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1 Summary of Supplementary Results

In this supplementary document, we provide:

• Details of the ASIW and AVE datasets
• Studies on generalizability of our approach
• Ablation studies including compute time analysis
• Ablation studies on the choice of the RBF kernel scale
• User study on the quality of the separated audio
• Details of our network architecture
• Details of our compute environment, and
• Qualitative results on direction prediction.

We also provide (in the supplementary bundle):

• Video demonstration of the audio separation capability of our approach. Please use a
standard media player like VLC or Microsoft Movies & TV for playing it.

2 Details of the ASIW and AVE Datasets

Audio Separation in the Wild (ASIW) Dataset: The Audio Separation in the Wild (ASIW)
dataset [1] consists of 147 validation, 322 test, and 10,540 training videos crawled from the larger
AudioCaps dataset [5]. It has 14 auditory classes which are: baby, bell, bird, camera, clock, dogs,
toilet/drain, horse, man/woman, telephone, train, sheep/goat, vehicle/bus, water/water tank. Each
video in the dataset is 10s long, has significant camera motion, and captures diverse audio-visual
contexts. For the direction prediction task, we divide each video into temporal windows of 1s long
consisting of 8 frames each and predict the direction of motion for a randomly chosen window.

Audio Visual Event (AVE) Dataset: The popular Audio Visual Event (AVE) Dataset [11] was
originally designed for the task of identifying audio-visual events. We adapt it to evaluate our
approach. We treat each audio-visual event class as an auditory class and associate with it a set of
Auditory Objects. The dataset contains 2211 training, 257 validation, and 261 test set videos. We
use videos corresponding to 18 audio-visual event classes, including both potentially-moving and
stationary object classes, for which pre-trained object detectors are avalable. The classes used for
our experiments are: man, woman, car, plane, truck, motorcycle, train, clock, baby, bus, horse, toilet,
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violin, fiddle, flute, ukulele, acoustic guitar, banjo, accordion. The videos in this dataset are 10s long
as well. Similar to ASIW, we divide each video into windows of 1s long (i.e. 8 frames per window)
for computing the motion displacement vectors and predict the direction of motion for a randomly
chosen window.

3 Generalizability of ASMP

To understand the real-world generalization of our approach to audio separation in videos outside
the datasets used for training the model, we downloaded several videos from Youtube each with
an arbitrary mix of multiple sounds, with the goal of applying our approach on them to separate
the sounds. We selected videos having audio in the set of classes of the ASIW dataset. We then
applied the model trained on the ASIW dataset on these videos. The results for these experiments are
provided in the supplementary video. Our results clearly demonstrate that our approach leads to high
quality audio separation even when the scene contains heavy distractors, such as continuous sound
of rain, jammed traffic, or weak sounds, such as train announcements, etc. and exhibits reasonable
amount of out of domain generalizability.

4 Additional Ablation Results

In this section, we provide additional studies on the importance of each component in our model.
We note that some of these results are already in the main paper, however are grouped in a different
manner.

4.1 3D Graph and Direction Prediction

In Table 1, we examine the contribution of each of the core novelties of our method on the ASIW
dataset. From the table, we see that the absence of the direction prediction loss supervision
deteriorates the SDR performance by 0.6 dB. Given that SDR is in log-scale, this implies a
significant drop in audio separation quality, thereby attesting to the importance of this loss in the
separation task. In order to assess the contribution of the Pseudo 3D Scene Graph, we replaced our
3D scene graph with a 2D scene graph (as in AVSGS [1]) , where the edges do not denote 3D spatial
proximity, instead assume a fully-connected graph structure with equally-weighted edges. From the
table, we see that this results in a drop of about 0.2 dB in the SDR, emphasizing the criticality of this
module. However, when the direction prediction loss is introduced back into the training regime, we
notice a slight boost in performance.

Table 1: SDR, SIR, SAR performance for different ablated model components of ASMP on the ASIW
test set. [Best results in bold.]

ASIW

Method SDR↑ SIR↑ SAR↑
1. ASMP (Full Model) 9.6 14.5 14.1

2. ASMP: w/o Direction Prediction (λ4 = 0) 9.0 14.3 13.7
3. ASMP: w/o 3D Spatial Distances & w/o Direction Prediction 8.8 14.1 13.0
4. ASMP: w/o 3D Spatial Distances & w/ Direction Prediction 9.1 14.3 13.6

4.2 Ablations on Losses

Table 2 presents the results of ablating the different loss terms in our optimization objective on the
ASIW dataset. The results reveal that the direction prediction loss alone, while crucial, is insufficient
in singularly providing a reasonably accurate separation/direction prediction performance. However,
we find that training the models with any one of the other loss terms in conjunction with the direction
prediction loss, results in a boost in model performance, with the presence of the co-separation loss
resulting in the maximum gain. This underscores the importance of all three loss terms: co-separation
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Table 2: SDR, SIR, SAR, and Direction Prediction performance for loss ablated models on the ASIW
test set. [Best results in bold.]

ASIW

Method SDR↑ SIR↑ SAR↑ 10-class Dir. Acc. (in %) ↑
1. ASMP (Full Model) 9.6 14.5 14.1 42.5

2. ASMP- Only Direction Prediction (λ1 = λ2 = λ3 = 0) 6.4 11.2 11.7 32.7
3. ASMP- Direction Prediction + Lortho (λ1 = λ2 = 0) 6.4 11.7 10.1 33.2
4. ASMP- Direction Prediction + Lco−sep (λ1 = λ3 = 0) 7.9 13.2 10.9 35.6
5. ASMP- Direction Prediction + Lcons (λ2 = λ3 = 0) 6.4 11.6 11.9 33.1
5. ASMP- No Direction Prediction (λ4 = 0) 9.0 14.3 13.7 -

Figure 1: A plot showing the sensitivity of our proposed ASMP model to the choice kernel bandwidth
(percentile) against the sparsity induced into the graph.

loss, consistency loss, and the orthogonality loss, besides the direction prediction loss for effective
model training.

4.3 Compute Time Analysis

Thanks to the use of GPUs, the Chamfer distance between pairs of point clouds can be computed
very quickly. Typically, a forward pass of one batch (with 25 samples) through the full network
takes about 1.2 seconds on a Intel Core i7 workstation with NVIDIA RTX 2070 GPUs. When the
additional task of computing the Chamfer distance is not there, i.e. the 3D Scene Graph is replaced
with a graph with equal edge weights, this results in a saving of only 0.06 seconds per batch.

5 Performance Against Varying Kernel Scale

Recall that the Radial Basis Function (RBF) kernel is used to model the weighted adjacency matrix of
the 3D scene graph, where the kernel is constructed on the Chamfer distances between 3D coordinates
of the graph nodes. Thus, the bandwidth of the kernel describes a soft ball of a certain radius around
each node to accommodate other nodes in the graph. As this radius depends on the specifics of
the 3D graph constructed on the scene, it is not ideal to use a fixed radius for all graphs. Instead,
we first compute a Chamfer distance matrix across all pairs of nodes in a given graph, and use the
σ-th percentile of these distances to form the kernel bandwidth. In Figure 1, we plot the model
performance (SDR) against increasing RBF kernel bandwidth, as well as the sparsity in the resulting
graph (y-axis on the right), assessed by counting the number of edges with weights below 1e− 5 as a
fraction of the total number of edges, which we discard. In the main paper, we reported results using
the 25th-percentile of the Chamfer distance matrix, which corresponds to σ = 25%. In Figure 1, we
plot against σ = 25, 50, 75 as well. Note that using a a higher σ leads to several dense connections,
resulting in lower sparsity, leading to mistaken contexts for a node for separation. We found that
using σ = 25% leads to the best performance.
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Table 3: Human preference score on samples obtained from our method vs. AVSGS [1]

Datasets Prefer ours
ASIW - Ours vs. AVSGS [1] 63%
AVE - Ours vs. AVSGS [1] 68%
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Figure 2: A detailed illustration of our proposed ASMP model.

6 User Assessment Study

In order to subjectively assess the quality of audio source separation, we evaluated a randomly chosen
subset of separated audio samples from ASMP and our closest competitor AVSGS [1] for human
preferability on both ASIW and AVE datasets. For the purpose of this study, we chose a set of
in-house annotators, who have successfully completed annotation/evaluation tasks for speech/audio
separation, in the past. Table 3 reports these performances, which show a clear preference of the
evaluators, for our method over AVSGS about 60–65% of the time, on average.

7 Details of Compute Environment

We conduct experiments on a cluster of workstations, each with Intel Core i7 CPU, with 256GB
RAM. Each of the workstations is equipped with 8 NVIDIA RTX 2070 GPUs.

8 Network Architecture Details

Our model, the Audio Separator and Motion Predictor (ASMP) has several components, as shown in
Figure 2. Below, we list the key architectural details of each of them.

8.1 Feature Extractor

Our model, ASMP, captures the visual representation of the objects in the scene by means of
Pseudo-3D scene graph; representing the visual entities of the scene as nodes of a graph (with
associated features). These features are computed using a Faster R-CNN (FRCNN) network [9],
with a ResNet-101 [3] backbone pre-trained on the Visual Genome Dataset [7]. The features of the
musical instrument type nodes that appear in the Audio Visual Event (AVE) dataset are obtained
by training another FRCNN network on the images of musical instruments on the OpenImages
dataset [6]. The FRCNN network yields 2048-dimensional vectors for the Visual Genome dataset,
which are then mapped to 512-dimensions via a 2-layer Multi-Layer Perceptron (MLP) with Leaky
ReLU activations (negative slope=0.2), while the network yields 512-dimensional vectors for object
features for the images in the OpenImages dataset and are used as is.
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8.2 Pseudo-3D Graph Attention Network

Post the object detection and feature extraction, we construct the pseudo-3D scene-graph following
the method laid out in the Proposed Method section of the paper. The scene graph is processed by a
Graph Attention Network, which is a cascade of the following three modules:

Graph Attention Network Convolution (GAT Conv): This module [12] is responsible for updating
the node features of the graph by employing a multi-headed graph message passing based on the
adjacency of the nodes and edge weights. Our graphs are fully-connected and the edge weights are
determined by the RBF kernel score as discussed in the paper. We design a 4-headed network, which
outputs a 512-dimensional vector that embeds the full graph.

Edge Convolution (Edge Conv): Edge Convolutions [13] act on the output of the Graph Attention
Network modules. These take in a concatenated pair of features associated with the two nodes of
an edge and produces a vector as output. The input dimensions are thus 512× 2 = 1024, while the
output dimension is 512.

Pooling Layers: Finally, the Graph Attention Network pools the updated features [8] across the
nodes obtained from the previous steps. The Global Max and Average Pooling techniques are used
for this purpose and the feature vectors from the two are concatenated.

8.3 Recurrent Network

To iteratively (and automatically) segment the graph into appropriate subgraphs, we introduce a
Recurrent Network into the pipeline. We instantiate it using a Gated Recurrent Unit (GRU) [2],
whose input space and feature dimensions are 512-dimensional.

8.4 Acoustic Separator Network

The actual task of separating a mixed audio into its constituents is undertaken by an encoder-decoder
network called the Acoustic Separator Network. In broad strokes, the network follows a U-Net [10]
style architecture, with an encoder, bottleneck, and decoder modules. The encoder and decoder parts
consists of 7 convolution and 7 up-convolution layers, respectively. Each layer has 4 × 4 filters
with LeakyRELU activations and negative slope of 0.2. Moreover, encoder layers with matching
spatial resolution of output feature maps are connected by skip connections to the corresponding
decoder layers. The bottleneck layer concatenates the encoder embedding with the scene graph
embedding, with each element of the latter tiled 2× 2 times. The dimensions of the bottleneck layer
are (2× 2× 512), each for the encoder embedding and the scene graph embedding.

8.5 Direction Prediction Network

A central innovation in ASMP is the aspect of using the motion direction of a sound source as an
additional supervisory signal to train the audio separation module. In order to leverage this auxiliary
supervision, we take time-slices of the separated source spectrogram and pass it through a network
called the Direction Prediction Network, which predicts which one of the 8 (or 26 depending on
the setting) direction of motions (and one additional direction denoting no motion, and a second
additional class denoting the displacement of the background) centered at the current location of
the object, did the object move in, within the window. The network consists of a ResNet-18 style
module [3] for embedding the separated spectrogram into a 512-dimensional vector. This is followed
by a a 2-layer Multi-Layer Perceptron (MLP). The hidden layer embedding is passed through a
1d BatchNorm [4] and Leaky ReLU activations (negative slope=0.2) before being processed by
the second layer of the MLP. The output of the second layer is a 10 (or 28)-dimensional vector,
constituting the logits of the direction prediction classifier.

9 Qualitative Results

In Figures 3, 5, and 4, we present several qualitative results demonstrating the direction prediction by
ASMP across ASIW and AVE datasets. We show these results on the starting frame of a window used
for the direction prediction, and show a sequence of such windows. Also shown is a cube centered
at an Auditory Object in the scene, with one of its corners marked with a green dot denoting the
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Video 2

Video 1

Figure 3: Qualititive results from the ASIW dataset demonstrating object 3D motion prediction using
our method. The green dot shows the ground truth direction on the orange unit cube, and the yellow
arrow shows the predicted direction. The unit cube is placed at the center of the object detection
bounding box.

true direction of motion of the object in the window (as estimated using our optical flow estimation,
between the first and the last frames in a window, and combined with the pseudo 3D depth estimation.
Note that, if an object has no motion, the green dot is then placed at the center of the cube. The
estimated motion directions are denoted by yellow-colored vectors and point to one of the eight
corners of the cube or to the cube center (in case there is no motion).
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Figure 4: Additional qualitative direction prediction results on ASIW videos. We show a unit cube
around the Auditory Object with a green dot denoting the ground truth direction of motion. The
yellow arrow indicates the predicted motion direction by ASMP using only the audio signal from a
mixed spectrogram.
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Figure 5: Qualitative direction prediction results on AVE videos. We show a unit cube around
the Auditory Object with a green dot denoting the ground truth direction of motion. The yellow
arrow indicates the predicted motion direction by ASMP using only the audio signal from a mixed
spectrogram.
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