)
≤ d−

d
2 e

d
2 tdNd/2e−

1
2
t2N + ϕ−dAd

(
Φ(2t) + d−

d
2 e

d
2 ϕ−dtde−

1
2
ϕ−2t2

)M
Set ϕ =

√
1
N

and t = s
√

d/N . As long as N ≥ 2 and s > 1, we are guaranteed that t >

max{ϕ
√
d ,
√

d/N } and ϕ ≤ arccos 1√
d+1

as required, and so

P
(
X̄ /∈ conv(Xn)n∈I

)
≤ e

d
2 sde−

d
2
s2 +N

d
2 Ad

(
Φ

(
s

√
4d

N

)
+ e

d
2 sde−

d
2
s2

)M

.

If we set s =
√
logN + 1 ,

e
d
2 sde−

d
2
s2 = N− d

2 (logN + 1)
d
2 Φ

(
s

√
4d

N

)
=

1

2
+O

(√
logN

N

)
.

So then setting M = d log2(N)− d
2
log2(log(N)) + log2 Ad yields the claimed result.
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D Gaussian KL lower bound proof

Proof of Proposition 3.2. Let z(t) = (θt, ρt). The evolution of z(t) is determined by a time-inhomogeneous
linear ordinary differential equation,

dz(t)

dt
= A(t)z(t) A(t) =

[
0 1

−σ−2 −γ(t)

]
,

with solution

z(t) = eB(t)z(0) B(t) =

[
0 t

−σ−2t g(t)

]
, g(t) = −

∫ t

0

γ(t)dt.

Therefore by writing π̄0 = N (m(0),Σ(0)), z(t) ∼ qt = N (m(t),Σ(t)), where

m(t) = eB(t)m(0) Σ(t) = eB(t)Σ(0)eB(t)T . (12)

The second result follows because tempered Hamiltonian dynamics where γ(t) = 0 identically is just standard

Hamiltonian dynamics. For the first result, suppose q0 = N
([

µ
0

]
,

[
1 0
0 β2

])
for some µ ∈ R, β ∈ R+. Note

that in this case, it suffices to consider

m(0) =

[
µ
0

]
Σ(0) = I. (13)

This is because the function γ(t) is arbitrary; one can, for example, set γ(t) = −ϵ−1 log β for t ∈ [0, ϵ) for an
arbitrarily small ϵ > 0, such that the state at time ϵ is arbitrarily close to the desired initial condition. The KL
divergence from qt to π̄ is

DKL (qt||π̄) =
1

2

[
log

(
detΣ

detΣ(t)

)
− 2 + tr

(
Σ−1Σ(t)

)
+m(t)TΣ−1m(t)

]
=

1

2

[
log

(
detΣ

detΣ(t)

)
− 2 + tr

(
Σ−1

(
Σ(t) +m(t)m(t)T

))]
.

By Eqs. (12) and (13) and the identity trATA = ∥A∥2F ,

DKL (qt||π̄) =
1

2

[
log

(
detΣ

detΣ(t)

)
− 2 + tr

(
Σ−1eB(t)

(
I +m(0)m(0)T

)
eB(t)T

)]
=

1

2

[
log

(
detΣ

detΣ(t)

)
− 2 +

∥∥∥∥Σ− 1
2 eB(t)

(
I +m(0)m(0)T

) 1
2

∥∥∥∥2
F

]
. (14)

From this point onward we will drop the explicit dependence on t for notational brevity. Note that B has
eigendecomposition B = V DV −1 where

h =
g

2tσ−1
λ+ = h+

√
h2 − 1 λ− = h−

√
h2 − 1

V = t

[
1 0
0 σ−1

] [
1 1
λ+ λ−

]
D = tσ−1

[
λ+ 0
0 λ−

]
.

Also note that if |h| < 1, this decomposition has complex entries, but eB is always a real matrix.

Then the log-determinant term in Eq. (14) can be written as

log

(
detΣ

detΣ(t)

)
= log

detΣ

detΣ(0) det e2D
= log

σ2

e2g
= log

σ2

e4htσ−1 = 2(log σ − 2htσ−1). (15)

By eB = V eDV −1, the squared Frobenius norm term in Eq. (14) is

∥ · ∥2F :=

∥∥∥∥Σ− 1
2 eB(t)

(
I +m(0)m(0)T

) 1
2

∥∥∥∥2
F

=
σ−2 (e+ − e−)

2

(λ− − λ+)2

(
(1 + µ2) + σ2 + (1 + µ2)

(
λ−e+ − λ+e−

e+ − e−

)2

+ σ2

(
λ−e− − λ+e+

e+ − e−

)2
)
.

where e+ = etσ
−1λ+ , e− = etσ

−1λ− . Let

sinh(t, h) = sinh
(
tσ−1

√
h2 − 1

)
cosh(t, h) = cosh

(
tσ−1

√
h2 − 1

)
,
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we further simplify and get

∥ · ∥2F =
e2thσ

−1

σ2

(
sinh(t, h)2

h2 − 1
(1 + µ2 + σ2) + (1 + µ2)

(
h sinh(t, h)√

h2 − 1
− cosh(t, h)

)2

+

σ2

(
h sinh(t, h)√

h2 − 1
+ cosh(t, h)

)2
)
. (16)

Define a = tσ−1
√
h2 − 1 and b = h√

h2−1
for h ̸= 1. Then together with Eqs. (15) and (16), Eq. (14) can be

written as

DKL (qt||π̄) = log σ − 2ab− 1+

e2ab

2σ2

(
(b2 − 1) sinh(a)2(1 + µ2 + σ2) + (1 + µ2) (b sinh(a)− cosh(a))2 + σ2 (b sinh(a) + cosh(a))2

)
.

(17)

Note that if |h| > 1, then a ≥ 0 and |b| > 1; if |h| < 1, we can write a = ia′ for a′ ≥ 0 and b = ib′

for b′ ∈ (−∞,−1) ∪ (1,∞). We now derive lower bounds for Eq. (17) over a and b under three cases:
(|h| > 1, b > 1), (|h| > 1, b < −1), and (|h| < 1).

Case (|h| > 1, b > 1): Using the identity cosh(x)2 − sinh(x)2 = 1 and sinh(2x) = 2 sinh(x) cosh(x),

e2ab

2σ2

(
(b2 − 1) sinh(a)2σ2 + σ2(b sinh(a) + cosh(a))2

)
=
e2ab

2

(
(b2 − 1) sinh(a)2 + (b sinh(a) + cosh(a))2

)
=
e2ab

2

(
2b2 sinh(a)2 + 1 + b sinh(2a)

)
≥e2ab

2
+

b sinh(2a)

2
≥2ab,

where the second last line is obtained by noting that 2b2 sinh(a)2 ≥ 0, e2ab ≥ 2ab, and the last line is obtained
by noting that for |h| > 1 and b > 1, we have sinh(2a) ≥ 2a and e2ab ≥ 1. Substituting this to Eq. (17),

DKL (qt||π̄) ≥ log σ − 1 +
e2ab

2σ2

(
(b2 − 1) sinh(a)2(1 + µ2) + (1 + µ2)(b sinh(a)− cosh(a))2

)
≥ log σ − 1 +

e2ab(1 + µ2)

2σ2

(
2b2 sinh(a)2 + 1− b sinh(2a)

)
. (18)

For |h| > 1, b > 1, we know a ≥ 0. When a ≥ 0 and b > 1,

∂

∂a

(
log σ − 1 +

e2ab(1 + µ2)

2σ2

(
2b2 sinh(a)2 + 1− b sinh(2a)

))
≥ 0

and increases with a. Therefore

argmin
a∈R+

(
log σ − 1 +

e2ab(1 + µ2)

2σ2

(
2b2 sinh(a)2 + 1− b sinh(2a)

))
= 0.

We also note that when we set a = 0, Eq. (18) is constant for all b > 1. Then by substituting a = 0 to Eq. (18),
we get

DKL (qt||π̄) ≥ log σ − 1 +
(1 + µ2)

2σ2
≥ log

1 + µ2

4σ
.

Case (|h| > 1, b < −1): Note in this case, (b2 − 1) sinh(a)2σ2 ≥ 0, σ2 (b sinh(a) + cosh(a))2 ≥ 0, then
we can lower bound Eq. (17) by

DKL (qt||π̄) ≥ log σ − 2ab− 1 +
e2ab

2σ2

(
(b2 − 1) sinh(a)2(1 + µ2) + (1 + µ2) (b sinh(a)− cosh(a))2

)
≥ log σ − 2ab− 1 +

e2ab(1 + µ2)

2σ2

(
2b2 sinh(a)2 + 1− b sinh(2a)

)
≥ log σ − 2ab− 1 +

e2ab(1 + µ2)

2σ2
, (19)
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where the last line is obtained by noting 2b2 sinh(a)2 − b sinh(2a) ≥ 0 when |h| > 1 and b < −1. Also when
|h| > 1 and b < −1, ab ≤ 0. We then minimize Eq. (19) over ab ≤ 0, treating ab as a single variable. The
stationary point is at (ab)⋆ = 1

2
log 2σ2

1+µ2 . Since Eq. (19) is convex in ab, the optimum is at (ab)⋆ if 2σ2

1+µ2 ≤ 1,
and otherwise is at (ab) = 0. Therefore

DKL (qt||π̄) ≥

{
log σ − 1 + 1+µ2

2σ2
2σ2

1+µ2 > 1

log 1+µ2

2σ
2σ2

1+µ2 ≤ 1

≥ log
1 + µ2

4σ
.

Case (|h| < 1): Write a = ia′ and b = ib′ where a′ ≥ 0 and b′ ∈ (−∞,−1) ∪ (1,∞). Using the identities
sinh(x) = −i sin(ix) and cosh(x) = cos(ix), we can write Eq. (17) as

DKL (qt||π̄) = log σ + 2a′b′ − 1+

e−2a′b′

2σ2

(
(b′2 + 1) sin(a)2(1 + µ2 + σ2) + (1 + µ2)

(
b′ sin(a′) + cos(a′)

)2
+ σ2 (b′ sin(a′)− cos(a′)

)2)
= log σ + 2a′b′ − 1 +

e−2a′b′(1 + µ2 + σ2)

2σ2

(
b′2 + 1 + b′f sin(2a′)− b′2 cos(2a′)

)
,

where f = 1+µ2−σ2

1+µ2+σ2 . We know

a′⋆ = argmin
a′∈R+

b′2 + 1 + b′f sin(2a′)− b′2 cos(2a′) =
1

2
tan−1

(
− f

b′

)
+ nπ,

where n ∈ Z such that 1
2
tan−1

(
− f

b′

)
+ nπ ∈ R+. Then by e−2a′b′ (1+µ2+σ2)

2σ2 ≥ 0,

DKL (qt||π̄) ≥ log σ + 2a′b′ − 1 +
e−2a′b′(1 + µ2 + σ2)

2σ2

(
b′2 + 1 + b′f sin(2a′⋆)− b′2 cos(2a′⋆)

)
= log σ + 2a′b′ − 1 +

e−2a′b′(1 + µ2 + σ2)

2σ2

(
b′2 + 1− b′2

√
1 + (f/b′)2

)
.

Since
√
1 + x ≤ 1 + 1

2
x,

DKL (qt||π̄) ≥ log σ + 2a′b′ − 1 +
e−2a′b′(1 + µ2 + σ2)

2σ2

(
1− 1

2
f2

)
. (20)

The stationary point of Eq. (20) as a function in a′b′ is at

(a′b′)⋆ = −1

2
log

2σ2

(1 + µ2 + σ2)
(
1− 1

2
f2
) .

Since Eq. (20) is convex in a′b′ and a′b′ ∈ R, we know the minimum of Eq. (20) is attained at (a′b′)⋆.
Substituting (a′b′)⋆ back in Eq. (20) and noting 1− 1

2
f2 ≥ 1

2
, we get

DKL (qt||π̄) ≥ log
(1 + µ2 + σ2)

(
1− 1

2
f2
)

2σ

≥ log
1 + µ2 + σ2

4σ
≥ log

1 + µ2

4σ
.
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