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A Background

To keep the paper self-contained, we collect the relevant definitions and theorems from prior work
that are used in proving the main results of our paper.

Central Limit Theorems. We first recall a central limit theorem for studentized statistics by Ben-
tkus and Götze (1996).

Fact 11 (Berry Esseen CLT). For some i.i.d. ∼ P random variables W1, . . . ,Wn, define the statistic

x̄M̂MD
2
=

∑n
i=1 Wi√

1
n

∑n
i=1(Wi−W̄n)

2
. If EP [Wi] = 0 and 0 < EP [W

2
i ] < ∞, then there exists a

universal constant C <∞ such that

sup
x∈R

|PP (T ≤ x)− Φ(x)| ≤ C
EP [|W 3

1 |]
EP [W 2

1 ]
3/2

√
n
.

Remark 12. Note that by Cauchy–Schwarz inequality, we have

EP [W
3
1 ] = EP [W

2
1 ×W1] ≤

√
EP [W 4

1 ]EP [W 2
1 ].

This implies the following

EP [W
3
1 ]

EP [W 2
1 ]

3/2
≤
(

EP [W
4
1 ]

EP [W 2
1 ]

2

)1/2

.
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Thus a sufficient condition for applying Fact 11 to show the convergence in distribution to N(0, 1)
for a triangular sequence {Wi,n : 1 ≤ i ≤ n, n ≥ 1}, with {Wi,n : 1 ≤ i ≤ n} drawn i.i.d. from
some distribution Pn is

lim
n→∞

EPn
[W 4

1,n]

EPn
[nW 2

1,n]
2
= 0.

We next recall a consequence of Lindeberg’s Central Limit Theorem (CLT), as stated in (Lehmann
and Romano, 2006, Lemma 11.3.3).
Fact 13. Let Z1, Z2, . . . be a sequence of i.i.d. zero-mean random variables with finite variance σ2.
Let c1, c2, . . . be a real-valued sequence, satisfying:

lim
n→∞

max
1≤i≤n

c2i∑n
j=1 c

2
j

= 0.

Then, we have ∑n
i=1 ciYi√∑n

j=1 c
2
j

d−→ N(0, σ2).

Null distribution of MMD statistic. Assuming that (n,m) are such that n/m → c for some
c > 0, and let {ul : l ≥ 1} and {vl : l ≥ 1} denote two independent sequences of i.i.d. N(0, 1)
random variables. Furthermore, let {λl : l ≥ 1} denote the eigenvalues of the kernel operator
f(·) 7→

∫
X f(x)k(·, x)dP (x). Using techniques from the theory of U-statistics, Gretton et al.

(2012a) showed that

(n+m)M̂MD
2 d−→

∞∑
l=1

λl

((
c1/2ul − vl

)2
1 + c

− (1 + c)2

c

)
. (10)

(10) shows that the null distribution of M̂MD is an infinite combination of chi-squared random
variables, weighted by the eigenvalues of the kernel operator. Due to this form, the null distribution
has a complex dependence on the kernel and the null distribution P .

Gaussian kernel calculations. Next, we recall some facts derived byLi and Yuan (2019), about the
the Gaussian kernel ks(x, y) := exp

(
−s∥x− y∥22

)
, and probability distributions that admit density

functions lying in the Sobolev ball ∈ Wβ,2(M).
Fact 14. Consider a Gaussian kernel that varies with sample size, kn(x, y) = exp(−sn∥x− y∥22).
Let k̄n be as defined in (15), X = Rd and X1, X2, X3, X4 ∼ Pn i.i.d., Y1, Y2 ∼ Qn, where Pn and
Qn have densities pn and qn in Wβ,2(M) and ∥pn − qn∥L2 = ∆n, for some real valued sequence
{∆n : n ≥ 1} converging to 0. Then, we have the following:

EPn
[k̄2n(X1, X2)] ≍ s−d/2, and EQn

[k̄2n(Y1, Y2)] ≍ s−d/2 (11)

EPn
[k̄4n(X1, X2)] ≲ s−d/2, (12)

EPn [k̄
2
n(X1, X2)k̄

2
n(X1, X3)] ≲ s−3d/4, (13)

γn(Pn, Qn) = MMD(Pn, Qn) ≳ s−d/2
n ∆n. (14)

Additional Notation. We use U = oP (un) and U = OP (un) to denote that U/un
p−→ 0 and that

U/un is stochastically bounded. For real valued sequences, we use an ≲ bn if there exists a constant
C such that an ≤ Cbn for all n. We use an ≍ bn if an ≲ bn and bn ≲ an.

B Gaussian limiting distribution of x̄M̂MD
2

In this section, we present the results about the limiting null distribution of the statistic x̄M̂MD
2
. The

general outline of the section is as follows:
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• In Appendix B.1, we state the most general version of the result on the limiting distribution

of x̄M̂MD
2

(Theorem 15), that we alluded to in Section 2.1. We then prove this result
in Appendix B.1.1.

• In Appendix B.3, we show how the general result can be used to prove Theorem 5, where
the kernel is allowed to change with n while the distribution P is fixed.

• Finally, in Appendix B.3, we show how Theorem 5 can be used to conclude the result for
the case when both the kernel k and null distribution P are fixed with n.

B.1 Statement of the general result (both kn and Pn changing with n)

As stated in Remark 3, we assume that m ≡ mn is some non-decreasing function of n. We consider
a sequence of positive-definite kernels {kn : n ≥ 2}, and probability distributions {Pn : n ≥ 1, 2},
and define

k̄(x, y) ≡ k̄n(x, y) = ⟨kn(x, ·)− µPn
, kn(y, ·)− µPn

⟩k, (15)

where µPn denotes the embedding of the distribution Pn into the RKHS associated with the kernel
kn. For any fixed values of n, we use {(λl,n, φl,n) : l ≥ 1} to denote the eigenvalue-eigenfunction
sequence associated with the integral operator g 7→

∫
k̄(·, x)g(x)dPn(x). If k̄ happens to be square-

integrable (in addition to being symmetric), it has the following representation:

k̄n(x, y) =

∞∑
l=1

λl,nφl,n(x)φl,n(y). (16)

We now state the assumption required to prove the limiting normal distribution of the statistic

x̄M̂MD
2
. As we will see in Appendix B.2, in the special case of fixed P , the condition in (17) is a

weaker version of that used in Theorem 5.

Assumption 1. For k̄ introduced in (5), {(λl,n, φl,n) : l ≥ 1} introduced in (16) and for a sequence
{Pn : n ≥ 1}, we assume that

EPn
[k̄4(X1, X2)](n

−1 +m−1
n ) + EPn

[k̄2(X1, X3)k̄
2(X2, X3)]

EPn
[k̄2(X1, X2)]2

(
1

n−1+m−1
n

) → 0, and (17)

lim
n→∞

λ21,n∑∞
l=1 λ

2
l,n

exists.

We now state the main result of this section.

Theorem 15. Suppose the sequence {mn : n ≥ 1} satisfies limn→∞ n/mn exists and is non-
zero. Let {kn : n ≥ 1} be a sequence of positive definite kernels, and let P(0)

n denote a family of
distributions such that, for every n ≥ 1 and Pn ∈ P(0)

n , Assumption 1 is satisfied by the pair (k̄n, Pn)
with k̄n defined in (15). Then, we have that

lim
n→∞

sup
Pn∈P(0)

n

sup
x∈R

|PPn
(x̄M̂MD

2
≤ x)− Φ(x)| = 0.

We now present the proof of this result.

B.1.1 Proof of the general result with changing kn and Pn

To simplify the notation, we will drop the subscripts from kn, k̄n, Pn, λl,n,m and φl,n,m in this proof
outline. Furthermore, note that as mentioned in Remark 3, we assume that n1 = n/2 and n1 = m/2.

For any x ∈ X , introduce the term k̃(x, ·) to denote k(x, ·)− µ. Next, we define the following terms

SX = ⟨µ̂1 − µ,

:=g2︷ ︸︸ ︷
(µ̂2 − µ)− (ν̂2 − µ)⟩k, and SY = ⟨ν̂1 − µ, g2⟩k,
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and note that we can write xM̂MD
2
= ŪX − ŪY = SX − SY (SX differs from ŪX due to the extra

µ term in the first argument of the inner product). Recall that we use µ and ν to denote the kernel
embeddings of the distributions P and Q.

We can further rewrite SX and SY in terms of {Wi : 1 ≤ i ≤ n1} and {Zj : 1 ≤ j ≤ m1} as
follows:

SX =
1

n1

n1∑
i=1

:=Wi︷ ︸︸ ︷
⟨k̃(Xi, ·), g2⟩k, and SY =

1

m1

m1∑
j=1

:=Zj︷ ︸︸ ︷
⟨k̃(Yj , ·), g2⟩k . (18)

With these terms defined, we proceed in the following steps:

• Step 1: First, we consider the standardized random variables Ts,X and Ts,Y , defined as

Ts,X :=

√
n1SX

EPn
[W 2

i |X2,Y2]
, and Ts,Y :=

√
m1SY

EPn
[Z2

j |X2,Y2]
,

and prove that they converge in distribution to N(0, 1) conditioned on (X2,Y2). To
prove that the limiting distribution is Gaussian, we verify that EPn [W 4

i |X2,Y2]

n1EPn [W 2
i |X2,Y2]2

p→ 0

and
EPn [Z4

j |X2,Y2]

m1EPn [Z2
j |X2,Y2]2

p→ 0. This is formally shown in Lemma 16 below.

• Step 2: Next, building upon the previous result, and using the conditional independence
of Ts,X and Ts,Y , we show in Lemma 17 below, that the standardized statistic Ts =

(SX − SY )/
√
n−1
1 EPn

[W 2
1 |X2,Y2] +m−1

1 EPn
[Z2

1 |X2,Y2] also converges in distribution
to N(0, 1).

• Step 3: We then prove in Lemma 18 below that the ratio
n−1
1 EPn [W 2

1 |X2,Y2]+m−1
1 EPn [Z2

1 |X2,Y2]

n−1
1 σ̂2

X+m−1
1 σ̂2

Y

converges in probability to 1.

It only remains to state and prove the three lemmas used above, which we do after this proof. Barring
that, combining the above three steps completes the proof of the theorem.

Before proceeding, we first introduce the terms ai = ⟨k̃(Xi, ·), µ̂2−µ⟩k and bi = ⟨k̃(Xi, ·), ν̂2−µ⟩k,
and note that we can further decompose Wi into ai − bi for 1 ≤ i ≤ n1. Similarly, for 1 ≤ j ≤ m1,
we can write Zj as cj − dj with cj = ⟨k̃(Yj , ·), µ̂2 − µ⟩k and dj = ⟨k̃(Yj , ·), ν̂2 − µ⟩k.

We now state and prove the intermediate results to obtain Theorem 15.
Lemma 16. Under the conditions of Theorem 15, we have the following:

EPn
[W 4

i |X2,Y2]

n1EPn
[W 2

i |X2,Y2]2
p→ 0, and

EPn [Z
4
j |X2,Y2]

m1EPn
[Z2

j |X2,Y2]2
p→ 0.

Hence, as a consequence of the Lyapunov form of CLT (see Fact 11 and Remark 12 in Appendix A),
this means that Ts,X

d−→ N(0, 1) and Ts,Y
d−→ N(0, 1) conditioned on (X2,Y2).

Proof. We describe the steps for proving the first statement (involving Wi), noting that the other
statement follows in an entirely analogous manner. Throughout this proof, we will use the shorthand
E2[·] to denote the EPn

[·|X2,Y2].

By two applications of the AM-GM inequality, we observe that W 4
i = (ai − bi)

4 ≤ 16(a4i + b4i ).
Hence, we have the following:

E2[W
4
i ]

16n1E2[W 2
i ]

2
≤ E2[a

4
i + b4i ]

n1E2[(ai − bi)2]

=
n1E2[a

4
i ]

EPn
[k̄(X1, X2)2]2

× EPn [k̄(X1, X2)
2]2

n21E2[(ai − bi)2]
+

m1E2[b
4
i ]

EPn
[k̄(Y1, Y2)2]2

× EPn [k̄(Y1, Y2)
2]2

m2
1E2[(ai − bi)2]

(19)

:= A1 ×A2 +B1 ×B2. (20)
Thus, to complete the proof, it suffices to show that A1 ×A2 and B1 ×B2 converge in probability to
0. This can be shown in two steps:
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• Under the assumptions of Theorem 15, we have A1
p→ 0 and B1

p→ 0. To prove this result,
it suffices to show that EPn

[A1] → 0 and EPn
[B1] → 0. The result then follows by an

application of Markov’s inequality.

• A2 and B2 are bounded in probability.

We first show that EPn [A1] → 0. The result for B1 follows similarly.

EPn [A1] =
n1

EPn
[k̄(X1, X2)2]

EPn

[
E2

[
a2i
]]

(i)
=

n1
EPn [k̄(X1, X2)2]

(
EPn

[
k̄4(X1, X2)

]
n31

+
3n1(n1 − 1)

n41
E[k̄2(X1, X3)k̄

2(X2, X3)]

)

≤ 3

EPn [k̄(X1, X2)2]

(
EPn

[
k̄4(X1, X2)

]
n21

+
1

n1
E[k̄2(X1, X3)k̄

2(X2, X3)]

)
,

which goes to 0 as required, by invoking the condition in (17) of Assumption 1. For (i), we used the
expression derived by Kim and Ramdas (2020) while proving their Theorem 6.

To complete the proof, we show that A2 is bounded in probability (the result for B2 follows similarly).
We consider two cases, depending on whether ρ1 := limn,m→∞

λ2
1∑

l λ
2
l

is equal to 0 or greater than
0 (the existence of this limit is assumed).

Case 1: ρ1 > 0. We first observe that as a consequence of (15) and the orthonormality of the
eigenfunctions, we have

EPn
[k̄(X1, X2)

2] = EPn

∑
l,l′

λlλl′φl(X1)φl′(X1)φl(X2)φl′(X2)

 =

∞∑
l=1

λ2l .

Using this, we obtain the following:

1

(A2)1/2
=
n1E2[a

2
i + b2i − 2aibi]∑∞

l=1 λ
2
l

.

By repeated use of (15), we can show that the following identities hold:

E2[a
2
i ] =

1

(n− n1)2

∞∑
l=1

λ2l

(∑
i′

φl(Xi′)

)2

,

E2[b
2
i ] =

1

(m−m1)2

∞∑
l=1

λ2l

∑
j′

φl(Yj′)

2

, and

E2[aibi] =
1

(n− n1)(m−m1)

∞∑
l=1

λ2l

(∑
i′

φl(Xi′)

)∑
j′

φl(Yj′)

 .

Plugging these equalities in the expression for A2, and using ρl = λl∑
l′ λ

2
l′

, we get

(A2)
1/2 =

1

n1
∑

l ρl

(
1

n−n1

∑
i′ φl(Xi′)− 1

m−m1

∑
j′ φl(Yj′)

)2
≤ 1

ρ1

( √
n1

n−n1

∑
i′ φ1(Xi′)−

√
n1

m−m1

∑
j′ φ1(Yj′)

)2
18



Since n1 = n/2, m1 = m/2, we have
√
n1/(n − n1) =

√
2/n and

√
n1/(m −m1) =

√
2n/m.

Introduce the notation ui′ =
√
2/n/

√
1 + n/m and vj′ = (

√
2n/m)/

√
1 + n/m, and note that

(A2)
1/2 ≤ 1(

1 + n
m

)
ρ1

(∑
i′ ui′φ1(Xi′)−

∑
j′ vj′φ1(Yj′)

)2
≤ 1

ρ1

(∑
i′ ui′φ1(Xi′)−

∑
j′ vj′φ1(Yj′)

)2 . (21)

Next, we note that

lim
n→∞

max
i′,j′

u2i′ + v2j′∑
i′ u

2
i′ +

∑
j′ v

2
j′

= lim
n→∞

2

n+ n2/m
+

2

m+m2/n

≤ lim
n→∞

2

(
1

n
+

1

m

)
= 0.

Thus, by an application of Lindeberg’s CLT, we observe that the denominator in (21) converges in
distribution to N(0, ρ1)

2. This implies that A2 = OP (1), as required.

Case 2: ρ1 = 0. Again, we observe that

(A2)
−1/2 =

n1E2[a
2
i ]

EPn [k̄(X1, X2)2]
+

n1E2[b
2
i ]

EPn [k̄(X1, X2)2]
− 2

n1E2[aibi]

EPn [k̄(X1, X2)2]
.

The first two terms in the display above are 1 + oP (1), as shown in (Kim and Ramdas, 2020, pg 55,
Step 2). For the last term, we introduce the notation g(x, y) = EPn

[k̄(X,x)k̄(X, y)], and note the
following:

R :=
n1E2[aibi]

EPn
[k̄(X1, X2)2]

=
n1

(n− n1)(m−m1)

∑
i′,j′

g(Xi′ , Yj′).

Since Xi′ and Yj′ are independent, we observe that EPn [g(Xi′ , Yj′)] = 0, and hence EPn [R] = 0.
Furthermore, the variance of R satisfies

EPn
[R2] =

n21
(n− n1)(m−m1)

EPn [g(X1, X2)
2]

EPn
[k̄(X1, X2)2]

=
n21

(n− n1)(m−m1)

EPn
[k̄(X1, X3)

2k̄(X2, X3)
2]

EPn [k̄(X1, X2)2]2

=

∑
l λ

4
l

(
∑

l λ
2
l )

2
≤ λ21∑

l′ λ
2
l′

∑
l

λ2l∑
l′ λ

2
l′
=

λ21∑
l′ λ

2
l′
→ ρ1 = 0.

This implies that the term R is oP (1), and hence we have

(A2)
1/2 =

1

2 + oP (1)
= OP (1),

as required. This completes the proof.

Next, we show that we can use Lemma 16 to obtain the limiting distribution of the standardized
statistic Ts = SX−SY√

n−1
1 E[W 2

1 |X2,Y2]+m−1
1 E[Z2

1 |X2,Y2]
.

Lemma 17. Under the conditions of Theorem 15, the standardized statistic Ts converges in distribu-
tion to N(0, 1).

Proof. This statement simply follows from the observation that E2[Z
2
1 ] = E2[W

2
1 ] almost surely

under the null hypothesis. Then, the term αn := (
√
n−1
1 E2[W 2

1 ])/(
√
n−1
1 E2[W 2

1 ] +m−1
1 E2[Z2

1 ]) =√
1/(1 + n1m

−1
1 ) converges to a constant (say α ∈ (0, 1)).
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Using the result of Lemma 16, we can then conclude that αnTs,X
d−→ N(0, α2) and√

1− α2
nTs,Y

d−→ N(0, 1 − α2). This implies, due to Lévy’s continuity theorem (Durrett, 2019,
Theorem 3.3.17. (i)), the pointwise convergence of the characteristic functions of these sequences.
In particular, let ψn,X and ψn,Y denote the characteristic functions of αnTs,X and

√
1− α2

nTs,Y
respectively. Then, due to the conditional independence of Ts,X and Ts,Y given (X2,Y2), we note
that the characteristic function of Ts = αnTs,X =

√
1− α2

nTs,Y , denoted by ψn(t), satisfies

ψn(t) := EPn
[exp (itTs) |X2,Y2]

= EPn
[exp (it αnTs,X) |X2,Y2]× EPn

[
exp

(
−it

√
1− α2

nTs,Y

)
|X2,Y2

]
= ψn,X(t)× ψn,Y (−t).

Now, taking the limit n→ ∞, we get that

lim
n→∞

ψn(t) = lim
n→∞

ψn,X(t)× ψn,Y (−t)

= exp

(
−1

2

(
α2t2

))
× exp

(
−1

2

(
(1− α2)t2

))
= exp

(
− t

2

2

)
.

Thus, we have shown that conditioned on (X2,Y2), the characteristic function, ψn of Ts converges
pointwise to the characteristic function of a N(0, 1) distribution. Hence, by the other direction of
Lévy’s continuity theorem (Durrett, 2019, Theorem 3.3.17. (ii)), we conclude that Ts

d−→ N(0, 1).

Finally, we pass from the conditional statement to the unconditional one by noting that Ts
d−→ N(0, 1)

conditioned on (X2,Y2) implies that supx∈R |PPn
(Ts ≤ x) − Φ(x)| p−→ 0, because the N(0, 1)

distribution is continuous. This fact, coupled with the boundedness of supx∈R |PPn
(Ts ≤ x)−Φ(x)|

implies that it also converges in expectation, as required. Thus, we have shown that the limiting
distribution of the standardized statistic Ts is N(0, 1) unconditionally.

We now prove that the studentized statistic also has the same limiting distribution as the standardized
statistic Ts by appealing to Slutsky’s theorem and the continuous mapping theorem.

Lemma 18. The ratio of σ̂2 and the conditional variance n−1
1 E2[W

2
1 ] +m−1

1 E2[Z
2
1 ] converges in

probability to 1. Stated formally,

n−1
1 σ̂2

X +m−1
1 σ̂2

Y

n−1
1 E2[W 2

1 ] +m−1
1 E2[Z2

1 ]

p−→ 1.

Recall that we use the notation E2[·] to denote the conditional expectation on the second half of the
data, i.e., EPn [·|X2,Y2].

Proof. Since E2[W
2
1 ] = E2[Z

2
1 ] almost surely, it suffices to show the following two statements to

conclude the result:

σ̂2
X

E2[W 2
1 ]

p−→ 1, and
σ̂2
Y

E2[Z2
1 ]

p−→ 1.

We provide the details of the first statement, since the second can be obtained similarly. Consider the
following:

(n1 − 1)−1
∑n1

i=1(Wi − ŪX)2 − E2[W
2
1 ]

E2[W 2
1 ]

=

∑n1

i=1(Wi − ŪX)2 − (n1 − 1)E2[W
2
1 ]

EPn
[k̄2(X1, X2)]

× EPn
[k̄2(X1, X2)]

(n1 − 1)E2[W 2
1 ]

= C1 × C2.

Note that C2 = n1

n1−1

√
A2, where A2 was introduced in (20) and shown to be OP (1) in the proof

of Lemma 16. Hence, to complete the proof, we will show that C1
p−→ 0. This can be concluded by
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noting that EPn [C1] = 0, and that the variance of C1 satisfies:

VPn [C1] = EPn [VPn [C1|X2,Y2]] + VPn [EPn [C1|X2,Y2]]

=
(n1 − 1)2

EPn
[k̄2(X1, X2)]2

EPn

[
VPn

[
1

n1 − 1

n1∑
i=1

(Wi − ŪX)2

]]

≤ (n1 − 1)2

EPn
[k̄2(X1, X2)]2

EPn [W
4
1 ]

n1
≤ n1EPn [W

4
1 ]

EPn
[k̄2(X1, X2)]2

≤ 16
n1EPn [a

4
1 + b41]

EPn
[k̄2(X1, X2)]2

= 16 (A1 +B1) ,

where the terms A1 and B1 were introduced in (19). As mentioned during the proof of Lemma 16,
both of these terms can be shown to converge in probability to 0 as required.

The previous three lemmas prove that for any sequence {Pn : n ≥ 1} with Pn ∈ P(0)
n , we have

limn→∞ supx∈R |PPn

(
x̄M̂MD

2
≤ x

)
−Φ(x)| = 0. This is sufficient to conclude the uniform result

lim
n→∞

sup
Pn∈P(0)

n

sup
x∈R

|PPn

(
x̄M̂MD

2
≤ x

)
− Φ(x)| = 0.

This is because we can select a sequence P ′
n such that for all n, we have

sup
x∈R

|PP ′
n

(
x̄M̂MD

2)
− Φ(x)| ≤ sup

Pn∈P(0)
n

sup
x∈R

|PPn

(
x̄M̂MD

2)
− Φ(x)|

≤ sup
x∈R

|PP ′
n

(
x̄M̂MD

2)
− Φ(x)|+ 1

n
.

Since the left and right terms converge to zero, it follows that the middle term does too, as required.
This completes the proof of Theorem 15.

B.2 Fixed P , changing kn (Theorem 5)

We note that the statement of Theorem 5 requires an additional technical assumption on the eigen-
values of the kernel operator, introduced in (15). We repeat the statement of Theorem 5 with this
additional requirement below.
Theorem 5’. Suppose P is fixed, but the kernel kn changes with n. If

lim
n→∞

EP [k̄n(X1, X2)
4]

EP [k̄n(X1, X2)2]2

(
1

n
+

1

mn

)
= 0, and lim

n→∞

λ21,n∑∞
l=1 λ

2
l,n

exists, (22)

then we have x̄M̂MD
2 d−→ N(0, 1).

Proof. The proof of this statement will follow the general outline of the proof of Theorem 15.
However, in this special case when P is fixed, we can remove the condition that limn→∞mn/n
exists and is non-zero, that is required by Theorem 15.

We will carry over the notations used in the proof of Theorem 15, and in particular, we will use
ŪX = 1

n1

∑n1

i=1Wi and ŪY = 1
m1

∑m1

j=1 Zj . Since Wi and Zj are identically distributed under
the null, we have EP [W

2
i |X2,Y2] = EP [Z

2
j |X2,Y2], and we will use σ2

2 to denote this conditional
variance. Then, note the following:

x̄M̂MD
2
=
ŪX − ŪY

σ̂
=

ŪX − ŪY

σ2

(√
n−1
1 +m−1

1

) ×
σ2

(√
n−1
1 +m−1

1

)
σ̂

:= T1 × T2. (23)

To complete the proof, we will show that T1
d−→ N(0, 1) and T2

p−→ 1. The result then follows by
an application of Slutsky’s theorem.
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First, we consider the term T1 in (23). Let W̃i := Wi/σ2 and Z̃j := Zj/σ2. Then, conditioned on
(X2,Y2), the terms W̃i and Z̃j are independent and identically distributed. Introducing the constants
ui =

√
m1

n1(m1+n1)
and vj =

√
n1

m1(m1+n1)
, we can write

T1 =

n1∑
i=1

uiW̃i −
m1∑
j=1

vjZ̃j .

We can check that the constants (ui) and (vj) satisfy the property:

lim
n→∞

max
i,j

u2i + v2j∑n1

i′=1 u
2
i′ +

∑m1

j′=1 v
2
j′

≤ lim
n→∞

max
i,j

1

m1
+

1

n1
= 0.

Thus, by an application of Lindeberg’s CLT, we note that T1
d−→ N(0, 1) conditioned

on (X2,Y2). Since the limiting distribution (in this case, standard normal) is continu-
ous, this also means that the T1 converges to N(0, 1) in the Kolmogorov-Smirnov met-
ric, that is, limn→∞ supx∈R |PP (T1 ≤ x|X2,Y2) − Φ(x)| p−→ 0. Since the random vari-
able supx∈R |PP (T1 ≤ x|X2,Y2) − Φ(x)| is bounded, convergence in probability implies
that limn→∞ EP [supx∈R |PP (T1 ≤ x|X2,Y2)− Φ(x)|] = 0, which in turn implies that
limn→∞ supx∈R |EP [PP (T1 ≤ x|X2,Y2)− Φ(x)] | = 0, as required.

We now consider the second term, T2, in (23). It remains to show that T2
p−→ 1. We will show that

1/T 2
2 − 1

p−→ 0, and the result will follow by an application of the continuous mapping theorem.∣∣∣∣ 1T 2
2

− 1

∣∣∣∣ =
∣∣∣∣∣∣

σ̂2
X

n1
+

σ̂2
Y

m1

σ2
2

(
1
n1

+ 1
m1

) − 1

∣∣∣∣∣∣ ≤
∣∣∣∣ σ̂2

X

σ2
2

− 1

∣∣∣∣+ ∣∣∣∣ σ̂2
Y

σ2
2

− 1

∣∣∣∣ . (24)

Thus, it suffices to show that both terms in (24) converge in probability to 0. This is exactly the
result that is proved in Lemma 18 under the two conditions listed in Assumption 1. The condition
on eigenvalues is already assumed in the statement of Theorem 5’, and thus we will show that the
condition on the kernels, stated in (22), implies the condition (17). To prove this, we first, we note
that

EP

[
k̄n(X1, X2)

2k̄n(X1, X3)
2
]
≤ EP

[
k̄n(X1, X2)

4
]1/2 EP

[
k̄n(X1, X3)

4
]1/2

= EP

[
k̄n(X1, X2)

4
]
.

Thus, the term in (17) is upper bounded by

EP

[
k̄n(X1, X2)

4
]

EP

[
k̄n(X1, X2)2

]2 ( 1

n
+

1

mn

)(
1 +

1

n
+

1

mn

)
.

Since, we have assumed that limn→∞mn → ∞, there exists and n0, such that for all n ≥ n0,
1 + 1

n + 1
mn

≤ 2. This implies that if (22) is satisfied, then (17) in Assumption 1 is also satisfied, as
required.

B.3 Fixed k, and fixed P (Theorem 4)

We prove Theorem 4 by showing that under the bounded fourth moment assumption on k̄, both the
conditions required by Theorem 5’ are satisfied.

Note that since EP [k̄(X1, X2)] = 0, the positive and finite fourth moment also implies that the
second moment of k̄(X1, X2) is also positive and finite. Hence, we have that

EP [k̄(X1, X2)
4]

EP [k̄(X1, X2)2]2
<∞.

This, in turn, implies

lim
n→∞

EP [k̄(X1, X2)
4]

EP [k̄(X1, X2)2]2

(
1

n
+

1

mn

)
= 0,
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as required by Theorem 5.

For the second part of the condition, we note that as kernel k and probability distribution P are
fixed, the term λ2

1∑
l λ

2
l

doesn’t change with n, and hence its limit exists. Thus, both the conditions
for Theorem 5’ are satisfied, as required.

C Consistency against fixed and local alternatives (Section 4)

C.1 Proof of Theorem 8 (General conditions for consistency)

Proof. We begin by noting that

EPn,Qn
[1−Ψ(X,Y)] = PPn,Qn

(
x̄M̂MD

2
≤ z1−α

)
= PPn,Qn

(
xM̂MD

2
≤ z1−ασ̂

)
.

Now, introduce the event E = {σ̂2 ≤ E[σ̂2]/δn}, where (δn) is a positive sequence converging to
zero. By an application of Markov’s inequality, we have PPn,Qn

(Ec) ≤ δn, which implies that

PPn,Qn

(
xM̂MD

2
≤ z1−α

√
σ̂2
)
= PPn,Qn

(
{xM̂MD

2
≤ z1−α

√
σ̂2} ∩ E

)
+ PPn,Qn

(
{xM̂MD

2
≤ z1−α

√
σ̂2} ∩ Ec

)
≤ PPn,Qn

(
xM̂MD

2
≤ z1−α

√
EPn,Qn

[σ̂2]/δn

)
+ PPn,Qn

(Ec)

≤ PPn,Qn

(
xM̂MD

2
≤ z1−α

√
EPn,Qn [σ̂

2]/δn

)
+ δn. (25)

By the assumption that δn → 0, it suffices to show that the worst-case value of the first term in (25)
converges to zero to complete the proof.

To do this, we observe that (7) implies that there exists a finite value of n, say n0, such that for all
n ≥ n0 and m ≥ mn0 , we have

sup
(Pn,Qn)∈P(1)

n

EPn,Qn
[σ̂2]

γ4nδn
≤ 1

4z21−α

,

which implies that z1−α

√
EPn,Qn

[σ̂2]/δn ≤ γ2n/2. Furthermore, since xM̂MD
2
= ⟨µ̂1 − ν̂1, µ̂2 −

ν̂2⟩k, it follows that EPn,Qn [xM̂MD
2
] = γ2n. Combining these two observations, we get for all

n ≥ n0:

PPn,Qn

(
xM̂MD

2
≤ z1−α

√
EPn,Qn [σ̂

2]/δn

)
≤ PPn,Qn

(
xM̂MD

2
− EPn,Qn [xM̂MD

2
] ≤ γ2n

2
− γ2n

)
(i)

≤ 4
VPn,Qn

(xM̂MD
2
)

γ4n
,

where (i) follows from Chebychev’s inequality. This implies that

sup
(Pn,Qn)∈P(1)

n

PPn,Qn

(
x̄M̂MD

2
< z1−α

)
≤ sup

(Pn,Qn)∈P(1)
n

4
VPn,Qn

(Ū)

γ4n
.

The required conclusion that sup
(Pn,Qn)∈P(1)

n
PPn,Qn(x̄M̂MD

2
≤ z1−α) → 0 now follows from the

second term in (7).

C.2 Proof of Theorem 7 (Consistency against fixed alternative)

We prove Theorem 7 by showing that the sufficient conditions for consistency, as derived in Theorem 8,
are satisfied under the assumptions of Theorem 7.
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First, since the kernel is assumed to be characteristic, and Pn = P ̸= Q = Qn, it means that
the kernel-MMD distance between P and Q must be strictly positive. In other words, we have
γn = MMD(P,Q) := γ > 0 for all n ≥ 1. Hence, in order to verify the condition (7), it suffices to
show that the following two properties hold:

lim
n→∞

EP,Q[σ̂
2] = lim

n→∞

2

n
EP,Q[σ̂

2
X ] +

2

mn
EP,Q[σ̂

2
Y ] = 0, and (26)

lim
n→∞

VP,Q

(
xM̂MD

2)
= 0. (27)

In the equality in (26), we used the fact that n1 = n/2 and m1 = mn/2 (see Remark 3).

Verifying (26). We begin by noting that it suffices to show that EP,Q[σ̂
2
X ] <∞ and EP,Q[σ̂

2
Y ] <∞

to conclude (26) (this is because we have assumed in Remark 3 that limn→∞mn = ∞). We present
the details for σ̂2

X as the same arguments can be used to conclude the result for σ̂2
Y .

Recall that σ̂2
X = 1

n1

∑n1

i=1

(
⟨k(Xi, ·), g2⟩k − ŪX

)2
, where g2 = µ̂2 − ν̂2. Since X1, . . . , Xn1

are
i.i.d., this implies that

EP,Q[σ̂
2
X ] = EP,Q

[
1

n1

n1∑
i=1

(
⟨k(Xi, ·), g2⟩k − ŪX

)2]
= EP,Q

[(
⟨k(X1, ·), g2⟩k − ŪX

)2]
= EP,Q

[
⟨k(X1, ·)− µ̂1, g2⟩2k

]
= EP,Q

[
⟨k(X1, ·)− µ̂1, µ̂2 − ν̂2⟩2k

]
(28)

≤ EP,Q

[
∥k(X1, ·)− µ̂1∥2k∥µ̂2 − ν̂2∥2k

]
(29)

≤ EP,Q

[
∥k(X1, ·)− µ̂1∥2k

]
EP,Q

[
∥µ̂2 − ν̂2∥2k

]
(30)

≤
(
2EP,Q

[
∥k(X1, ·)∥2k + ∥µ̂1∥2k

])
×
(
2EP,Q

[
∥µ̂2∥2k + ∥ν̂2∥2k

])
(31)

≤ (4EP,Q [k(X1, X1)])× (2EP,Q [k(X2, X2) + k(Y1, Y1)]) <∞. (32)
In the above display:

(28) uses the fact that xM̂MD
2

X = ⟨µ̂1, g2⟩k = ⟨µ̂1, µ̂2 − ν̂2⟩k, and the linearity of inner product,
(29) uses the Cauchy–Schwarz inequality,
(30) uses the fact that the two terms inside the expectation are independent,
(31) uses the fact that ∥a− b∥2k ≤ (∥a∥k + ∥b∥k)2 ≤ 2

(
∥a∥2k + ∥b∥2k

)
, and

(32) uses the facts that ∥k(X1, ·)∥2k = k(X1, X1), EP,Q[∥µ̂1∥2k] ≤ EP,Q[k(X1, X1)],
EP,Q[∥µ̂2∥2k] ≤ EP,Q[k(X2, X2)] for X2 ∼ P independent of X1 and EP,Q[∥µ̂2∥2k] and
EP,Q[∥ν̂2∥2k] ≤ EP,Q[k(Y1, Y1)] for Y1 ∼ Q. We show the details for the bound for EP,Q[∥µ̂1∥2k]
below:

EP,Q[∥µ̂1∥2k] = EP,Q

 4

n2

n/2∑
i=1

n/2∑
l=1

⟨k(Xi, ·), k(Xl, ·)⟩k


≤ 4

n2

n/2∑
i=1

n/2∑
l=1

(EP,Q[k(Xi, Xi)]EP,Q[k(Xl, Xl)])
1/2

= EP,Q[k(X1, X1)],

where the inequality follows from an application of Cauchy–Schwarz inequality. The bounds for
EP,Q[∥µ̂2∥2k] and EP,Q[∥ν̂2∥2k] also follow from the same steps.

Thus, we have shown that EP,Q[σ̂
2
X ] <∞. The result for EP,Q[σ̂

2
Y ] follows in an analogous manner.

Verifying (27). We begin by noting that the expected value of xM̂MD
2
= ⟨µ̂1 − ν̂1, µ̂2 − ν̂2⟩k =

ŪX − ŪY is equal to MMD2(P,Q) = ∥µ− ν∥2k = γ2. Thus, we have

VP,Q(xM̂MD
2
) = EP,Q

[(
xM̂MD

2
− ⟨µ− ν, µ− ν⟩k

)2]
= EP,Q

[((
ŪX − ⟨µ, µ− ν⟩k

)
−
(
ŪY − ⟨ν, µ− ν⟩k

))2]
= 2EP,Q

[(
ŪX − ⟨µ, µ− ν⟩k

)2]
+ 2EP,Q

[(
ŪY − ⟨ν, µ− ν⟩k

)2]
. (33)
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We present the details for showing that the first term in (33) converges to 0 with n. The result for the
second term can be proved similarly.

Before proceeding, we introduce some notation: we will use µ̃1 to denote µ̂1−µ, the centered version
of µ̂1. Similarly, we will use µ̃2, ν̃1, ν̃2 and g̃2 to represent µ̂2 − µ, ν̂1 − ν, ν̂2 − ν and g2 − (µ− ν)
respectively. With these notations, note that we can write

EP,Q

[(
ŪX − ⟨µ, ν − µ⟩k

)2]
= EP,Q

[
(⟨µ̃1, g2⟩k + ⟨µ, g̃2⟩k)2

]
≤ 2EP,Q

[
⟨µ̃1, g2⟩2k

]
+ 2EP,Q

[
⟨µ, g̃2⟩2k

]
. (34)

We now show that the first term of (34) is O(1/n).

EP,Q

[
⟨µ̃1, g2⟩2k

]
≤ EP,Q

[
∥µ̃1∥2k∥µ̂2 − ν̂2∥2k

]
≤ EP,Q[∥µ̃1∥2k]EP,Q

[
2
(
∥µ̂2∥2k + ∥ν̂2∥2k

)]
≤ EP,Q

[
∥µ̃1∥2k

]
(2EP,Q[k(X1, X1)] + 2EP,Q[k(Y1, Y1)]) (35)

= O

EP,Q

 4

n2

n/2∑
i=1

n/2∑
l=1

⟨k̃(Xi, ·), k̃(Xl, ·)⟩k

 (36)

= O

EP,Q

 4

n2

n/2∑
i=1

⟨k̃(Xi, ·), k̃(Xi, ·)⟩k

 (37)

= O
(
2

n
EP,Q

[
k(X1, X1)− ∥µ∥2k

])
= O

(
1

n

)
.

In the above display:
(35) bounds EP,Q[∥µ̂2∥2k] with EP,Q[k(X1, X1)] and EP,Q[∥ν̂2∥2k] with EP,Q[k(Y1, Y1)] following
the same argument as in (32).
(36) simply expands ∥µ̃1∥2k, and
(37) uses the fact that for l ̸= i, we have EP,Q[⟨k̃(Xi, ·), k̃(Xl, ·)⟩kh] = 0.

We next show that the second term in (34) is O(1/n+ 1/mn).

EP,Q

[
⟨µ, g̃2⟩2k

]
≤ 2EP,Q[∥µ∥2k]

(
EP,Q

[
∥µ̃2∥2k + ∥ν̃∥2k

])
≤ 2EP,Q[∥µ∥2k]

(
2

n
EP,Q[k(X1, X1)− ∥µ∥2k] +

2

mn
EP,Q[k(Y1, Y2)− ∥ν∥2k]

)
= O

(
1

n
+

1

mn

)
.

Thus, since limn→∞mn = ∞, both the terms in (34) converge to 0 as n goes to infinity. This
completes the proof that limn→∞ EP,Q[(ŪX − ⟨µ, µ− ν⟩k)2] = 0. We can use the same arguments
to show that limn→∞ EP,Q[(ŪY − ⟨ν, µ − ν⟩k)2] = 0. Together, these two statements imply that

limn→∞ VP,Q(xM̂MD
2
) = 0 following (33).

C.3 Proof of Theorem 9 (Type-I error control and consistency against local alternative)

Type-I error bound. To obtain the bound on the type-I error, we verify the conditions required
by Theorem 15, by using the expressions for moments of the Gaussian kernel derived by Li and Yuan
(2019), and recalled in Fact 14.

First, we note that the scale parameters sn = n4/(d+4β), satisfies the property:

lim
n→∞

sn
n4/d

= lim
n→∞

n−
4
d (1−

d
d+4β ) = 0.

In other words, we have sn = o(n4/d). We now verify the required conditions:

• Since we have assumed mn = n in this case, limn→∞ n/mn = 1 exists.
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• For checking the condition on the eigenvalues, it suffices to show that

lim
n→∞

EPn,Qn
[EPn,Qn

[k̄(X1, X2)k̄(X1, X3)|X2, X3]
2]

EPn,Qn
[k̄(X1, X2)2]2

= 0,

since this is equivalent to limn→∞
λ2
1∑

l λ
2
l
= 0. This result follows by a combination of (11)

and (13).
• We next check the condition (17). We do this in two steps. First we consider the term,

EPn,Qn [k̄n(X1, X2)
4]

EPn,Qn
[k̄n(X1, X2)2]2n2

≲
s
−d/2
n

(s
−d/2
n )2

1

n2
=
s
d/2
n

n2
→ 0,

where the first inequality uses (11) and (12), while the last step uses the fact that sn =
o(n4/d). Next, we consider the quantity

EPn,Qn [k̄
2
n(X1, X2)k̄

2
n(X1, X3)]

nEPn,Qn
[k̄2n(X1, X2)]2

≲
1

n

s
−3d/4
n

(s
−d/2
n )2

=
s
d/4
n

n
=
( sn
n4/d

)d/4
→ 0.

Together with Theorem 15, the above conditions imply that the statistic x̄M̂MD
2

computed using
Gaussian kernel with scale parameter sn = n4/(d+4β) has a standard normal null distribution
uniformly over the class P(0)

n . This implies the required result about asymptotic type-I error of the
xMMD test Ψ.

Consistency. To prove the consistency results, we verify that the sufficient conditions established
by the general result, Theorem 8, are satisfied by the Gaussian kernel with scale parameter sn =
n4/(d+4β).

We first check the condition on the variance of xM̂MD
2
. Note that we have the following:

ŪX = ⟨µ̂1, µ̂2 − ν̂2⟩k = ⟨µ̃1 + µ, g̃2 + µ− ν⟩k
= ⟨µ̃1, g̃2⟩k + ⟨µ̃1, µ− ν⟩k + ⟨µ, g̃2⟩k + ⟨µ, µ− ν⟩k

Recall that we use µ̃1 to denote µ̂1 − µ, and similarly use µ̃2, ν̃1, ν̃2 and g̃2 to denote µ̂2 − µ, ν̂1 −
ν, ν̂2 − ν and g2 − (µ− ν) respectively. Similarly, on expanding the term ŪY , we get

ŪY = ⟨ν̂1, µ̂2 − ν̂2⟩k = ⟨ν̃1 + ν, g̃2 + µ− ν⟩k
= ⟨ν̃1, g̃2⟩k + ⟨ν̃1, µ− ν⟩k + ⟨ν, g̃2⟩k + ⟨ν, µ− ν⟩k

Since xM̂MD
2
= ŪX − ŪY , we get that

xM̂MD
2
= ⟨µ̃1 − ν̃1, g̃2⟩k + ⟨µ̃1 − ν̃1, µ− ν⟩k + ⟨µ− ν, g̃2⟩k + γ2n.

Therefore, the variance of xM̂MD
2

is

V
(
xM̂MD

2)
= EPn,Qn

[
⟨µ̃1 − ν̃1, g̃2⟩2k + ⟨µ̃1 − ν̃1, µ− ν⟩2k + ⟨µ− ν, g̃2⟩2k

]
, (38)

since all the cross terms are zero in expectation, due to the sample-splitting used in defining xM̂MD
2
.

We now obtain upper bounds on the three terms in the right-hand-side of (38).
EPn,Qn

[
⟨µ̃1 − ν̃1, µ̃2 − ν̃2⟩2k

]
≤ EPn,Qn

[
∥µ̃1 − ν̃1∥2k

]
EPn,Qn

[
∥µ̃2 − ν̃2∥2k

]
≤ 4

(
EPn,Qn

[
∥µ̃1∥2k

]
+ EPn,Qn

[
∥ν̃1∥2k

])
×
(
EPn,Qn

[
∥µ̃2∥2k

]
+ EPn,Qn

[
∥ν̃2∥2k

])
= 4

(
EPn,Qn

[k̄(X,X)]

n1
+

EPn,Qn
[k̄(Y, Y )]

m1

)
×
(
EPn,Qn

[k̄(X,X)]

n2
+

EPn,Qn
[k̄(Y, Y )]

m2

)
≤ 32

n2
(
EPn,Qn

[k̄(X,X)2] + EPn,Qn
[k̄(Y, Y )2]

)
(39)

= O

(
Ms

−d/2
n

n2

)
. (40)
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In the above display, (39) follows uses Jensen’s inequality, while (40) uses the upper bound on
the second moment of k̄(X,X) and k̄(Y, Y ) derived by Li and Yuan (2019), and recalled in (11)
of Fact 14. For the second term in (38), we proceed as follows:

EPn,Qn

[
⟨µ̃1 − ν̃1, µ− ν⟩2k

]
≤ 2∥µ− ν∥2kEPn,Qn

[
∥µ̃1∥2k + ∥ν̃1∥2k

]
≤ γ2n

n

(√
EPn,Qn

[k̄(X,X)2] +
√

EPn,Qn
[k̄(Y, Y )2]

)
= O

(
γ2ns

−d/4
n

n

)
. (41)

Similarly, we can get the same bound on the third term of (38)

EPn,Qn

[
⟨µ̃2 − ν̃2, µ− ν⟩2k

]
= O

(
γ2ns

−d/4
n

n

)
. (42)

Thus, combining (40) (41) and (42), we get that

sup
(Pn,Qn)∈P(1)

n

VPn,Qn
(xM̂MD

2
)

γ4n
≲
s
−d/2
n

n2γ4n
+
s
−d/4
n

nγ2n
≲

s
−d/2
n

n2s−d
n ∆4

n

+
s
−d/4
n

ns
−d/2
n ∆2

n

(43)

=
s
d/2
n

n2∆4
n

+
s
d/4
n

n∆2
n

.

The second inequality in (43) uses (14) that says γ2n ≳ s
−d/2
n ∆2

n. Finally, using the fact that the scale
parameter sn ≍ n4/(d+4β), we get that

lim
n→∞

sup
(Pn,Qn)∈P(1)

n

VPn,Qn
(xM̂MD

2
)

γ4n
≲ lim

n→∞

(
1(

n2β/(d+4β)∆n

)4 +
1(

n2β/(d+4β)∆n

)2
)

= 0,

where the equality follows from the condition imposed on ∆n in the statement of Theorem 9. Thus,

we have verified the condition on the variance of xM̂MD
2

as required by (7).

It remains to verify the condition on the expected empirical variance in (7).

EPn,Qn

[
σ̂2
X

]
= EPn,Qn

[
1

n1

n1∑
i=1

(
⟨k̃(Xi, ·), g2⟩k − ⟨µ̃1, g2⟩k

)2]

= EPn,Qn

[
⟨k̃(X1, ·), g2⟩2k

](
1− 1

n1

)
≤ EPn,Qn

[
⟨k̃(X1, ·), g̃2⟩2k

]
+ EPn,Qn

[
⟨k̃(X1, ·), µ− ν⟩2k

]
≤ EPn,Qn

[k̄(X1, X1)]

(
EPn,Qn

[k̄(X1, X1)]

n2
+

EPn,Qn
[k̄(Y1, Y1)]

m2

)
+ γ2nEPn,Qn

[k̄(X1, X1)]

≲
s
−d/2
n

n
+ γ2ns

−d/4
n .

Similarly, we can get the same upper bound for the term EPn,Qn
[σ̂2

Y ]. Since σ̂2 = n−1
1 σ̂2

X +m−1
1 σ̂2

Y ,
we get that

lim
n→∞

sup
(Pn,Qn)∈P(1)

n

EPn,Qn
[σ̂2]

γ4n
≲ lim

n→∞

s
−d/2
n

n2γ4n
+
s
−d/4
n

nγ2n
.

We saw in (43) that this limit is equal to 0. Thus, the condition on σ̂ as required by (7) is also satisfied
for sn ≍ n4/(d+4β). Hence, by an application of Theorem 8, the test Ψ with Gaussian kernel and sn ≍
n4/(d+4β) is consistent against the local alternatives with ∆n satisfying limn→∞ ∆nn

2β/(d+4β) = ∞.
This completes the proof.
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D Gaussian Limit for General Two-Sample U-Statistic

We now generalize the asymptotic normality for kernel-MMD statistic stated in Theorem 15 to a
larger class of two-sample U-statistics. As before, given X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym),
we consider the two-sample U-statistic with arbitrary kernel h defined as

U =
1(
n
2

) 1(
m
2

) ∑
i′<i

∑
j′<j

h(Xi, Xi′ , Yj , Yj′).

We assume that h is a degenerate kernel, similar to the MMD case, and satisfies

EP [h(X,x
′, Y, y′)] = EP [h(x,X

′, y, Y ′)] = 0,

when X,X ′, Y, Y ′ are i.i.d. random variables drawn from any distribution P .

With X1 = (X1, . . . , Xn1) and X2 = (Xn1+1, . . . , Xn) and Y1 = (Y1, . . . , Ym1) and Y2 =
(Ym1+1, . . . , Ym), we introduce the following terms:

ϕ(x, y) :=
1

n2

1

m2

∑
Xi′∈X2

∑
Yj′∈Y2

h(x,Xi′ , y, Yj′), with n2 = n− n1, and m2 = m−m1(44)

q(x1, x2, y2) := E[h(x1, x2, Y, y2)] and q̄(x) :=
1

n2m2

∑
Xi′∈X2,Yj′∈Y2

q(x,Xi′ , Yj′), (45)

r(x2, y1, y2) := E[h(X,x2, y1, y2)] and r̄(y) :=
1

n2m2

∑
Xi′∈X2,Yj′∈Y2

r(Xi′ , y, Yj′). (46)

Using the above terms, we can now define the statistic T = Ū/σ̂, with

Ū =
1

n1

1

m1

∑
Xi∈X1

∑
Yj∈Y1

ϕ(Xi, Yj), and σ̂2 =
σ̂2
X

n1
+
σ̂2
Y

m1
, where

σ̂2
X =

1

n1

n1∑
i=1

(
q̄(Xi)−

1

n1

n1∑
l=1

q̄(Xl)

)2

, σ̂2
Y =

1

m1

m1∑
j=1

(
r̄(Yj)−

1

m1

m1∑
l=1

r̄(Yl)

)2

.

Remark 19. Note that the cross U-statistic written above corresponds exactly with the definition
of the cross U-statistic for the kernel-MMD case in (2). To motivate the definitions of the em-
pirical variance terms, note that in the case of kernel-MMD statistic, we have h(x1, x2, y1, y2) =
⟨k(x1, ·) − k(y1, ·), k(x2, ·) − k(y2, ·)⟩k. We can check that in this case, we have q(x1, x2, y2) =
⟨k̃(x1, ·), k(x1, ·)− k(x2, ·)⟩k. This implies that q̄(Xi) equals the term Wi introduced (18), and thus
1
n1

∑n1

i=1 q̄(Xi) is a centered analog of ŪX . Hence, the term σ̂2
X defined above reduces exactly to the

σ̂2
X introduced in (4).

We next state the assumptions required to show the limiting Gaussian distribution of the statistic T
when X and Y are drawn independently from the same distribution.
Assumption 2. Let (hn, Pn) be a sequence of kernel and probability distribution pairs, and let X
and Y be two i.i.d. samples of sizes n and mn respectively, drawn independently from Pn. With ϕ, q̄n
and r̄n as defined in (44), (45) and (46) respectively, we assume the following are true:

lim
n→∞

EPn

[
EPn

[ϕ2(X1, Y1)|X2,Y2]

mnEPn
[q̄(X1)2|X2,Y2] + nEPn

[r̄(Y1)2|X2,Y2]

]
= 0, and (47)

lim
n→∞

EPn

[
1

n

EPn [q̄
4(X1)|X2,Y2]

EPn
[q̄2(X1)|X2,Y2]2

+
1

mn

EPn [r̄
4(Y1)|X2,Y2]

EPn
[r̄2(Y1)|X2,Y2]2

]
= 0. (48)

Remark 20. Note that in specific the case of kernel-MMD statistic, we can check that
EPn

[ϕ(X1, Y1)
2|X2,Y2] = EPn

[q̄(X1)
2 + r̄(Y1)

2|X2,Y2]. Hence (47) always holds. The sec-
ond condition of Assumption 2, stated in (48), is a stronger version of the moment conditions used
by Theorem 5 and Theorem 15.

We now state the main result of this section.
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Theorem 21. For every n ≥ 1, let X and Y denote independent samples of sizes n and mn

respectively, drawn from a distribution Pn. Suppose the sample-sizes are such that limn→∞mn/n
exists and is non-zero. Let (hn, Pn) denote a sequence satisfying the conditions of Assumption 2.
Then, we have that

lim
n,m→∞

sup
x∈R

|PPn(T ≤ x)− Φ(x)| = 0.

D.1 Proof of Theorem 21

Before describing the details, we first present the outline of the proof.

1. We first consider the standardized version of the statistic, defined as Ts = Ū/σP ,
where σ2

P = n−1
1 EPn [q̄(X1)

2|X2,Y2] + m−1
1 EPn [r̄(Y1)

2|X2,Y2]. In Lemma 22, we
show that the difference between Ts and its projected variant, TP,s = ŪP /σP =(
n−1
1

∑
i q̄(Xi) +m−1

1

∑
j r̄(Yj)

)
/σP , converges in probability to 0. Hence, we can

focus on the term TP,s. This result uses the condition (47) of Assumption 2.
2. We then show in Lemma 23, that the statistic TP,s converges in distribution to N(0, 1). This

combined with the previous result implies that Ts
d−→ N(0, 1).

3. To complete the proof, we show in Lemma 24, that the ratio of the empirical variance σ̂2

and the conditional variance σ2
P converge in probability to 1. This fact combined with

the continuous mapping theorem and Slutsky’s theorem implies the result. The proof
of Lemma 24 relies on the condition (48) of Assumption 2.

We now present the details of the steps outlined above.

Consider the standardized statistic, Ts, defined as Ū/σP , where σ2
P = VPn

(ŪP |X2,Y2) =

n−1
1 EPn

[q̄2(X1)|X2,Y2] +m−1
1 EPn

[r̄2(Y1)|X2,Y2] := n−1
1 σ2

P,X +m−1
1 σ2

P,Y . Introduce the term
TP,s =

ŪP

σP
.

Lemma 22. Under the conditions of Assumption 2, we have Tp − TP,s
p−→ 0.

Proof. We first show that Ts − TP,s
p−→ 0, conditioned on the second half of the observations,

(X2,Y2). As a result of this, the conditional limiting distributions of the two random variables Ts
and TP,s are the same. Since ŪP is the projection of Ū on the sum on independent (conditioned on
(X2,Y2)) random variables, we have

VPn
(Ts − TP,S |X,Y2) = VPn

(Ts|X,Y2) + VPn
(TP,s|X,Y2)− 2EPn

[(TP,s + (Ts − TP,s))TP,s|X2,Y2]

= VPn
(Ts|X,Y2)− VPn

(TP,s|X,Y2) = VPn
(Ts|X,Y2)− 1,

using the fact that (Ts − TP,s) ⊥ TP,s conditioned on (X2,Y2). Next, using the formula for the
variance of two-sample U-statistics, we have

VPn
(Ts|X2,Y2) =

(
σ2
P,X

n1
+
σ2
P,Y

m1
+

1

n1m1
EPn

[
ϕ(X1, X2)

2|X2,Y2

])
/σ2

P

= 1 +
1

n1m1

EPn
[ϕ2(X1, X2)|X2,Y2]

σ2
P

.

The result then follows by an application of the condition (47) of Assumption 2, and the fact that
n1 = n/2 and m1 = mn/2.

Our next result establishes the limiting distribution of the statistic TP,s.

Lemma 23. Under Assumption 2, we have TP,s
d−→ N(0, 1).

Proof. Recall that TP,s = ŪP /σP , where ŪP := ŪP,X−ŪP,Y = 1
n1

∑n1

i=1 q̄(Xi)− 1
m1

∑m1

j=1 r̄(Yj),

and σ2
P = n−1

1 σ2
P,X + m−1

1 σ2
P,Y . Introduce the terms TX = ŪP,X/

√
n−1
1 σ2

P,X and TY =

ŪP,Y /
√
m−1

1 σ2
P,Y . The result then follows in the following two steps:
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• We first observe that TX and TY conditioned on (X2,Y2) converge in distribution toN(0, 1).
The result follows by applying Lindeberg’s CLT.

• Next, using the assumption that limn→∞mn/n exists, and is non-zero, we next observe
that TP,s

d−→ N(0, 1). The proof of this result follows from the same argument used
in Lemma 17.

Together, the previous two lemmas imply that Ts
d−→ N(0, 1). To complete the proof, we need

to show that the ratio of the conditional variance σ2
P , and the empirical variance σ̂2 converge in

probability to 1.

Lemma 24. Under Assumption 2, we have σ̂2

σ2
P

p−→ 1.

Proof. We begin by noting the following

σ̂2

σ2
P

− 1 =
n−1
1

(
σ̂2
X − σ2

P,X

)
m−1

1

(
σ̂2
Y − σ2

P,Y

)
σ2
P

≤

∣∣∣∣∣ σ̂2
X

σ2
P,X

− 1

∣∣∣∣∣+
∣∣∣∣∣ σ̂2

Y

σ2
P,Y

− 1

∣∣∣∣∣ . (49)

Thus it suffices to show that the two terms in (49) converge in probability to 0. Since n1/(n1 − 1)
converges to 1, it suffices to consider

E :=
(n1 − 1)−1

∑n1

i=1

(
q̄(Xi)− ŪP,X

)2 − EPn [q̄(X1)|X2,Y2]

EPn [q̄
2(X1)|X2,Y2]

.

First note that EPn
[E|X2,Y2] = 0. Hence, its variance can be written as

VPn
(E) = EPn

[VPn
(E|X2,Y2)] ≤

1

n1
EPn

[
EPn

[q̄4(X1)|X2,Y2]

EPn
[q̄2(X1)|X2,Y2]2

]
. (50)

The last term in (50) converges to 0 by Assumption 2, implying that σ̂2
X

σ2
P,X

converges in the second
moment to 1, which in turn implies their convergence in probability to 1. Following the same
arguments, we can also show that σ̂2

Y

σ2
P,Y

also converge in probability to 1, as required.

E Additional Experiments

Computing Infrastructure. All the experiments were performed on a workstation with Intel(R)
Core(TM) i7-9700K CPU 3.60GHz and 32 GB of RAM with an NVIDIA GTX 1080 GPU.

E.1 Implementation details of experiments reported in the main text

Details for Figure 1. For the null distribution, we set n = 500 and m = 625 and generated both X
and Y from N(0, Id) for d = 10 and 100. In both cases, we computed the x̄M̂MD

2
statistic 2000

times to plot the histogram.

For the second figure, we obtain the power curves for the xMMD test and the MMD test with 200
permutations for testing P = N(0, Id) againt Q = N(aϵ,j , Id). Here d = 10, j = 5 and ϵ = 0.2,
and recall that aϵ,j is the vector in Rd obtained by setting the first j ≤ d coordinates of 0 equal
to ϵ. We selected n and m from 20 equally spaced points in the intervals [10, 400] and [10, 500]
respectively, and ran 200 trials of the tests for every (n,m) pair to obtain the power curves. The error
regions in the figure correspond to one bootstrap standard deviation with 200 bootstrap samples.

For the third figure, we set d = 100, j = 20, ϵ = 0.1, P = N(0, Id) and Q = N(aϵ,j , Id). We ran
the two tests, xMMD and MMD with 200 permutations, for 20 different (n,m) pairs in the range
[10, 500], and repeated the experiment 200 times for every such pair. The figure plots the wall-clock
time, measure by Python’s time.time() function, and plot the power against the average wall-clock
time over the 200 trials. The size of the marker is proportional to the sample size (i.e., n+m).
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Details for Figure 3. The two kernels used in this figure are the Gaussian and Quadratic kernels.
The Gaussian kernel with scale parameter s > 0 is defined as ks(x, y) = exp(−s∥x− y∥22), while
the Quadratic kernel with scale s > 0 is defined as kQ(x, y) =

(
1 + s(xT y)

)2
. With w denoting the

median of the pairwise distance between all the observations, we set s = 1/(2w2) for the Gaussian
kernel and s = 1/w for the Quadratic kernel.

Details for Figure 4. Given observations X1, X2, . . . , Xni.i.d.P , consider the problem of one-
sample mean-testing, that is, testing H0 : E[Xi] = 0 versus H1 : E[Xi] = a ̸= 0. When the distribu-
tion P is a multivariate Gaussian, Kim and Ramdas (2020) showed that power of their test using a

one-sample studentized U-statistic based on a bi-linear kernel is asymptotically Φ

(
zα + aT a

2
√

tr(Σ2)

)
.

The power achieved by the test using the full U-statistic is Φ
(
zα + aT a√

2tr(Σ2)

)
, which differs from

the previous expression by a factor of
√
2. A similar relation also holds for the problem of Gaussian

covariance testing. Our heuristic in (9) is based on these two observations.

Details for Figure 5. For plotting the ROC curves, we proceed as follows. We fix n = m =
200, and then compute the MMD, block-MMD, linear-MMD and cross-MMD statistics for 1000
independent repetitions of ‘null’ and ‘alternative’ trials. For every null trial, we calculate all the
statistics on independent samples of sizes n and m drawn from P = N(0, Id), while for every
alternative trial we calculate the statistics on independent samples of size n and m drawn from
P = N(0, Id) and Q = N(aϵ,j , Id) respectively. Recall that aϵ,j is obtained by setting the first j
coordinates of 0 equal to ϵ. Having obtained 2000 values for every statistic, we then plot the tradeoff
between false positives (FP) and true positives (TP) as the rejection threshold is increased. The ability
of a statistic to distinguish between the null and the alternative is quantified by the area under the
curve. In Figure 5, we used (d, j, ϵ) ∈ {(10, 5, 0.1), (100, 20, 0.1), (500, 100, 0.1)}.

E.2 Additional Figures

Null Distribution. Figure 6 denotes the null distribution of our proposed statistic (x̄M̂MD
2
) along

with that of the usual MMD normalized by its empirical standard deviation. The null distribution
in Figure 6 is Dirichlet with parameter 2× 1 ∈ Rd for d ∈ {10, 500}.

Power Curves. In Figure 7, we plot the power curves for the different tests using a Gaussian
Kernel, and we report the results of the same experiment with a polynomial kernel of degree 5
in Figure 8. Recall that the polynomial kernel of degree r and scale parameter s > 0 is defined as
k(x, y) =

(
1 + (xT y)/s

)r
. In both instances, we selected the scale parameter using the median

heuristic.

From the figure, we can see that the xMMD test is competitive with the computationally more
costly tests, namely the MMD permutation test and the MMD-spectral test of Gretton et al. (2009).
Furthermore, the performance of xMMD test is significantly better than the existing computationally
efficient tests, namely block-MMD test (with block-size

√
n) and linear-MMD test.

ROC curves. In Figure 9, we plot some additional ROC curves for the different statistics. As
before, we used 1000 ‘null trials’ and another 1000 ’alternative trials’ with sample sizes n = 200 and
m = 200. The data generating distributions P and Q were both Dirichlet with parameters 1 ∈ Rd

and (1 + ϵ)× 1 ∈ Rd for (d, ϵ) ∈ {(10, 0.4), (100, 0.2), (500, 0.15)}.

E.3 Comparison with ME and SCF tests of Jitkrittum et al. (2016)

We now present some experimental results comparing the performance of our cross-MDD test with
the linear time mean embedding (MD) and smoothed characteristic function (SCF) tests of Jitkrittum
et al. (2016). These tests proceed in the following steps:

• Fix J , and choose points {v1, . . . , vJ} from Rd, where d is the dimension of the observation
space.
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Figure 6: The first two columns show the null distribution of the x̄M̂MD
2

statistic (top row) and

the M̂MD
2

statistic scaled by its empirical standard deviation (bottom row) using the Gaussian
kernel with scale-parameter chosen using the median heuristic. The last two columns show the null
distribution for the two statistics using the Polynomial kernel of degree 5 with scale parameter chosen

using the median heuristic. The figures demonstrate that the null distribution of M̂MD
2

changes
significantly with dimension (d), the ratio n/m and the choice of the kernel, unlike our proposed
statistic.
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Figure 7: Power Curves for the different tests using Gaussian kernel with scale parameter chosen
via median heuristic. The two distributions are P = N(0, Id) and Q = N(aϵ,j , Id) where aϵ,j
is obtained by setting the first j ≤ d coordinates of 0 ∈ Rd equal to ϵ. The figures demonstrate
that the xMMD test is competitive with more computationally expensive tests (MMD-perm and
MMD-spectral), while performing significantly better than the low complexity alternatives (B-MMD
and L-MMD). The batch-size used in the B-MMD test was

√
n.

• Using X and Y with n = m, compute {zi : 1 ≤ i ≤ n}, where zi =

[k(vJ , Xi) − k(vJ , Yi)]
J
j=1 ∈ RJ for ME test, and zi = [l̂(Xi) sin(X

T
i vj −

l̂(Yi) sin(Y
T
i vj), l̂(Xi) cos(X

T
i vj) − l̂(Yi) cos(Y

T
i vj)]

J
j=1 ∈ R2J for the SCF test. De-

fine z̄n = 1
n

∑n
i=1 zi, and Sn = 1

n−1 (zi − z̄n)(zi − z̄n)
T .

• Using the above, define the test statistic

λ̂n := z̄Tn (Sn + γnI)
−1
z̄n,

where γn is some regularization parameter that converges to 0 with n, and I denotes the
identity matrix. For a fixed d and J , Jitkrittum et al. (2016) show that the above statistic has
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Figure 8: Power curves of the different kernel-based tests using a polynomial kernel of degree 5, i.e.,
k(x, y) =

(
1 + (xT y)/s

)5
with s chosen via the median heuristic.
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Figure 9: ROC curves using the different statistics with Gaussian kernel for testing two Dirichlet
distributions in dimensions d ∈ {10, 100, 500} with sample-size n = m = 200. The two distributions
are P = Dirichlet(1) and Q = Dirichlet((1 + ϵ)× 1) where 1 ∈ Rd is the all-ones vector.

a χ2(J) (resp. χ2(2J)) limiting null distribution in the ME (resp. SCF) case. This result is
used to calibrate the test at a given level α.

In Figure 10, we plot the variation of type-I error and power with sample-size of the three tests for
the Gaussian Mean Difference (GMD) source with d = 10. As the figures suggest, the cross-MMD
achieves higher power and tighter control over the type-I error than the ME and SCF tests in this
regime.

The ME and SCF tests are calibrated based on the limiting distribution of their statistic in the low
dimensional regime: fixed d, and n→ ∞. However, the high type-I error of these tests for small n
values suggests that their limiting distribution may be different in the high dimensional regime, when
both d and n go to infinity. We further observe this in Figure 11 when d = 100 and d/n > 1.

We end this section with a discussion of some key points of difference between the ME and SCF tests,
and our proposed cross-MMD test.

• The ME and SCF tests require the kernel to be uniformly bounded, whereas our test requires
only mild moment conditions that are even satisfied by unbounded kernels if the underlying
distributions are not too heavy-tailed (formally described in Assumption 1). Furthermore,
the ME and SCF tests have several tuning parameters: number of features J , {v1, . . . , vJ},
bandwidth, step-size for gradient ascent etc. In practice, J is usually set to 5, and the other
parameters are selected by solving a Jd+ 1 dimensional optimization problem via gradient
ascent. While each step of gradient ascent has linear in n complexity, the number of steps
needed may be large for higher dimensions, resulting in a higher computational overhead.
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Figure 10: The figures plot the variation of the type-I error (left) and the power (right) with sample-
size of the three tests: cross-MMD, and the two linear time tests, ME and SCF, proposed by Jitkrittum
et al. (2016).
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Figure 11: The ME and SCF tests provide poor control over the type-I error in the regime when d/n
is large, suggesting that the limiting null distribution is different (or the convergence rate is slow) in
this regime.

• More importantly, the ME and SCF tests are only valid in the ‘low-dimensional setting’:
fixed d and J , with n→ ∞. In the high dimensional setting, when (d, n) → ∞, the limiting
null distribution may no longer be χ2(J). This is also suggested by the behavior of type-I
error of ME and SCF tests in Figure 10 and Figure 11. This results in the following practical
issue: given a problem with n = 500 and d = 200, how should one calibrate the threshold
for those tests?
Our proposed test does not suffer from this, because in both high and low dimensional
settings, our statistic has the same limiting distribution. This is a significant practical
advantage of our cross-MMD test over ME and SCF tests.

• In the regime where the number of features, J , is allowed to increase with n, we expect that
the resulting ME and SCF tests may have low power (for small regularization parameter γn).
This is because, the test statistic λ̂n used by ME and SCF tests is similar to Hotelling’s T 2
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statistic, for which Bai and Saranadasa (1996) characterized the asymptotic power in this
regime. In particular, their Theorem 2.1 implies that the power of the T 2 test grows slowly
with n, especially when J/n ≈ 1.
Finally, we note that our ideas also extend to more general degenerate U-statistics (as
discussed in Appendix D.1). Hence, they are also applicable in cases beyond MMD distance,
where we may not have good linear time alternatives.

E.4 Type-I Error and goodness-of-fit test of null distribution

In this section, we experimentally verify the limiting Gaussian distribution of the x̄M̂MD
2

statistic
under the null. We first plot the variation of the type-I error of our cross-MMD test with sample
size in Figure 12. We considered the case when X and Y are both drawn i.i.d. from a multivariate
Gaussian vector in dimension d ∈ {10, 100}, and n = m.

Figure 12: The two figures show the variation of the type-I error of the cross-MMD test with sample-
size for dimensions d ∈ {10, 100}. The dashed horizontal line denotes the level α = 0.05. In
summary, these tests do not find evidence against the null hypothesis that the null distribution is
Gaussian.

Next, we plot the p-values for the test for normality proposed by D’Agostino and Pearson (1973),
and implemented in the function scipy.stats.normaltest in Python. We performed this test

at different sample-sizes (n), and for each value of n, we calculated the x̄M̂MD
2

statistic on 200
different indpendent sample pairs. The results are shown in Figure 13

Figure 13: The two figures show p-values for the test for normality proposed by D’Agostino and
Pearson (1973) (using the implementation scipy.stats.normaltest) of the cross-MMD statistic
for dimensions d ∈ {10, 100}. In both dimension regimes, the test does not find evidence against the
null that the cross-MMD statistic is normally distributed under the null.
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E.5 Comparison with Friedman-Rafsky test

We now compare the performance of our cross-MMD test with the Friedman-Rafsky two-sample test.
This test, proposed by Friedman and Rafsky (1979), uses a graph-based statistic that is a multivariate
generalization of the Wald-Wolfowitz runs statistic introduced by Wald and Wolfowitz (1940). This
statistic, denoted by R, is constructed as follows:

• Pool the samples X and Y to get Z of size N = n+m. Construct the complete graph with
N nodes, and edge weights equal to the euclidean distance between two end points.

• Construct the minimal spanning tree (MST) of the complete graph G, and denote the 0-1
valued adjacency matrix of this MST by M .

• The statistic R is defined as one more than the number of edges in M with endpoints from
different samples.

The statistic R is expected to take a large value under the null when X and Y are drawn from the
same distribution. Hence, the FR test rejects the null for small values of R. The rejection threshold
can be obtained either by the limiting distribution of R characterized by (Henze and Penrose, 1999,
Theorem 1), or using the permutation-test.

In Figure 14, we compare the power of the FR permutation-test with our cross-MMD test in a low
dimensional (d/n small) and a high dimensional (d/n large) problem. In both cases, it is observed
that the power of FR test is significantly smaller than that of cross-MMD test.
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Figure 14: The figures show the power curves for Friedman-Rafsky (FR) test and our cross-MMD
test in the low (d = 10) and high (d = 100) dimensional settings with m = n in both plots. The
figures indicate that our cross-MMD test is significantly more powerful than the FR test.
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