MINEDOJO: Supplementary Material

Linxi Fan', Guanzhi Wang?*, Yunfan Jiang>*, Ajay Mandlekar', Yuncong Yang?,
Haoyi Zhu®, Andrew Tang*, De-An Huang', Yuke Zhu' %", Anima Anandkumar' %
INVIDIA, 2Caltech, 3Stanford, *Columbia, >SITU, UT Austin
*Equal contribution TEqual advising
https://minedojo.org

1 Overview

Our supplementary includes the following material:

1. This document (supplementary.pdf): we present the Minecraft framework feature com-
parison table, MINEDOJO simulator specification, task curation process, internet data collec-
tion process (YouTube, Wiki, and Reddit), algorithm and experimental details of MINECLIP
and RL agents. We also discuss potential limitations and societal impact at the end.

2. datasheet.pdf: we follow the Datasheet format [[14]] to explain the composition, collec-
tion, recommended use case, and other details of our databases. The document also includes
Author Statement, Licensing, and Maintenance Plan.

Following NeurIPS Dataset and Benchmark track guidelines, we have uploaded our data to
zenodo . org for DOI and structured metadata:

Database | DOI | License

YouTube | 10.5281/zenodo.6641142| | Creative Commons Attribution 4.0 International (CC BY 4.0)
Wiki | 10.5281/zenodo.6640448| | Creative Commons Attribution Non Commercial Share Alike 3.0 Unported
Reddit | 10.5281/zenodo.6641114 | Creative Commons Attribution 4.0 International (CC BY 4.0)

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://minedojo.org
https://zenodo.org
https://doi.org/10.5281/zenodo.6641142
https://doi.org/10.5281/zenodo.6640448
https://doi.org/10.5281/zenodo.6641114

2 Minecraft Framework Comparison

Table 1: Comparison table of different Minecraft platforms for Al research.

. Simulator Task Suite Knowledge Base
Environment
Real Number Language-
Features Minecraft of Tasks grounded Features Data Scale

MINEDOJO Unified observation and action v 3,000+ v Automatically scraped from 740K YouTube videos;

space; the Internet; 7K Wiki pages;

unlocks all three types of multimodal data (videos, im- 350K Reddit posts

world (the Overworld, the ages, texts, tables and dia-

Nether, and the End) grams)
MineRL Built on top of Malmo; v 11 Annotated state-action pairs of 60M frames of recorded hu-
v0.4 [20] actively maintained human demonstrations man player data
MineRL Mouse and keyboard control v 5 Labeled contractor data; 2K hours of contractor data;

v1.0 unlabeled videos scraped from 270K hours of unlabeled

(VPT) 2] the Internet videos
MarLO [35 Cooperative and competitive v 14
multiagent tasks;
parameterizable environments
Malmo [25 First comprehensive release of v N/A
a Gym-style agent API for
Minecraft
CraftAssist [17] Bot assistant; v N/A v Interactive dialogues; 800K dialogue-action dictio-
dialogue interactions crowd-sourced house building nary pairs;
dataset 2.6K houses with atomic
building actions
IGLU [28 Interactive dialogues with hu- 157 v

mans;
aimed at building structures
described by natural language

EvoCraft [18] Aimed at generating creative N/A
artifacts;
allows for direction manipula-

tion of blocks

2D clone of Minecraft; 22
fast experimentation

Crafter [21] Human experts dataset 100 episodes

3 MINEDOJO Simulator

We design unified observation and action spaces across all tasks to facilitate the development of
multi-tasking and continually learning agents that can adapt to novel tasks and scenarios. The
codebase is open sourced at |github.com/MineDojo/MineDojo.

3.1 Observation Space

Our observation space contains multiple modalities. The agent perceives the world mainly through
the RGB screen. To provide the same information as human players receive, we also supplement
the agent with observations about its inventory, location, health, surrounding blocks, etc. The full
observation space is shown below. We refer readers to see our code documentation for technical
details such as data type for each observable item.

We also support a LIDAR sensor that returns the groundtruth type of the blocks that the agent
sees, however this is considered privileged information and does not go into the benchmarking
specification. However, it is still useful for hand engineering the dense reward function, which we use
in our experiments (main paper, Sec. 6). Amounts and directions of LIDAR rays can be arbitrarily
configured at the cost of a lower simulation throughput.

https://github.com/MineDojo/MineDojo

Table 2: Schema of YAML files for Programmatic and Creative tasks.

\ Programmatic Tasks Creative Tasks
Prompt Natural language description of the task goal.
Guidance Step-by-step guidance generated by GPT-3.

{survival, harvest,
tech-tree, combat} N/A

Collection N/A {manual, youtube, gpt3}
If the task is mined from YouTube,

Category

Source N/A include the URL, start, and end timestamp
Modality | Shape | Description
RGB | (3, H, W) Ego-centric RGB frames.
Equipment | (6,) Names, quantities, variants, and durabilities of equipped items.
Inventory | (36,) Names, quantities, variants, and durabilities of inventory items.
Voxel | (3, 3, 3) Names, variants, and properties of 3 x 3 x 3 surrounding blocks.
Life statistics | (1,) Agent’s health, oxygen, food saturation, etc.
GPS | (3,) GPS location of the agent.
Compass | (2,) Yaw and pitch of the agent.
Nearby tools | (2,) Indicate if crafting table and furnace are nearby the agent.
Damage source | (1,) Information about the damage on the agent.
Lidar | (Num rays,) | Ground-truth lidar observation.

3.2 Action Space

We design a compound action space. At each step the agent chooses one movement action (forward,
backward, camera actions, etc.) and one optional functional action as listed in the table below. Some
functional actions such as craft take one argument, while others like attack does not take any
argument. This compound action space can be modelled in an autoregressive manner [49]]. We refer
readers to our code documentation for example usages of our action space.

Name | Description | Argument
no_op | Do nothing. 1%
use | Use the item held in the main hand. 1%}
drop | Drop the item held in the main hand. 1%
attack | Attack with barehand or tool held in the main hand. | ©
craft | Execute a crafting recipe to obtain new items. Index of recipe
equip | Equip an inventory item. Slot index of the item
place | Place an inventory item on the ground. Slot index of the item
destroy | Destroy an inventory item. Slot index of the item

3.3 Customizing the Environment

Environments in MINECLIP simulator can be easily and flexibly customized. Through our simulator
API, users can control terrain, weather, day-night condition (different lighting), the spawn rate and
range of specified entities and materials, etc. We support a wide range of terrains, such as desert,
jungle, taiga, and iced plain, and special in-game structures, such as ocean monument, desert temple,
and End city. Please visit our website for video demonstrations.

4 MINEDOJO Task Suite

In this section, we explain how we collect the Programmatic and Creative tasks (main paper, Sec. 3).

4.1 Programmatic Tasks

Programmatic tasks are constructed by filling manually written templates for four categories of tasks,
namely “Survival”, “Harvest”, “Tech Tree”, and “Combat”. The task specifications are included in
our codebase. Please refer to Fig. [T| for a few samples. Table 2]lists the fields in the specification file
for Programmatic tasks, which we include as programmatic_tasks.yaml in the supplementary
material zip. We briefly explain each task category:

Survival. This task group tests the ability to stay alive in the game. It is nontrivial to survive in
Minecraft, because the agent grows hungry as time passes and the health bar drops gradually. Hostile
mobs like zombie and skeleton spawn at night, which are very dangerous if the agent does not have
the appropriate armor to protect itself or weapons to fight back. We provide two tasks with different
levels of difficulty for Survival. One is to start from scratch without any assistance. The other is
to start with initial weapons and food.

Harvest. This task group tests the agent’s ability to collect useful resources such as minerals (iron,
diamond, obsidian), food (beef, pumpkin, carrots, milk), and other useful items (wool, oak wood,
coal). We construct these tasks by enumerating the Cartesian product between target items to collect,
initial inventory, and world conditions (terrain, weather, lighting, etc.) so that they cover a spectrum
of difficulty. For instance, if the task is to harvest wool, then it is relatively easy if the agent has
a shear in its initial inventory with a sheep nearby, but more difficult if the agent has to craft the
shear from raw material and explore extensively to find a sheep. We filter out combinations that
are impossible (such as farming certain plants in the desert) from the Cartesian product.

Tech Tree. Minecraft includes several levels of tools and armors with different properties and
difficulties to unlock. To progress to a higher level of tools and armors, the agent needs to develop
systematic and compositional skills to navigate the technology tree (e.g. wood — stone — iron —
diamond). In this task group, the agent is asked to craft and use a hierarchy of tools starting from
a less advanced level. For example, some task asks the agent to craft a wooden sword from bare
hand. Another task may ask the agent to craft a gold helmet. An agent that can successfully complete
these tasks should have the ability to transfer similar exploration strategies to different tech levels.

Combat. We test agent’s reflex and martial skills to fight against various monsters and creatures.
Similar to how we develop the Harvest task group, we generate these tasks by enumerating the
Cartesian product between the target entity to combat with, initial inventory, and world conditions
to cover a spectrum of difficulty.

4.2 Creative Tasks

We construct Creative tasks using three approaches: 1) manual brainstorming, 2) mining from
YouTube tutorial videos, and 3) generate by querying GPT-3 API. We elaborate the second and third
approaches below. Table [2]shows the specifications of Creative tasks. Interested readers can refer to
creative_tasks.yaml for a full listing.

Task Mining from YouTube Tutorial Videos. Our YouTube dataset serves the dual purpose of
a rich task source, as many human players demonstrate and narrate creative missions in the tutorial
playlists. To collect high-quality tasks and accompanying videos, we design a 3-stage pipeline that
makes it easy to find and annotate interesting tasks.

Stage 1: We search for YouTube playlists with the key phrases, “Minecraft Tutorial” and “Minecraft
Guide”. Then we apply heuristic rules (see Sec. to filter out low-quality videos;

Stage 2: We only show the title of the video to a human annotator through a command-line interface,
who makes a binary decision to accept or reject it as a potential task. This step is typically
very fast, taking a few seconds on average;

Stage 3: For the accepted tasks in stage 2, we design a labeling UI using Label Studio [30]] that
displays the full video and YouTube description. A human annotator can choose to reject
the video, adjust the timestamps, select the title, or refine the description to be the task goal
(Fig.[2). Through this pipeline, we extract 1,042 task ideas from the common wisdom of a

1
5
3
4
5

survival_sword_food:
category: survival
prompt: survive as long as possible given a sword and some food

harvest_wool_with_shears_and_sheep:
category: harvest
prompt: harvest wool from a sheep with shears and a sheep nearby

techtree_from_barehand_to_wooden_sword:
category: tech-tree
prompt: find material and craft a wooden sword

combat_zombie_pigman_nether_diamond_armors_diamond_sword_shield:
category: combat
prompt: combat a zombie pigman in nether with a diamond sword,
shield, and a full suite of diamond armors

Figure 1: Example specifications. Please refer to programmatic_tasks.yaml in the supplementary
for a complete listing.

rojects / Stage2 / Labeling Settings

© Prompts Labeling

EasyTworial)v 2| O

<embed widh<560
heigh=315 »
o o » ; i o

grow! 2

Start/End Timestamp

o oo |go |0
¢ |2 e

heigh=31
sroehipe:

s >
Innyoutibe Task #118

Figure 2: Labeling UI to mine tasks from YouTube. A human annotator can choose to reject the
video (Invalid), adjust the timestamps, select the title, or edit and expand the original description to
be the new task goal.

huge number of veteran Minecraft gamers. Some examples are “make an automated mining
machine” and “grow cactus up to the sky”.

4.3 GPT-3 Guidance

We leverage OpenAl’s GPT-3-davinci API to automatically generate detailed guidance for a subset
of the tasks. Inspired by [29], we adopt the following template to prompt GPT-3: How to {task
goal} in Minecraft? Let’s think step by step. Here are some examples:

The guidance for the task “find material and craft a gold pickaxe” is 1) Find a place with
a lot of trees; 2) Cut down the trees and gather the wood; 3) Find a place
with a lot of stone; 4) Mine the stone and gather the cobblestone; 5) Find
a place with a lot of iron; 6) Mine the iron and gather the iron ingots;

Video Duration Histogram

ratio of videos

o

o

s
L

0.02

0.00 -

0 5 10 15 20 25 30
video duration (minutes)

Figure 3: Distribution of YouTube video duration. The histogram is trimmed by the 85th percentile
to hide much longer videos that can run for many hours.

7) Find a place with a lot of gold; 8) Mine the gold and gather the gold
ingots; 9) Craft a gold pickaxe.

The guidance for the task “sail on boat with a sheep” is 1) Find a boat; 2) Place
the sheep in the boat; 3) Right-click on the boat with an empty hand to get
in; 4) Use the WASD keys to move the boat. The sheep should stay in the
boat.

4.4 Playthrough: Defeat the Ender Dragon

Our benchmarking suite includes a special task called “Playthrough”. The agent is initialized bare-
handed in a freshly created world and aims to defeat the Ender dragon, which is considered the final
boss of Minecraft. This task holds a unique position in our benchmark because killing the dragon
means “beating the game” in the traditional sense of the phrase, and is considered the most significant
achievement for a new player. This boss is optional and plenty of people choose to skip it without
affecting their open-ended game experience.

“Playthrough” is technically a programmatic task, because we can check the simulator state for the
defeat of the Ender dragon. However, we decide to create its own category due to the uniqueness as
well as the sheer difficulty of the task. The mission requires lots of preparation, exploration, agility,
and trial-and-error, which may take a regular human player many days to complete. It would be
extremely long horizon (hundreds of thousands of steps) and difficult for an agent to tackle. We
consider this one of the moonshot goals in MINEDOJO.

5 Internet-Scale Database

We upload our databases to zenodo . org, which is an open repository platform operated by CERN.
The persistent DOISs are listed in Sec. [T} In this section, we describe our database properties and data
collection process in details.

5.1 YouTube Videos and Transcripts

Minecraft is among the most streamed games on YouTube [16]]. Human players have demonstrated a
stunning range of creative activities and sophisticated missions that take hours to complete. We collect
33 years worth of video and 2.2B words in the accompanying English transcripts. The distribution of
video duration is shown in Fig.[3] The time-aligned transcripts enable the agent to ground free-form
natural language in video pixels and learn the semantics of diverse activities without laborious human
labeling.

We use the official YouTube Data API [56]] to collect our database, following the procedure below:

https://zenodo.org

Product ¢ Ingredient ¢ Exp ¢ Description
Butcher Economic Trade

Default i i
- — . ftomgiven | Quantity = oy Usedtocraftvarious items, including spyglasses, ightning rods, and
Quantity PRI | Copper Ore copper blocks.
© Raw Chicken % @ Emerald 1 pogor
@ Raw Porkchop 7 @ Emerald 1 guteher Used to craft various items, including blast furnaces, anvils, iron blocks,

Novice i

ST B SErT , = - iron nuggets, rails, buckets, cauldrons, chains, compasses, crossbows,

07 fiint-and-steels, heavy-weighted pressure plates, hoppers, iron
@ Emerald 1 @ Rabbit Stew 1 Iron Ingot Iron Ore
trapdoors, minecarts, pistons, shears, shields, iron armor, iron tools,
Ot B O Eiretd U stonecutters and tripwire hooks.
? I ked Porkch
CEECEED s ! OEHRED)| O D Used to craft various items, including netherite ingots, gold blocks,
@ Emerald 1 © Cooked Chicken 8 , golden apples, gold nuggets, clocks, golden armor, golden tools, powered
4 Raw Mutton 7 @ Emerald 1 CoE ol Ore rails and light-weighted pressure plates. Also used as a currency for
Journeyman Ingot ;

@ Raw Beef 10 @ Emerald 1 bartering.
Expert Ml Dried Kelp Block 1 9 Emerald 1 B - ; Used to craft various items, enchanting tables, jukeboxes and diamond
Master A Sweet Berries 10 @ Emerald 1 Diamendl| biamond Ore blocks. When normally mined drops 1 diamond and © 3-7.

Hostile mobs Biome
— Features Description Screenshot [hide]

" b [-~ % name
ﬂ”uﬂ 17:‘1{. - i - E g Temperature: 2.0. Rainfall: 0.0. This

Netherrack, Glowstone, Soul
Chicken Elder is one of the biomes used to generate
Blaze Creeper Drowned Endermite Evoker ~ Ghast Guardian Hoglin Sand, Nether Quartz Ore,
ockey, Cuatdialy the Nether. Within this biome mobs
Ghasts, Blazes, Zombified

ok
— . o
' : such as ghasts, packs of piglins,
= H i ,/ @ Piglins. Nether Fortresses.))
oy =5 i — P ¢ zombified piglins and the occasional

Wither Skeletons, Lava,

e - Nether magma cubes and endermen spawn.
Husk Phantom Piglin Brute Pillager Ravager Shulker Silverfish Skeleton Magma cubes, Gravel,
cube Horseman Wastes Certain structures, such as Nether
—_ Magma Blocks, Bastion Nether Wastes
-1 H quartz ore and glowstone blobs, and
u — Remnants, Ruined Portals, O, ———
) ether fortresses generate only in the
i Piglins,Nether Gold Ore
Spider Wither Zombie Nether.
Stime Stray Warden witch Zoglin Zombie
jockey Skeleton Villager

Figure 4: Wiki dataset examples. Closewise order: Villager trade table, mineral ingredient descrip-
tions, monster gallery, and terrain explanation.

a) Search for channels that contain Minecraft videos using a list of keywords, e.g., “Minecraft”,
“Minecraft Guide”, “Minecraft Walkthrough”, “Minecraft Beginner”. We do not directly
search for videos at this step because there is a limit of total results returned by the API;

b) Search for all the video IDs uploaded by each channel that we obtain at the previous step.
There are many false positives at this step because some channels (like gaming news channel)
may cover a range of topics other than Minecraft;

¢) To remove the false positives, we rely on the video category chosen by the user when the
video was uploaded and filter out all the videos that do not belong to the Minecraft category;

d) To curate a language-grounded dataset, we favor videos that have English transcripts, which
can be manually uploaded by the user, automatically transcribed from audio, or automatically
translated from another language by the YouTube engine. For each video, we filter it out if
1) the view count is less than 100; or 2) the aspect ratio is less 1; or 3) the duration is less
than 1 minute long; or 4) marked as age-restricted.

e) To further clean the dataset and remove potentially harmful contents, we employ the Detox-
ify [22] tool to process each video title and description. Detoxify is trained on Wikipedia
comments to predict multiple types of toxicity like threats, obscenity, insults, and identity-
based hate speech. We delete a video if the toxicity probability in any category is above
0.5.

We release all the video IDs along with metadata such as video titles, view counts, like counts,
duration, and FPS. In line with prior practices [26], we do not release the actual MP4 files and
transcripts due to legal concerns.

5.2 Minecraft Wiki

The Wiki pages cover almost every aspect of the game mechanics, and supply a rich source of un-
structured knowledge in multimodal tables, recipes, illustrations, and step-by-step tutorials (example
screenshots in Fig. [d]and Fig.[3). We use Selenium [44] to scrape 6,735 pages that interleave text,
images, tables, and diagrams. We elaborate the details of each web element scraped by Selenium:

a) Screenshot. Using Selenium’s built-in function, we take a full screenshot of the rendered
Wiki page in order to preserve the human-readable visual formatting. We also record the
bounding boxes of each salient web element on the page.

in: Renewable resources, Blocks, Plants. and 3 more

English v

Wood

| per

other uses, see Wood (disambiguation).

This article is about the bark block. For the block found in trees formerly named "wood’, see Log. For

MWood or hyphae is a block that has the log's "bark” texture on all six
ides. It comes in 9 types: oak, spruce, birch, jungle, acacia, dark

ak, crimson, warped, and mangrove.

Elripped wood or stripped hyphae is a variant obtained when any

xe is ysed on wood or hyphae respectively.

)

1. Obtaining

1. Breaking

1.2 Natural generation

1.3. Crafting

1.4. Post-generation

141, Stripped wood and hyphae

2. Usage

2.1, Crafting ingredient

2.2 Smelting ingredient

2.3 Fuel

Wood/Hyphae

Renewable

<

First day]

[Main articte: Tutoriats/Your first 10 minutes |

For the first day. you have just a few basic objectives: |

« JLook around to see what your environment is, and if necessary go someplace else. (See "Biomes" below for

nore details on this.)

« |Acquire resources and tools: Get wood, make wood tools (at least a [pickaxe), use that to get

[cobblestone, make stone tools.

« et @ coal (or make M charcoal) to make [torches, and find or make a shelter for the night.

« Pptional goals include:

« Killing animals for meat

« Killing [sheep in particular for [l wool to make a [bed

« Breaking [l tall grass to collect [Z] seeds, and perhaps tilling the edge of a pond or river to start a
wheat farm.

« Collecting some B iron ore if you spot some near the surface. You need to acquire a [A stone pickaxe
first.

s the first day begins, you need to collect Hll logs. First, you should look around for [l trees, and go toward any|
ou find, and break their trunks by ‘punching wood" as discussed above. You need to collect at least 5-8 logs
or your first round of tools and items you need immediately. You should make more a little later, but a few tools
ow make collecting more wood go much more quickly. As discussed above, the first thing to make is a
crafting table, followed by a few [sticks. The first tool you should craft is alA wooden pickaxe (3l planks
n the top 3 slots, and 2 [A sticks down from the middle plank). Crafting other wooden tools is not

ecommended, as you can quickly get cobblestone and make stone tools.

Figure 5: More Wiki database examples with bounding boxes (annotated in red). Left: wood block
introduction; right: first day tutorial.

link
3.81%

video
15.8%

® image
B video
B text
B |ink

Figure 6: Distribution of Reddit post types.

b) Text. We hand-select several HTML tags that likely contain meaningful text data, such as p,

hl, h2, ul, dl.

c) Images and Animations. We download the raw source file of each image element (JPG,
PNG, GIF, etc.), as well as the corresponding caption if available. There are also animation
effects enabled by JavaScript on the Wiki. We save all image frames in the animation.

d) Sprites. Sprite elements are micro-sized image icons that are typically embedded in text
to create multimodal tutorials and explanations. We save all the sprites and locate their
bounding boxes within the text too.

e) Tables. We save the text content and bounding box of each cell that a table element contains.
We store the header cells separately as they carry the semantic meaning of each column. A
table can be easily reconstructed with the stored text strings and bounding boxes.

5.3 Reddit

There are more than 1M subreddits (i.e., Reddit topics) where people can discuss a wide range of
themes and subjects. Prior works use Reddit data for conversational response selection [[1 155} [24]]
and abstractive summarization [50,27]]. The r/Minecraft/ subreddit contains free-form discussions of
game strategies and images/videos showcases of Minecraft builds and creations (examples in Fig. [7).
The distribution of post types is shown in Fig.[d]

To scrape the Reddit contents, we use PRAW [36]], a Python wrapper on top of the official Reddit
APIL. Our procedure is as follows:

https://www.reddit.com/r/minecraft

{} Posted by u/BlockTrapKing 11 months ago & {§ 4} (@ r/Minecratt - Posted by u/ERROR_173 2 months ago AN
% My first time encasing an Ocean Monument. Help! What is the best way to % does anyone know why some of my wheat won't grow?(farming)
sponge it!

AT tine

() 49 comments Award (? share [save e (D 121comments (¥] Award (> share [save -+

2 Gotta be the light add more torches
VQ With sponges
v

-
1 &d Ligh
@ 5x5 sections. Sponges only have so much power. @ ight

@ [0= your loht level s the wheat near the torch has grown. Allyou need to do i place more

Sponges or alot of dirt/sand
torches and you should see a difference.

i 55 grid of sand squars. No joke but it let's you go down in a back and forth without fear of creating light IvI too low
more source blocks e

£\ Posted by u/ali23awsxde 5 months ag Q
8 recently explored a big map but i can't find any village or villager. any tip to
< find village without cheating?

om

{3 Posted by u/Nightmarewasta 1 month ago Ja
75 T was wondering how to improve our axolotl pond. Any suggestions?

QUCCERRRTN
@

() 12comments () Award (> share [] save - (D aocomments () Award /? share [save -
;P Look for plains if there is village will be easier to spot but if u are tired of searching you could wait to @ Make it look more natural by making it less square, relace some of the dirt inside with gravel and
zombie villagers to spawn and then you cure them and make them have kids use a little bone meal in the water. Maybe put a bush or 2 outside near the fence

Run, run run, jump a bit, walk and eat, then run some more. Tht was my option but if ur making a @ corals and add sand just more vegetation
farm or trade place def better to heal zombie villager

‘ Follow the pumpkins (a Add a spore blossom

@ You can add flowers or moss to make the grass more different than the other

Figure 7: Examples of posts and comment threads from the Reddit database.

a) Obtain the ID and metadata (e.g. post title, number of comments, content, score) of every
post in the “r/Minecraft” subreddit since it was created. For quality control, we only consider
posts with scores (upvotes) > 5 and not marked as NSFW.

b) Determine each post’s type. There are 4 native post types - text, image/video, link, and
poll. We group text and poll posts together as text posts, and store their body text. For
image/video and link posts, we store the source file URLs on external media hosting sites
like Imgur and Gfycat. Based on the URL of each link post, we classify it as an image post,
a video post or a general link post.

¢) Scrape the comments and store the parent ID of each comment so that we can reconstruct
the threaded discussion.

d) Similarly to our YouTube database (Sec.[5.1), we run Detoxify [22]] on the scraped Reddit
contents to filter out potentially toxic and harmful posts.

We release all post IDs and their corresponding metadata. We also provide a Python function based
on PRAW for researchers to download the post contents after obtaining a license key for the official
Reddit APIL.

6 MINECLIP Algorithm Details

We implement all our neural networks in PyTorch v1.11 [10]. Training MINECLIP uses the
PyTorch-Lightning framework [10]], pre-trained models hosted on HuggingFace [52], and the
x-transformers library for Transformer variants [51]].

6.1 Video-Text Pair Extraction

Similar to VideoCLIP [54], we sample 640K pairs of 16-second video snippets and time-aligned
English transcripts by the following procedure:

1) Collect a list of keywords corresponding to the supported entities, blocks, and items in
Minecraft;

2) Perform string matching over our YouTube video transcripts to obtain 640K text segments;

3) For each matched transcript segment, randomly grow it to 16 ~ 77 tokens (limited by CLIP’s
context length);

4) Randomly sample a timestamp within the start and end time of the matched transcript as the
center for the video clip;

5) Randomly grow the video clip from the center timestamp to 8 ~ 16 seconds.

6.2 Architecture

MINECLIP architecture is composed of three parts:

Frame-wise image encoder ¢; We use the ViT-B/16 architecture [8] to compute a 512-D
embedding for each RGB frame. We initialize the weights from OpenAl CLIP’s public checkpoint
[39] and only finetune the last two layers during training. The input resolution is 160 x 256, which is
different from CLIP’s default 224 x 224 resolution. We adapt the positional embeddings via bicubic
interpolation, which does not introduce any new learnable parameters.

Temporal aggregator ¢, Given a sequence of frame-wise RGB features, a temporal aggregator
network summarizes the sequence into one video embedding. After the aggregator, we insert two
extra layers of residual CLIP Adapter [13]]. The residual weight is initialized such that it is very
close to an identity function at the beginning of training. We consider two variants of ¢,:

1. Average pooling (MINECLIP[avg]): a simple, parameter-free operator. It is fast to execute
but loses the temporal information, because average pooling is permutation-invariant.

2. Self-Attention (MINECLIPJattn]): a 2-layer transformer encoder with 512 embedding size, 8
attention heads, and Gated Linear Unit variant with Swish activation [45| [7]]. The transformer
sequence encoder is relatively slower, but captures more temporal information and achieves
better performance in our experiments (main paper, Table 1).

Text encoder ¢ We use a 12-layer 512-wide GPT model with 8 attention heads [37, 38]]. The
input string is converted to lower-case byte pair encoding with a 49,152 vocabulary size, and capped
at 77 tokens. We exactly follow the text encoder settings in CLIP and initialize the weights from
their public checkpoint. Only the last two layers of ¢ is finetuned during training.

6.3 Training

We train MINECLIP on the 640K video-text pairs for 2 epochs. We sample 16 RGB frames from each
video uniformly, and apply temporally-consistent random resized crop [6} [1 1] as data augmentation.
We use Cosine learning rate annealing with 500 gradient steps of warming up [31]. We apply a
lower learning rate (x0.5) on the pre-trained weights and layer-wise learning rate decay for better
finetuning [23]]. Training is performed on 1 node of 8x V100 GPUs with FP16 mixed precision [32]
via the PyTorch native amp module. All hyperparameters are listed in Table

10

Table 3: Training hyperparameters for MINECLIP.

Hyperparameter | Value

LR schedule | Cosine with warmup [31]
Warmup steps | 500
Peak LR | 1.5e-4
Final LR | le-5
Weight decay | 0.2
Layerwise LR decay | 0.65
Pre-trained layers LR multiplier | 0.5x
Batch size per GPU | 64
Parallel GPUs | 8
Video resolution | 160 x 256
Number of frames | 16
Image encoder | ViT-B/16 [8]

Algorithm 1: PPO-SI Interleaved Training

Input: policy 7y, value function V F'(+), SI buffer threshold A, SI frequency w
1 Initialize empty SI buffers for all tasks Dgy < {0, VT € training tasks};
2 Initialize a counter for simulator steps counter < 0;
3 while not done do

4 Collect set of trajectories for all tasks {71, VT € training tasks} by running policy 7y in
(parallel) environments;
5 forall Dgr 1 do
6 if 71 is successful then
7 | Dsrr + DsrrUTr
8 else if 71 ’s episode return > proym(Dsr,T) + A X Orenn(Ds1,r) then
9 | Dsrr « DsrrUTr
10 end
11 Increase counter accordingly;
12 Update 7y following Equation
13 Fit V F(-) by regression on mean-squared error;
14 if 1(counter mod w = 0) then
15 Determine the number of trajectories to sample from each buffer
F#ample = Min({|Dsr 7|, VT € training tasks});
16 Sample #ample trajectories from each buffer in a prioritized manner to construct Dgr;
17 Update 7y on Dg with supervised objective;
18 end

7 Policy Learning Details

In this section, we elaborate how a trained MINECLIP can be adapted as a reward function with two
different formulations. We then discuss the algorithm for policy learning. Finally, we demonstrate
how we combine self imitation learning and on-policy learning to further improve sample efficiency.

7.1 Adapt MINECLIP as Reward Function

We investigate two ways to convert MINECLIP output to scalar reward, dubbed DIRECT and DELTA.
The ablation results for Animal-Zoo task group are presented in Table[d]

Direct. For a task 7" with the goal description G, MINECLIP outputs the probability P that the
observation video semantically corresponds to (7, against a set of negative goal descriptions G~.
Note that we omit timestep subscript for simplicity. As an example, for the task “shear sheep”, G
is “shear a sheep” and G~ may include negative prompts like “milk a cow”, “hunt a sheep”, “hunt a
cow”, etc. To compute the DIRECT reward, we further process the raw probability using the formula
r = max(Pg — NLT, 0) where Nt is the number of prompts passed to MINECLIP. NLT is the
baseline probability of randomly guessing which text string corresponds to the video. We threshold

11

Table 4: Ablation on different MINECLIP reward formulations.

Group | Tasks | DIRECT DIRECT-Naive ~ DELTA
@ Milk Cow | 64.5 +37.1 8.6£12 7.6£52
Hunt Cow | 83.5 + 7.1 0.0£0.0 0.0£0.0
[Shear Sheep | 12.1 £9.1 0.8+£0.6 1.8+1.5
uﬁ Hunt Sheep 81+4.1 0.1+£0.2 0.0£0.0

r at zero to avoid highly uncertain probability estimates below the random baseline. We call the
variant without the post-processing DIRECT-Naive: = P as the reward signal for every time step.

Delta. The DIRECT formulation yields strong performance when the task is concerned with moving
creatures, e.g. farm animals and monsters that run around constantly. However, we discover that
DIRECT is suboptimal if the task deals with static objects, e.g., “find a nether portal”. Simply using the
raw probability from MINECLIP as reward can cause the learned agent to stare at the object of interest
but fail to move closer and interact. Therefore, we propose to use an alternative formulation, DELTA, to
remedy this issue. Concretely, the reward value at timestep ¢ becomes 7, = Pg ;1 — Pg,.—1. We empiri-
cally validate that this formulation provides better shaped reward for the task group with static entities.

7.2 Policy Network Architecture

Our policy architecture consists of three parts: an input feature encoder, a policy head, and a
value function. To handle multimodal observations (Sec. [3.1)), the feature extractor contains several
modality-specific components:

* RGB frame: we use the frozen frame-wise image encoder ¢; in MINECLIP to optimize
for compute efficiency and provide the agent with good visual representations from the
beginning (Sec. 5.2 in main paper).

* Task goal: ¢ computes the text embedding of the natural language task goal.
* Yaw and Pitch: compute sin(-) and cos(-) features respectively, then pass through an MLP.
* GPS: normalize and featurize via MLP.

» Voxel: to process the 3 x 3 x 3 surrounding voxels, we embed discrete block names to dense
vectors, flatten them, and pass through an MLP.

 Past action: our agent is conditioned on its immediate past action, which is embedded and
featurized by MLP.

Features from all modalities are concatenated, passed through another fusion MLP, and finally fed
into the policy head and value function head. We use an MLP to model the policy head that maps
from the input feature vectors to the action probability distribution. We use another MLP to estimate
the value function, conditioned on the same input features.

7.3 RL Training

PPO. We use the popular PPO algorithm [43] (Proximal Policy Optimization) as our RL training
backbone. PPO is an on-policy method that optimizes for a surrogate objective while ensuring that
the deviation from the previous policy is relatively small. PPO updates the policy network by

maxi@mize Esanmo,, L(8; @, ol 0), (D)
where
L(s,a,0u0,0) = min <7W“|S)A (5, 0), clip (”““"9) I—e1+t) Ao (s, a>> e
T0o1a (a|5) T Oota (a|5)

A is an estimator of the advantage function (GAE [42] in our case) and ¢ is a hyperparameter that
controls the deviation between the new policy and the old one.

12

O Without SI O With SI O Without SI O With SI
0.8

0.6 0.4

Success Rate

o
N
I Success Rate
E

0.4

0.2

o AN y - 0
Env Steps Env Steps

0 200k 400k 600k 800k M 0 500k M 1.5M 2M

(a) “Milk Cow” (b) “Shear Sheep”

Figure 8: Adding the self imitation technique [34] significantly improves the performance of RL
training in MINEDOJO.

Self Imitation Learning. We apply self-imitation learning [34] (SI) to further improve sample effi-
ciency because computing the reward with MINECLIP in the loop makes the training more expensive.
Self-imitation learning is essentially supervised learning on a buffer Dg; of good trajectories gener-
ated by the agent’s past self. In our case, the trajectories are generated by the behavior policy during
PPO rollouts, and only added to Dgy if it is a successful trial or if the episodic return exceeds a certain
threshold. Self imitation optimizes 7y for the objective Js; = E; opg, l0g mo(als) with respect to 6.

We alternate between the PPO phase and the SI phase. A pseudocode of our interleaved training
procedure is given in Algorithm[I} We use a prioritized strategy to sample trajectories from the buffer
Dgs;. Specifically, we assign equal probability to all successful trajectories. Unsuccessful trajectories
can still be sampled but with lower probabilities proportional to their episodic returns.

In Fig. [8] we demonstrate that adding self-imitation dramatically improves the stability, performance,
and sample efficiency of RL training in MINEDOJO.

8 Experiment Details

8.1 Task Details

We experiment with three task groups with four tasks per group. We train one multi-task agent for
each group. In this section, we describe each task goals, initial setup, and the manual dense-shaping
reward function.

Animal Zoo: 4 Programmatic tasks on hunting or harvesting resource from animals. We spawn
various animal types (pig, sheep, and cow) in the same environment to serve as distractors. It is
considered a failure if the agent does not take action on the correct animal specified by the prompt.

» Milk Cow: find and approach a cow, then obtain milk from it with an empty bucket. The
prompt ismilk a cow. We initialize the agent with an empty bucket to collect milk. We
also spawn sheep, cow, and pig nearby the agent. The manual dense reward shaping is
a navigation reward based on geodesic distance obtained from privileged LIDAR. The
combined reward passed to PPO can be formulated as r; = Apay max(dmin,t—1 — dmin,¢, 0) +
Asuccess 1 (milk collected), where Apay = 10 and Agyecess = 200. dmin,e = min(dmin, d¢)
where d, denotes the minimal distance to the cow that the agent has achieved so far in the
episode history.

* Hunt Cow: find and approach a cow, then hunt with a sword. The cow will run away so
the agent needs to chase after it. The prompt is hunt a cow. We initialize the agent with
a diamond sword. The manual dense reward shaping consists of two parts, a valid attack
reward and a navigation reward based on geodesic distance obtained from privileged LIDAR.
Mathematically, the reward is 7, = Agack 1 (valid attack) + Apay max(dmin,t—1 — dmin ¢, 0) +
Asuccess L (cow hunted), where Aypack = 5, Anav = 1, and Aguecess = 200. We additionally
reset dy,;, every time the agent hits the cow to encourage the chasing behavior.

* Shear Sheep: find and approach a sheep, then collect wool from the sheep with a shear. The
prompt is shear a sheep. We initialize the agent with a shear. The manual dense reward

13

Table 5: Hyperparameters in RL experiments. “{state} MLP” refers to MLPs to process observa-
tions of compass, GPS, and voxel blocks. “Embed Dim” denotes the same dimension size used to
embed all discrete observations into dense vectors.

. Trainin,
NN Architecture Hyperparameter Anima%_—Zoo Mob-Combat | Creative
RGB Feature Size 512 Learning Rate 107% 1077 107%
Task Prompt Feature Size = 512 Cosine Decay Minimal LR 5x 1076 5x 1076 5x 1076
{state} MLP Hidden Size 128 y 0.99 0.99 0.99
{state} MLP Output Size 128 Entropy Weight (Stage 1) 5x 1073 5x 1073 5x 1073
{state} MLP Hidden Depth 2 Entropy Weight (Stage 2) 1072 N/A 1072
Embed Dim 8 PPO Optimizer Adam Adam Adam
Num Feature Fusion Layers 1 SI Learning Rate 1074 10~4 10~4
Feature Fusion Output Size 512 SI Cosine Decay Minimal LR 10-6 10~ 10-6
Prev Action Conditioning True SI Epoch 10 10 10
Policy Head Hidden Size 256 SI Frequency (Env Steps) 100K 100K 100K
Policy Head Hidden Depth 3 SI Optimizer Adam Adam Adam
VF Hidden Size 256 SI Bufter Threshold 20 20 0.50
VF Hidden Depth 3 PPO Buffer Size 100K 100K 100K
Frame Stack 1 1 1
VF Loss Weight 0.5 0.5 0.5
GAE A 0.95 0.95 0.95
Gradient Clip 10 10 10
PPO ¢ 0.2 0.2 0.2
Action Smooth Weight 1077 1077 1077
Action Smooth Window Size 3 3 3
MINECLIP Reward Formulation DIRECT DIRECT DELTA

shaping is a navigation reward based on geodesic distance obtained from the privileged
LIDAR sensor, similar to “Milk Cow”.

* Hunt Sheep: find and approach a sheep, then hunt with a sword. The sheep will run away
so the agent needs to chase after it. An episode will terminate once any entity is hunted. The
prompt is hunt a sheep. We initialize the agent with a diamond sword. The manual dense
reward shaping consists of two parts, a valid attack reward and a navigation reward based on
geodesic distance obtained from the privileged LIDAR sensor, similar to “Hunt Cow”.

Mob Combat: fight 4 different types of hostile monsters: Spider, Zombie, Zombie Pigman (a
creature in the Nether world), and Enderman (a creature in the End world). The prompt template
is "Combat {monsterl}". For all tasks within this group, we initialize the agent with a diamond
sword, a shield, and a full suite of diamond armors. The agent is spawned in the Nether for Zombie
Pigman task, and in the End for Enderman. The manual dense-shaping reward can be expressed
as 7t = Aack L (valid attack) 4+ Agyecess 1 ({monster} hunted) where Aok = 5 and Agyecess = 200.

Creative: 4 tasks that do not have manual dense reward shaping or code-defined success criterion.

¢ Find Nether Portal: find and move close to a Nether Portal, then enter the Nether world
through the portal. The prompt is find a nether portal.

* Find Ocean: find and move close to an ocean. The prompt is find an ocean.

* Dig Hole: dig holes in the ground. The prompt is dig a hole. We initialize the agent with
an iron shovel.

* Lay Carpet: lay down carpets to cover the wooden floor inside a house. The prompt is put
carpets on the floor. We initialize the agent with a number of carpets in its inventory.

Note that we categorize “Find Nether Portal” and “Find Ocean” as Creative tasks even though they
seem similar to object navigation [3]]. While finding terrains and other structures is semantically well
defined, it is not easy to define a function to evaluate success automatically because the simulator
does not have the exact location information of these structures given a randomly generated world.
In principle, we can make a sweep by querying each chunk of voxels in the world to recognize the
terrains, but that would be prohibitively expensive. Therefore, we opt to use MineCLIP as the reward
signal and treat these tasks as Creative.

14

8.2 Observation and Action Space

We use a subset of the full observation and action space listed in Sec. 3.1 and [3.2] because the
tasks in our current experiments do not involve actions like crafting or inventory management. Our
observation space consists of RGB frame, compass, GPS, and Voxels.

Our action space is a trimmed version of the full action space. It consists of movement control,
camera control, “use” action, and “attack” action, which add up to 89 discrete choices. Concretely, it
includes 81 actions for discrete camera control (9 x 9 resulted from the Cartesian product between
yaw and pitch, each ranges from —60 degree to 60 degree with a discrete interval of 15 degree). It
also includes 6 movement actions (forward, forward + jump, jump, back, move left, and move right)
and 2 functional actions of “use” and “attack”. Note that the “no-op” action is merged into the 81
camera actions.

8.3 RL Training

All hyperparameters used in our RL experiment are listed in Table[5] Demos of more tasks can be
found on our website https://minedojo.org.

Action smoothing. Due to the stochastic nature of PPO, we observe a lot of action jittering in
the agent’s behavior during training. This leads to two negative effects that degrade the learning
performance: 1) exploration difficulty due to inconsistent action sequence. For example, the agent
may be required to take multiple consecutive attack actions in order to complete certain tasks; and 2)
rapidly switching different movement and camera motions result in videos that are highly non-smooth
and disorienting. This causes a domain gap from the training data of MINECLIP, which are typically
smooth human gameplay videos. Therefore, the reward signal quality deteriorates significantly.

To remedy the issue, we impose an action smoothing loss to be jointly optimized with the PPO
objective (Eq. [2)) during training. Concretely, consider a sliding window WV with window size |W|
that contains [JV| consecutive action distributions W = {7, _jyy|41, Te—w|+2; - - - , Tt }» the action
smoothing loss is defined as

1 W1

»Csmooth = W ; KL(’]TtHﬂ-t—|W\+i)7 (3)

where K L(-) denotes Kullback-Leibler divergence.

Multi-stage training for multi-task RL. Due to hardware limitations, we are not able to run a
large number of parallel simulators for all tasks in a task group. Therefore, we adopt a multi-stage
strategy to split the tasks and train them sequentially with a single policy network. For the task
groups Animal-Zoo and Creative, we split the four tasks into two stages of two parallel training
tasks each. We carry over the self-imitation buffers when switching to the next stage. We also follow
the recommended practice in [33]] and reset the policy head at the beginning of stage 2 to encourage
exploration and reduce overfitting. We adopt a similar replay buffer balancing strategy as [19] to
prevent any task from dominating the training.

8.4 Evaluation

In this section, we elaborate on our human and automatic evaluation procedure for Creative tasks.
We first ask the human annotators to manually label 100 successful and 100 failure trajectories. This
produces a combined dataset of 200 trajectories with groundtruth binary labels to evaluate the learned
reward functions. On this dataset, we run MINECLIP to produce step-wise rewards and compute
a score that averages over each trajectory. We then apply K-means clustering with K = 2 to all
scores and determine a decision boundary § from the mean of the two centroids. A trajectory with a
score greater than ¢ is classified as successful, and vice versa for failure. In this way, we essentially
convert MINECLIP to a binary classifier. The quality of MINECLIP can be measured by the F1
score of its binary classification output against the human labels. We demonstrate that MINECLIP
has high agreements with humans (Table 2 in main paper), and thus qualifies as an effective automatic
evaluation metric for Creative tasks in the absence of human judges.

15

https://minedojo.org

Table 6: We train a single multi-task agent for all 12 tasks. All numbers represent percentage success
rates averaged over 3 seeds, each tested for 200 episodes.

Group \ Tasks \ Single Agent on All Tasks Original Performance Change
ﬁ Milk Cow 91.5+0.7 64.5 +37.1 T
Hunt Cow 46.8 £ 3.7 835+7.1 +
[Shear Sheep 73.5+0.8 121+£9.1 T
l‘ Hunt Sheep 27.0+1.0 8.1+4.1 T
Combat Spider 72.1+1.3 80.5+13.0 +
R Combat Zombie 27.14+2.7 47.3+10.6 1
Combat Pigman 6.5+1.2 1.6 2.3 T
Combat Enderman 0.0£0.0 0.0£0.0 =
| Find Nether Portal 99.1+04 37.4+40.8 T
[ai) Find Ocean 95.1+1.5 33.4+45.6 T
’;) Dig Hole 85.8£1.2 91.6 £5.9 J
- Lay Carpet 96.5 + 0.8 97.6+1.9 =

Table 7: We test the open-vocabulary generalization ability to two unseen tasks. All numbers represent
percentage success rates averaged over 3 seeds, each tested for 200 episodes.

\ Tasks \ Ours (zero-shot) Ours (after RL finetune) Baseline (RL from scratch)

Hunt Pig 1.3£0.6 46.0 £15.3 0.0£0.0
Harvest Spider String 1.6+£1.3 36.5+16.9 12.5 +12.7

o

9 More Experiments and Ablations

9.1 Learning a Single Agent for All 12 Tasks

We have trained a single agent for all 12 tasks. To reduce the computational burden without loss
of generality, the agent is trained by self-imitating from successful trajectories generated from the
self-imitation learning pipeline (Section[7.3). We summarize the result in Table[@l Similar to our
main experiments, all numbers represent percentage success rates averaged over 3 training seeds,
each tested for 200 episodes. Compared to the original agents, the new 12-multitask agent sees a
performance boost in 6 tasks, degradation in 4 tasks, and roughly the same success rates in 2 tasks.
This result suggests that there are both positive and negative task transfers happening. To improve the
multi-task performance, more advanced algorithms [57, 53] can be employed to mitigate the negative
transfer effects.

We also perform Paired Student’s #-test to statistically compare the performance of the 12-multitask
agent and those separately trained on each task group. We obtain a p-value of 0.3720 > 0.05, which
suggests that the difference between the two training settings is not statistically significant.

9.2 Generalize to Novel Tasks

To test the ability to generalize to new open-vocabulary commands, we evaluate the agent on two
novel tasks: “harvest spider string” and “hunt pig”. Table [7] shows that the agent struggles in the
zero-shot setting because it has not interacted with pigs or spider strings during training, and thus does
not know how to interact with them effectively. However, the performance improves substantially by
finetuning with the MINECLIP reward. Here the baseline methods are trained from scratch using RL
with the MINECLIP encoders and reward. Therefore, the only difference is whether the policy has
been pre-trained on the 12 tasks or not. Given the same environment sampling budget (only around
5% of total samples), it significantly outperforms baselines. It suggests that the multitask agent has
learned transferable knowledge on hunting and resource collection, which enables it to quickly adapt
to novel tasks.

16

Table 8: MINECLIP’s evaluation on more complex Creative tasks. Numbers represent F1 scores
between MINECLIP’s evaluation on tasks success and human labels. Scaled to percentage for better
readability.

Tasks | Builda Farm Build a Fence Build a House Ride a Minecart ~Build a Swimming Pool

Ours (Attn) 78.7 91.4 63.7 95.9 85.0
Ours (Avg) 73.4 83.1 374 96.9 94.7
CLIPopenat 62.5 245 52.9 70.0 T1.7

9.3 MINECLIP’s Evaluation on Complex Creative Tasks

We annotate 50 YouTube video segments each for 5 more tasks that are much more semantically
complex: “build a farm”, “ build a fence”, “build a house”, “ride a minecart”, and “build a swimming
pool”. We then run MINECLIP evaluation on these videos against a negative set. As shown in Table
[8l though not perfect, MINECLIP generally has a positive agreement with human judgment. We
note that the current MINECLIP is a proof-of-concept step in leveraging internet data for automated
evaluation, and further scaling on more training data and parameters may lead to more improvements.

Meanwhile, human judgment remains a useful and important alternative [40} 41].

10 Limitations and Potential Societal Impact

Unlike human demonstrations [49] or offline RL datasets [12]], our YouTube dataset contains only the
video screen observations but not the actual control actions. This allows us to scale up the dataset
tremendously, but at the same time poses a challenge to imitation learning algorithms that require
observation-action pairs to learn. Our proposed algorithm, MINECLIP, side-steps this problem by
learning a reward model, but we believe that directly inferring the human expert policy from YouTube
is another important direction complementary to our approach. There are promising techniques that
can potentially overcome this limitation, such as the Learning-from-Observation (LfO) family of
algorithms [48] 147,146, [9].

Our database is scraped from the internet, which inevitably contains offensive YouTube videos or
toxic Reddit posts. While we have made our best effort to filter out these harmful contents (Sec. [5.1),
there can still be undesirable biases and toxicity that elude our automatic filters. Furthermore, we
advocate the use of large pre-trained language models in our main paper, and MINECLIP is finetuned
from the pre-trained weights of OpenAl CLIP [39]. These foundation models are known to contain
harmful stereotypes and generate hateful commentary [} 4} [15]. We ask the researchers who will use
our code and database to exercise their best judgment during new model development to avoid any
negative social impact.

11 Acknowledgement

We are extremely grateful to Anssi Kanervisto, Shikun Liu, Zhiding Yu, Chaowei Xiao, Weili Nie,
Jean Kossaifi, Jonathan Raiman, Neel Kant, Saad Godil, Jaakko Haapasalo, Bryan Catanzaro, John
Spitzer, Zhiyuan “Jerry” Lin, Yingqi Zheng, Chen Tessler, Dieter Fox, Oli Wright, Jeff Clune, Jack
Parker-Holder, and many other colleagues and friends for their helpful feedback and insightful
discussions. We also thank the anonymous reviewers for offering us highly constructive advice
and kind encouragement during the review and rebuttal period. NVIDIA provides the necessary
computing resource and infrastructure for this project. Guanzhi Wang is supported by the Kortschak
fellowship in Computing and Mathematical Sciences at Caltech.

17

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Rami Al-Rfou, Marc Pickett, Javier Snaider, Yun hsuan Sung, Brian Strope, and Ray Kurzweil.
Conversational contextual cues: The case of personalization and history for response ranking.
arXiv preprint arXiv: Arxiv-1606.00372, 2016.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. arXiv preprint arXiv: Arxiv-2206.11795, 2022.

Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets, Roozbeh Mottaghi,
Manolis Savva, Alexander Toshev, and Erik Wijmans. Objectnav revisited: On evaluation of
embodied agents navigating to objects. arXiv preprint arXiv: Arxiv-2006.13171, 2020.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas
Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi,
Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa
Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr,
Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi
Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack
Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan
Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramer, Rose E. Wang,
William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga,
Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia
Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation models.
arXiv preprint arXiv: Arxiv-2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Jodo Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the
kinetics dataset. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages 4724-4733. IEEE Computer Society, 2017.
doi: 10.1109/CVPR.2017.502. URL https://doi.org/10.1109/CVPR.2017.502,

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways. arXiv preprint arXiv: Arxiv-2204.02311, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,

18

https://doi.org/10.1109/CVPR.2017.502

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv: Arxiv-2010.11929, 2020.

[9] Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, and Charles L. Isbell. Imitating
latent policies from observation. arXiv preprint arXiv: Arxiv-1805.07914, 2018.

[10] William Falcon and The PyTorch Lightning team. PyTorch Lightning. Github, 3
2019. doi: 10.5281/zenodo.3828935. URL https://github.com/PyTorchLightning/
pytorch-lightning,

[11] Linxi Fan*, Shyamal Buch*, Guanzhi Wang, Ryan Cao, Yuke Zhu, Juan Carlos Niebles, and
Li Fei-Fei. Rubiksnet: Learnable 3d-shift for efficient video action recognition. In Proceedings
of the European Conference on Computer Vision (ECCV), 2020.

[12] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv: Arxiv-2004.07219, 2020.

[13] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng
Li, and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv
preprint arXiv: Arxiv-2110.04544, 2021.

[14] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna M.
Wallach, Hal Daumé III, and Kate Crawford. Datasheets for datasets. Commun. ACM, 64(12):
86-92, 2021. doi: 10.1145/3458723. URL https://doi.org/10.1145/3458723,

[15] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Realtoxic-
ityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint arXiv:
Arxiv-2009.11462, 2020.

[16] Jordan Gerblick. Minecraft, the most-watched game on youtube, passes
1 trillion views, Dec 2021. URL https://www.gamesradar.com/
minecraft-the-most-watched-game-on-youtube-passes-1-trillion-views/,

[17] Jonathan Gray, Kavya Srinet, Yacine Jernite, Haonan Yu, Zhuoyuan Chen, Demi Guo, Siddharth
Goyal, C. Lawrence Zitnick, and Arthur Szlam. Craftassist: A framework for dialogue-enabled
interactive agents. arXiv preprint arXiv: Arxiv-1907.08584, 2019.

[18] Djordje Grbic, Rasmus Berg Palm, Elias Najarro, Claire Glanois, and Sebastian Risi. EvoCraft:
A New Challenge for Open-Endedness, pages 325-340. Springer International Publishing, 2021.
doi: 10.1007/978-3-030-72699-7_21. URL http://1link.springer.com/content/pdf/
10.1007/978-3-030-72699-7_21|

[19] Agrim Gupta, Linxi Fan, Surya Ganguli, and Li Fei-Fei. Metamorph: Learning universal
controllers with transformers. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=0pmqtk_GvYL,

[20] William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations.
arXiv preprint arXiv: Arxiv-1907.13440, 2019.

[21] Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:
Arxiv-2109.06780, 2021.

[22] Laura Hanu and Unitary team. Detoxify. Github. https://github.com/unitaryai/
detoxify, 2020.

[23] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll4r, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv: Arxiv-2111.06377,2021.

[24] Matthew Henderson, Pawet Budzianowski, Ifiigo Casanueva, Sam Coope, Daniela Gerz, Girish

Kumar, Nikola Mrksi¢, Georgios Spithourakis, Pei-Hao Su, Ivan Vuli¢, and Tsung-Hsien Wen.
A repository of conversational datasets. arXiv preprint arXiv: Arxiv-1904.06472,2019.

19

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://doi.org/10.1145/3458723
https://www.gamesradar.com/minecraft-the-most-watched-game-on-youtube-passes-1-trillion-views/
https://www.gamesradar.com/minecraft-the-most-watched-game-on-youtube-passes-1-trillion-views/
http://link.springer.com/content/pdf/10.1007/978-3-030-72699-7_21
http://link.springer.com/content/pdf/10.1007/978-3-030-72699-7_21
https://openreview.net/forum?id=Opmqtk_GvYL
https://github.com/unitaryai/detoxify
https://github.com/unitaryai/detoxify

[25] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for
artificial intelligence experimentation. IJCAI, 2016. URL https://dl.acm.org/doi/10,
5555/3061053.3061259.

[26] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew
Zisserman. The Kinetics human action video dataset. arXiv preprint arXiv: Arxiv-1705.06950,
2017.

[27] Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim. Abstractive summarization of reddit posts
with multi-level memory networks. In Jill Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 2519-2531. Association
for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1260. URL https://doi.org/
10.18653/v1/n19-1260.

[28] Julia Kiseleva, Ziming Li, Mohammad Aliannejadi, Shrestha Mohanty, Maartje ter Hoeve,
Mikhail Burtsev, Alexey Skrynnik, Artem Zholus, Aleksandr Panov, Kavya Srinet, Arthur
Szlam, Yuxuan Sun, Katja Hofmann, Michel Galley, and Ahmed Awadallah. Neurips 2021
competition iglu: Interactive grounded language understanding in a collaborative environment.
arXiv preprint arXiv: Arxiv-2110.06536, 2021.

[29] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv: Arxiv-2205.11916, 2022.

[30] Label Studio. Label studio. https://labelstud.io/, 2020. Accessed: 2022-06-06.

[31] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview,
net/forum?id=Skq89Scxx.

[32] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao
Wu. Mixed precision training. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=ri1gs9JgRZ.

[33] Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville.
The primacy bias in deep reinforcement learning. arXiv preprint arXiv: Arxiv-2205.07802,
2022.

[34] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In Interna-
tional Conference on Machine Learning, pages 3878-3887. PMLR, 2018.

[35] Diego Perez-Liebana, Katja Hofmann, Sharada Prasanna Mohanty, Noburu Kuno, Andre
Kramer, Sam Deylin, Rq]uca D. Gaina, and Daniel Ionita. The multi-agent reinforcement
learning in malmO (marlO) competition. arXiv preprint arXiv: Arxiv-1901.08129, 2019.

[36] PRAW: The Python Reddit API Wrapper. Praw: The python reddit api wrapper. https:
//github.com/praw-dev/praw, 2010. Accessed: 2022-06-06.

[37] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. OpenAl, 2018.

[38] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748-8763. PMLR, 2021.

20

https://dl.acm.org/doi/10.5555/3061053.3061259
https://dl.acm.org/doi/10.5555/3061053.3061259
https://doi.org/10.18653/v1/n19-1260
https://doi.org/10.18653/v1/n19-1260
https://labelstud.io/
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=r1gs9JgRZ
https://github.com/praw-dev/praw
https://github.com/praw-dev/praw

[40] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv: Arxiv-2204.06125,
2022.

[41] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv preprint arXiv: Arxiv-2205.11487,
2022.

[42] John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio
and Yann LeCun, editors, 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1506.02438,

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv: Arxiv-1707.06347, 2017.

[44] Selenium WebDriver. Selenium webdriver. https://www.selenium.dev/, 2011. Accessed:
2022-06-06.

[45] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv: Arxiv-2002.05202,
2020.

[46] Bradly C. Stadie, Pieter Abbeel, and Ilya Sutskever. Third-person imitation learning. arXiv
preprint arXiv: Arxiv-1703.01703, 2017.

[47] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv
preprint arXiv: Arxiv-1805.01954, 2018.

[48] Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation learning from
observation. arXiv preprint arXiv: Arxiv-1905.13566, 2019.

[49] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wo-
jeiech M Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, et al.
Alphastar: Mastering the real-time strategy game starcraft ii. DeepMind blog, 2, 2019.

[50] Michael Vglske, Martin Potthast, Shahbaz Syed, and Benno Stein. TL;DR: Mining Reddit
to learn automatic summarization. In Proceedings of the Workshop on New Frontiers in
Summarization, pages 59-63, Copenhagen, Denmark, sep 2017. Association for Computational
Linguistics. doi: 10.18653/v1/W17-4508. URL https://aclanthology.org/W17-4508.

[51] Phil Wang. x-transformers. Github, 2022. URL https://github.com/lucidrains/
x-transformers.

[52] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv: Arxiv-1910.03771, 2019.

[53] Sen Wu, Hongyang R. Zhang, and Christopher Ré. Understanding and improving information
transfer in multi-task learning. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https
//openreview.net/forum?id=SylzhkBtDB,

[54] Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan, Florian Metze,

Luke Zettlemoyer, and Christoph Feichtenhofer. Videoclip: Contrastive pre-training for zero-
shot video-text understanding. arXiv preprint arXiv: Arxiv-2109.14084, 2021.

21

http://arxiv.org/abs/1506.02438
https://www.selenium.dev/
https://aclanthology.org/W17-4508
https://github.com/lucidrains/x-transformers
https://github.com/lucidrains/x-transformers
https://openreview.net/forum?id=SylzhkBtDB
https://openreview.net/forum?id=SylzhkBtDB

[55] Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong, Noah Constant, Petr Pilar, Heming Ge,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. Learning semantic textual similarity from
conversations. In Proceedings of The Third Workshop on Representation Learning for NLP,
pages 164—174, Melbourne, Australia, jul 2018. Association for Computational Linguistics. doi:
10.18653/v1/W18-3022. URL https://aclanthology.org/W18-3022.

[56] YouTube Data API. Youtube data api. https://developers.google.com/youtube/v3/,
2012. Accessed: 2022-06-06.

[57] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. arXiv preprint arXiv: Arxiv-2001.06782, 2020.

22

https://aclanthology.org/W18-3022
https://developers.google.com/youtube/v3/

	Overview
	Minecraft Framework Comparison
	MineDojo Simulator
	Observation Space
	Action Space
	Customizing the Environment

	MineDojo Task Suite
	Programmatic Tasks
	Creative Tasks
	GPT-3 Guidance
	Playthrough: Defeat the Ender Dragon

	Internet-Scale Database
	YouTube Videos and Transcripts
	Minecraft Wiki
	Reddit

	MineCLIP Algorithm Details
	Video-Text Pair Extraction
	Architecture
	Training

	Policy Learning Details
	Adapt MineCLIP as Reward Function
	Policy Network Architecture
	RL Training

	Experiment Details
	Task Details
	Observation and Action Space
	RL Training
	Evaluation

	More Experiments and Ablations
	Learning a Single Agent for All 12 Tasks
	Generalize to Novel Tasks
	MineCLIP's Evaluation on Complex Creative Tasks

	Limitations and Potential Societal Impact
	Acknowledgement

