Appendix for A Multi-Resolution Framework for U-Nets with
Applications to Hierarchical VAEs

A Framework Details and Technical Proofs

Here we provide proofs for the theorems in the main paper and additional theoretical results supporting
these.

A.1 Definitions and Notations

The following provides an index of commonly used notation throughout this manuscript for reference.

The function space of interest in this work is L2(X), the space of square integrable functions, where
X is a compact subset of R™ for some integer m, for instance, X = [0, 1]. This set of functions is
defined as

L*X)={f:X = R||f|l2 < co, f Borel measurable}. (A1)
L?(X) forms a vector space with the standard operations.

We denote V_; C L?(X) as a finite-dimensional approximation space. With the nesting property,
V_j+1 C V_j, the space U_; is the orthogonal compliment of V_;,, within V_;, i.e. V_; =
U—j-&-l 2 V_j+1.

The integration shorthand notations used are as follows. For an integrable function ¢ — f(t), we use

f)de ::/O f(s)ds. (A2)

The function f may be multi-dimensional in which case we mean the multi-dimensional integral
in whichever basis is being used. For stochastic integrals, we only analyse dynamics within the
truncation V_; of L?(X). In this case, W; refers to a Brownian motion on the same amount of
dimensions as V_ ; in the standard, or ‘pixel’, basis of V_ ;. The shorthand

t
g(W)dW, = / g(W.)dW., (A3)
0

is used for the standard It integral. Last, for a stochastic process X; on V_ ; we use
dX; = Xy — Xo, (A4)
if not specified otherwise.

For measures, we use D to prefix a set for which we consider the space of probability measures over:
for instance, ID(X) denotes the space of probability measures over X. We often refer to measures over
functions (i.e. images): recall that V_ ; is an L2-function space and we take D(V_ ;) to be probability
measures over this space.

When referenced in Definition 2, the distance metric between two measures 7 and v which yields
the topology of weak continuity is the Monge-Kantorovich metric [50, 51]

dp(vi,v2) = sup /fd(l/l — ), (A5)
f€Lip, (X)
where
Lip, (X) = {f: X = R| |f(z) - f(y)| < d(z,y),Va,y € X}, (A.6)

Further, we use the Wasserstein-2 metric which in comparison to the weak convergence above has
additional moment assumptions. It is given by

1/2
Wa(vi,10) = ( inf  E|X; —X2||§> . (A7)
vET (v1,v2)

where (X1, X5) ~ v and I'(vy, 112) is the space of measures on D(V_; x V_ ;) with marginals v,
and vs.

17



A.2 Dimension Reduction Conjugacy

Assume momentarily the one dimensional case where X = [0, 1]. Let V_; be an approximation space
contained in L?(X) (see Definition 1) pertaining to image pixel values

Vo ={f€L*[0,1]) | flo-s-b.2-5-(kt1)) =k, k € {0,...,27 — 1}, ¢x € R}. (A.8)

For a function f € V_;, there are several ways to express f in different bases. Consider the standard
(or ‘pixel’) basis for a fixed V_; given via

ek = Lp—i.k,2-3-(k41)]- (A.9)
Clearly, the family E; = {e;, k}ij:_ol is an orthogonal basis of V_, hence full rank with dimension
27. Functions in V_; may be expressed as

291

F= cr e (A.10)
k=0

for ¢, € R.

First, let us recall the average pooling operation in these bases E; and E;_; of V_; and V_; 1,

where pool_; ;.4 : V_; = V_; 1. Its operation is given by

201 21711
pool_jy_jH(f) =pool_; _;iq Z cr-eik | = Z Ci-ej—1, (A.11)
k=0 i=0
where for i € {0,...,2771 — 1} we have the coefficient relation
- Coi + Co2; 1
= % =53 f(z)dz. (A.12)
[2-7-(20),2-7-(2i+1))

Average pooling and its imposed basis representation are commonly used in U-Net architectures [1],
for instance in state-of-the-art diffusion models [13] and HVAEs [9].

Note that across approximation spaces of two resolutions V_; and V_; 1, the standard bases E; and
E;_; share no basis elements. As basis elements change at each resolution, it is difficult to analyse
V_; embedded in V_;,. What we seek is a basis for all V_; such that any basis element in this set
at resolution j is also a basis element in V_ ;, the approximation space of highest resolution J we
consider. This is where wavelets serve their purpose: We consider a multi-resolution (or ‘wavelet’)
basis of V_ ; [52]. For the purpose of our theoretical results below, we are here focusing on a Haar
wavelet basis [32] which we introduce in the following, but note that our framework straight-forwardly
generalises to other wavelet bases. Begin with ¢; = 1(g 1) as L?-basis element for V_, the space
of constant functions on [0, 1). For V_5 we have the space of L? functions which are constant on
[0,1/2) and [1/2, 1), which we receive by adding the basis element ¢ = v/2(1(g1/2) — L1/2,1))-
Here ¢, is known as the father wavelet, and v as the mother wavelet. To make a basis for general
V_; we localise these two wavelets with scaling and translation, i.e

i =272 (2 — k) wherei € {0,5},k e {0,271}, (A.13)

i1
It is straight-forward to check that ¥; = {wi,k}ffo k—o 18 an orthonormal basis of V_; on [0, 1].
Further, the truncated basis ¥;_;, which is a basis for V_,_ 1, is contained in the basis ¥ ;. This is
in contrast to EE;_; which has basis elements distinct from the elements in the basis E; on a higher
resolution.

The collections E; and ¥; both constitute full-rank bases for V_;. They further have the same
dimension and so there is a linear isomorphism 7; : V_; — V_; for change of basis, i.e.

mj(ej,i) = Vj- (A.14)

This can be normalised to be an isometry. We now analyse the pooling operation in our basis ¥,
restating Theorem 2 from the main text and providing a proof.

Theorem 2. Given V_j; as in Definition I, let z € V_; be represented in the standard basis E; and
Haar basis ¥ ;. Let ; : E; — W be the change of basis map illustrated in Fig. 3, then we have the
conjugacy mj_y opool_; .4 = projv_Hl o ;.

18



Proof. Define the conjugate pooling map in the wavelet basis, pool’; : V_; — V_j41 computed

J,j+1 -
on the bases ¥; and ¥;_,
poc)1fj7_j+1 =mj_10pool_; .40 7rj’1. (A.15)
pool_; ;41
(V_j Ej) ————— (Voj41,Ej1)

-1
X Tj—1
Tﬂ-.] ! J/

(Vo W) ooz (Vojia, W50)

Due to the scaling and translation construction in Eq. (A.13) and because the pooling operation is
local, we need only consider the case for pool_, _;. This is because one can view pooling between
the higher-resolution spaces as multiple localised poohng operations between V_o and V_;. Now
note that pool _, _; maps V_, to V_;. Further,

/w@mx=& (A.16)
X

where 1) = v/2(1 2(1 (0,1/2) — ]l[l /2, 1)) is the mother wavelet. For v € V_5 let v have the wavelet
representation v = 1) + ¢1¢1, where ¢y = Ljo,1) is the father wavelet. To pool we compute the
average of the two coefficients (‘pixel values’)

pool_, _;(v) = /Xv(w)dx = /Xégz/J(x) + 101 (z)dx = é&. (A.17)

Thus average pooling here corresponds to truncation of the wavelet basis for V_, to the wavelet

basis for V_1. As this basis is orthonormal over L?(X), truncation corresponds to L? projection, i.e.
* Ry -

pool”,; .4 = projy._ ... as claimed.

Theorem 2 shows that the pooling operation is conjugate to projection in the Haar wavelet approxi-
mation space, and computed by truncation in the Haar wavelet basis. The only quantity we needed
for our basis over the V_; was the vanishing moment quantity

/qux=o (A.18)
X

To extend this property to higher dimensions, such as the two dimensions of gray-scale images, we
use the tensor product of [0, 1], and further, the tensor product of basis functions. This property is
preserved, and hence the associated average pooling operation is preserved on the tensor product
wavelet basis, too. To further extend it to color images, one may consider the cartesian product of
several L2 spaces.

A.3 Average pooling Truncation Error

In this section we prove Theorem 3, which quantifies the regularisation imposed by an average
pooling bottleneck trained by mlmmlsmg the reconstruction error. The proof structure is as follows:
First we give an intuition for autoencoders with an average pooling bottleneck, then derive the relevant
assumptions for Theorem 3. We next prove our result under strong assumptions. Last, we weaken
our assumptions so that our theorem is relevant to HVAE architectures.

Suppose we train an autoencoder on V_; without dimension reduction, calling the parameterised
forward (or encoder/bottom-up) and backward (or decoder/top-down) passes Fj 4, Bj g : V_; = V_;
respectively. We can optimise Fj 4 and B; s w.rt. ¢ and 6 to find a perfect reconstruction, i.e.
x = Bj ¢F} ¢ for all x in our data as there is no bottleneck (no dimensionality reduction): B; ¢ need
only be a left inverse of F} 4, as in

BjolFje=1. (A.19)

Importantly, we can choose I} ¢ and B; ¢ satisfying A.19 independent of our data. For instance, they
could both be the identity operator and achieve perfect reconstruction, but contain no information
about the generative characteristics of our data. Compare this to a bottleneck with average pooling,
i.e. an autoencoder with dimension reduction. Here, we consider the dimension reduction from V_;

19



to V_;41, where we split V_; = V_;,1 @ U_;1. As we have seen in Theorem 2, through average
pooling, we keep information in V_; 1, and discard the information in U_; . For simplicity, let
embdy._; be the inclusion of the projection proj Vo Now to achieve perfect reconstruction

z = (Bjg oembdy_; oprojy,_ . oFj,)z, (A.20)

we require (proj U_ji F; 4)x = 0. Simply put, the encoder Fj 4 should make sure that the discarded
information in the bottleneck is nullified.

We may marry this observation with a simple U-Net structure (without skip connection) with L?2-
reconstruction and average pooling dimension reduction. Let V_; be one of our multi-resolution
approximation spaces and D(V_,) be the space of probability measures over V_,. Recall in a multi-
resolution basis we have V_; = V_; 1 ® U_; 1 where U_;, is the —j + 1 orthogonal compliment
within V_;. For any v € V_; we may write v = proj Vo, VP proj U_j? and analyse the truncation
error in V_; 1, i.e. the discarded information, via

[v —embdy._; o projy_, v[l3 = [[projy_, ., vl3. (A.21)
If we normalise this value to
v —embdy_ oproj, . v||3 proj;; . v||3
|| om0l _ o0l )
[v]l3 [vll3

then this is zero when v is non-zero only within V_;_ ; and zero everywhere within U_; ;. Suppose
now that we have a measure v; € D(V_;), we could quantify iow much of the norm of a sample
from v; comes from the U_; 1 components by computing

Iprojy_,,,vII3 Iprojy;_ ., vll3
Eyn; angl = ”vH;l dv;(v) € [0,1]. (A.23)
2 2

This value forms a convex sum with its complement projection to projvﬂ_ﬂ, demonstrating the
splitting of mass across V_; ;1 and U_;1, as we show in Lemma 1.

Lemma 1. Let v; € D(V_;) be atom-less at 0, then

Iprojy. ., vl3 Iprojer_,,, vl
it 2 D Uit T2 (A.24)
i3 Tl
Proof. For any v € V_; we have ||v||3 = ||pr0jvij+lv||§ + ||projU7j+1UH§ due to orthogonality of

V_j4+1and U_j41. As both ||pr0jv_j+lv|\§ and ||proj,; .. v||3 are projections, they are bounded by

J+1
||v||% giving that the integrands in Eq. (A.24) are bounded by one, and so for all v # 0 (no point mass
at 0) the expectation is bounded. O

From the splitting behaviour of masses in the L2-norm observed in Lemma 1 we see that
1 if Eyey, HprojUinv||§/||vH% is large, then, on average, samples from v; have most of their
size in the U_ 41 subspace; or,

2. if By, ||projU7j+lvH§ /||lv||3 is small, then, on average, samples from v; have most of their
size in the V_;; 1 subspace.

In the latter case, ||projU7H1vH% ~ 0, ie. embdy_; o projy,_ v ~ v. We get the heuristic
embdy_; o projy._ . . ~ I on the measure v, yielding a perfect reconstruction.
—j+1

Let embdy_; o proj V1o I:V_; — V_;, then this heuristic performs the operator approximation
Eynu, |[(embdy_; o projy, . —T)vl3, (A.25)

quantifying ‘how close’ these operators are on v;. For many measures, this (near) equivalence
between operators will not hold. But what if instead, we had an operator D : V_; — V_j; such that
the push-forward of v; through this operator had this quality. Practically, this push-forward operator
will be parameterised by neural networks, for instance later in the context of U-Nets. For simplicity,
we will initially consider the case where D is linear on V_;, then we consider when D is Lipschitz.

20



Lemma 2. Given V_; with the L?-orthogonal decomposition V_; = V_; 11 & U_j 41, let D_; :
V_; — V_; be an invertible linear operator and define F; : V_; =+ V_j; 1and B; : V_; 1 — V_;
through

Fy = projy, ., oDy, Bj = D; ' oembdy_,. (A.26)

Then B;F; = I on V_j, or otherwise, we have the truncation bound

2

2
y _ Jproive,. 7]
<

— 2
1E51l;

HprojU_j+1 Fv

2
10513

2 < ||(I = B;Fj)oll3 - (A27)

Proof. Consider the operator D;(I—B;F}) : V_; — V_, which s linear and obeys the multiplicative
bound || D;(I — B;F})| < ||D,|||[I — B;F}|. This implies for any v € V_;,

2
1D;(I = BjFj)vll,

p < I = B;Fy)ll; (A.28)
||DjH2
The numerator is equal to
2
1D, (I — B;F)o||? = H(Dj — embdy., o projy.__, o Dj)vH2 . (A.29)
As we have the orthogonal decomposition V_; = V_;11 ® U_;11, we know
I = projy_,  @projy_, (A.30)
=embdy_; o proj‘Lj+1 +embdy_; o projUin, (A31)
and as Hembdv_j ||2 =1, we get
. 2 . 2
H(I —embdy_; o proj,_,  © Dj)vH2 = ”prOJU_j+1 o Dij2 . (A.32)
2
So now as ||Dj(I_Bij)’U||§ = HprojU i1 ©Djv|| , we may use ||Dj(I—Bij)v||§ <
- 2
HDj||2 [T — BijvH; to get the desired result. O

2

The quantity HprojU / ||F]||§ is analogous to the in Lemma 1 discussed quantity
- 2

Iprojg_ ., I3/l

Next, suppose D; is trainable with parameters . We do so by minimising the reconstruction cost

Fjv

2, but we now have a ‘free parameter’, the operator D;.

j+1

v, (I = B Fy)olf3, (A.33)
which upper-bounds our ‘closeness metric’ in Lemma 2.

In the linear case (D); is linear), to ensure that D; ¢ is invertible we may parameterise it by an
(unnormalised) LU-decomposition of the identity

I= D;;Djﬁ = L;joUjo, (A.34)

where the diagonal entries of L; ¢ and U ¢ are necessarily inverses of one-another. This is a natural
parameterisation when considering a U-Net with dimensionality reduction. Building from Lemma
2, we can now consider the stacked U-Net (without skip connections), i.e. a U-Net with multiple
downsampling/upsampling and forward/backward operators stacked on top of each other, in the linear
setting. In Proposition 1, we show that this LU-parameterisation forces the pivots of U} ¢ to tend
toward zero.

Proposition 1. Let {V_;} 3720 be a multi-resolution hierarchy of V_ ; with the orthogonal decompo-
sitions V_; = V_; 11 @ U_j4q and Fj 4, B;j ¢ : V_; — V_; be bounded linear operators such that
Bj,OFj7¢ = I. Define _Fj)¢ : V,j — V,j+1 and Bj79 : V,j+1 — V,j by

Fj 4 =projy_, o Fjg, By = Bjgoembdy_,, (A.35)

21



with compositions
Fj jjop = Fji,p 00 Fl g, Bijlja.p = Bji,0 00 Bjy g (A.36)
Then

2

o

Z # < |- Bl\J,0F1|J,¢)U||;' (A.37)
15115

Jj=1

Proof. The operator Fy s is linear, and decomposes into a block operator form with pivots Fj y for
each j € {1,...,J}. Each F;; is L?-operator norm bounded by ||F} 2, so if

My = diag(| i [las -, | Frla), (A.38)

then ||)\1_‘.1]F1|JH2 < 1. Last, as the spaces {U_; }3]:0 are orthogonal and F| ; has triangular form:
2

J ”prOJU_j+1Fj’l)”

AL (Fryy = Fa)oll3 = — 2, (A39)
j=1 ||FJ||2
and || A75 (Fuyy — Fupp)ol3 < [[(1 =By Fapp)oll3. O

Here in the linear case, a U-Net’s encoder is a triangular matrix where the basis vectors are the
Haar wavelets. Proposition 1 states that the pivots of this matrix are minimised. Adversely, this
diminishes the rank of the autoencoder and pushes our original underdetermined problem to a
singular one. In other words, the U-Net is in this case demanding to approximate the identity (via an
LU-like-decomposition), a linear operator, with an operator of diminishing rank.

Proposition 2. Let D(X) be the space of probability measures over X, and assume for F;, B; :
D(X) — D(X) that these are inverses of one-another and F'; is Lipschitz, that is

FJEJ = I, WQ(FJ'Z/]_,FJ‘VQ) S “Fj||2W2(V17 VQ). (A40)
Then for any v € D(X) with bounded second moment,

lIproje_, X3

ijfjuw <Ws(v,Bj o Py_, o F,v). (A.41)
Proof. First as Fjgj = I we know that
Wa(F v, Py Fjv) = Wy(F;B;F;v,F;B;Py_F,v). (A.42)
But for any X € V_; we have the orthogonal decomposition
X = projvin ® projUin, (A43)
which respects the L2-norm by
1X1[5 = [Iprojy_, X |13 + [[projy; , X1, (A44)
and in particular,
IX — projy_, X3 = [Iproj,;_, X||. (A45)

This grants

(Wo(Fjv, Py_Fv)*=  _inf _ E[|X-Y|3 (A.46)
’YGF(FJ'V,PV?J. Fj l/)

= _inf _ E|projy, X — proj,, Y5 + [proj,;, X[ (A.47)
YEL(Fjv,Py_,Fjv) J / !

= _inf _ Elprojy_ X3 (A48)
YE(Fyv,Py_, Fv) ’

= (Wa(projy_, Fjv, 610y))*. (A.49)

22



Now the Lipschitz of F; yields
W2 (FjEijV, FjEjPV_ijV) <
1E5 ]2 -

Squaring and substituting grants

Wy (proj;; Fiv,6 2 — =
Vs (projy_, j {0})) < T, (A51)
||Fj||2

O

To work on multiple resolution spaces, we need to define what the triangular operator over our space
of measures is. For a cylinder set Bon V_; = V; & @‘j]:o U_; we can assume it has the form
X j B; where Bj; is a cylinder on U;. Break v; into the multi-resolution sub-spaces by defining
projection onto D(U_;) through

projy, (v)(B;) = v, (B; @ UY)), (A.52)

where B; is a cylinder for U_ . This projection of measures is respected by evaluation in that

EXijrojUﬁjo = /vjdprojUijz/J(vj) = /projUijvdyJ(v) =Ex,~v,projy_ X. (AS53)
As|X|3= ; Projy_ [lproj;_ X || due to the orthogonality of the spaces, then

EXijroju_jVJ”XjH% = Z]EXjNProju_jVJ”XjH% = ZEXNVJ”PrOjU_JX”%- (A.54)
J J

Define the extension, with a convenient abuse of notation, of projy, _ on D(V_;) to be
projy._,., (va) = projy._, ., (v) @ projy,o.  (v). (A.55)

If F_; : D(V_;) — D(V_;) are linear operators for j € {0,...,J}, extend each F; : D(V_;) —
D(V_;) toD(V_;) x D(V}j) through

F,=Fal (A.56)
For a measure v; € D(V_ ) we can split it into D(V_;) x D(V) via
projy._ vy X projy.. vy, (A.57)

which also remains a measure in D(V_ ;) as D(V_;) x D(V) € D(V_ ). Now the operator F
acts on the product measure v; ® VjL by

Fivj®vy)=Fvelv. (A.58)
Now we may define the map F; : D(V_;) — D(V_;) x ]D)(Vj-j) through
F; = Fjprojviﬁ (A.59)
and its compositions by

Fj1|j2

=Fj o---oF}, (A.60)
which too is an operator on D(V_ ;).
Further if we have a measure v; on V_; we can form the embedding map

J
embd;v; = v; @ (X) 60}, (A61)

i=j

23



which we extend to D(V_ ;) by a convenient abuse of notation

J
proj;v; = proj,; (v.s) ® (X) d(0y- (A62)
i=j
Let B_; : D(V_;) — D(V_;) be the linear operator which is the inverse of F__;. Now if we extend
B;j :D(V_;) = D(V_;) to D(V_;) x D(V) like before through

Bj = Bj & I, (A63)

so the map Pjembdj is well defined on D(V_ ;). Now analogously define B; and its compositions
by

Bj = Ejembdvfj B

JlljzzB‘ZO---OB

J J1-

(A.64)

In an analogous way, the operator F, |;, is ‘upper triangular’ and Bj, ;, is ‘lower triangular’. In this
way, we are again seeking a lower/upper (LU-) decomposition of the identity on D(V_ ;). Now we

may prove Theorem 3.

Theorem 3. Let {V_;} 3-’:0 be a multi-resolution hierarchy of V_; where V_; = V_; 1 ® U_;11,
and further, let Fj 4, B; g : D(V_;) — D(V_;) be such that B;¢F;, = I with parame-
ters ¢ and ¢. Define Fj ;, 4 == Fj, 40 0 Fj, 4by Fj s : D(V_;) — D(V_;,1) where
Fj 4 = projy._,,, © Fj¢, and analogously define By, |;, o With Bjg = Bjg o embdy_;. Then,
the sequence {Bl\ 5.0 (F1) J7¢I/J)}3]:0 forms a discrete multi-resolution bridge between F| 5 4 and
By 0F;4vy attimes {t;}/_,, and

j=1°
J
E EXtJNl/J
Jj=0

where Wj is the Wasserstein-2 metric and HFﬂ J,é H2 is the Lipschitz constant of F}| 4.

2 2
2/||1*—}‘|J,¢H2 < Wa(BusoFy16v0,v0))%, (A.65)

projy_,,, X,

Proof. All we must show is that successively chaining the projections from Proposition 2 decomposes
like in Proposition 1. For X1, Xy ~ v, Wy (FjFj41v, P_j o F;_1P_ji1Fjv) consider f;, fj_1 as
realised paths for our kernel and write || f;_1 f; X1 — projVﬂ“fj,lprojvijﬂijg I

= [lprojy, ., (fjfi+1 X1 — projy, ., fj—1projy ., fiXo)l13
+ lprojer ., (fifi+1 X1 = projy,_, fj—1projy ., fiXo)|13

due to the triangular form and the orthogonality of the multi-resolution basis. Let v_;; =
projvijﬂl/_ j» then as projVﬂ,Jr1 commutes with any term equivalent to the identity operator on
V_,+1, the first term becomes

i1 X155, = PrOjy ., fim1 X203, (A.66)

where X1,.,,X24,,, ~ V—jy1. When an optimal coupling is made, this term becomes
[Projy_,,, X1,t44 |2. The second term has proj U_,;.,Projy._ ,, nullified, and again commutes where
appropriate making this ' '

Iprojer_,,, X144 13- (A.67)
We may again use the triangular form to utilise the identify
Iprojus_, ., Fjll3 < I3, (A.68)
to define
i = diag(lprojy ., Fyl3: -, projy_,,, Fapsll3) (A.69)
so that
WQ(A;l;(FWul), A;I},(FWVQ)) < Wa(vy,19). (A.70)

24



Piecing the decomposition and scaling together, we yield
EV—j+2 ||pr0jU,j+2X1,tj+1 ”%/"FJ*QU ”3 + EV—j+1 ||prOjU,j+1X1,tj+1 ”%/”ijﬂj Hg (A1)
< Wa(v, Bj_o;Fjo))>.  (A72)
Iterating over j in the fashion given yields the result. Last, measures within

J
Upr = {vs | Fj 0 =Fj5 0 Q) 50y} (A.73)
i=j

are invariant under B |, F| s, further, B ;|1 F|; projects onto this set. To see this, take any measure
vy € D(V_;) and apply F ;. The information in Vj-j split by P; is replaced by 0oy in the backward
pass. Thus BJllFllJBJ'lFl‘J :lelFl‘J. O

A4 U-Netsin V_;

Here we show how U-Nets can be seen as only computing the non-truncated components of a
multi-resolution diffusion bridge on V_; — the computations are performed in V_; for j < J at
various layers. This amounts to showing the embedding presented in Theorem 1.

Theorem 1. Let B; : [tj,t;11) x D(V_;) — D(V_;) be a linear operator (such as a diffusion
transition kernel, see Appendix A) for 7 < J with coefficients pd gl [t tjv1) X Voj = V_,,
and define the natural extensions within V_; in bold, i.e. B; := B; @ Iy,. . Then the operator
—J
B :[0,T] x D(V_;) — D(V_) and the coefficients p, o : [0,T] x V_; — V_ given by
J

J J
B = Z Ly ity Biy pi= Z Lt t500) '”(J)7 o= Z Litst500) - o\,
=0 =0 =0

induce a multi-resolution bridge of measures from the dynamics for ¢ € [0, 7] and on the standard
basis as dX; = p(X)dt + o (X;)dW; (see Appendix A.4 for the details of this integration) for
X; € V_j,1i.e. a (backward) multi-resolution diffusion process.

Proof. Attime t = 0 we have that suppry C Vg = {0}, so D(Vp) = d{¢y. For the s in the first time
interval [to, t1) it must be the case v, = 0}, 0 ugj), o) =0and By(s) = I. The extension is thus
By(s) =T onV_j. Att = t, the operator By = I on V- grants p,, o, = 0 here, On Vy, By, it s
an operator with domain in V3, granting suppr;, C V;. For s within the interval (¢1, t2) we maintain
supprs C V4, and by induction we can continue this for any s € [¢;,¢;41) € [0, 1]. Let E; be a basis

of V_;, then as p,, 05 = 0 on V% the diffusion SDE on [t;, ;1) x V_; given in the basis E; by

dX? = p? (Xp)dt + o7 (X,)dW, (A74)

embeds into an SDE on V_ ; with basis E; by
dX; = p(Xe)dt + o (X)) dWy, (A.75)
which maintains X; € V_; as ; = 0 on the complement. O]

In practice, we will compute the sample paths made from Equation A.74, but we can in theory think
of this as Equation A.75. The U-Net sequential truncation of spaces, then sequential inclusion of
these spaces is what forms the multi-dimensional bridge with our sampling models.

A.5 Forward Euler Diffusion Approximations

Here we show that the backward cell structure of state-of-the-art HVAEs approximates an SDE
evolution within each resolution.

Theorem 4. Lett; := T € (0, 1) and consider (the py backward pass) By 17 : D(V_ ;) — D(Vp)
given in multi-resolution Markov process in the standard basis:

dZy = (1,4(Ze) + o Ze))dt + G ((Z)dW, (A.76)
where projy;,_ Zi; =0, [|Zi]l2 > || Zs|2 with 0 < s < ¢ < T and for a measure v; € D(V_;) we

have Zy ~ Fy ;1v;. Then, VDVAEs approximates this process, and its residual cells are a type of
two-step forward Euler discretisation of this Stochastic Differential Equation (SDE).

25



Proof. The evolution
dZ; = Cu1.4(Ze) + wat(Ze))dt + T 1(Z4)dWs, (A.77)
subject to Zy = 0, Z¢|l2 > || Zs||2 and X7, Zg ~ Fy jj1vg. By Theorem 3 we know Fy, j1v;
enforces the form
J—1
projy, Fg, 71vs ® ® 90y (A.78)
j=1
when ¢ is trained with a reconstruction loss. By Theorem 5, the full cost used imposes

projvlfas’ﬂlw = 040}, further, VDVAE initialises Zo = d¢y. This enforces Zo = 0 as Zy ~ d;0)-
For the backward SDE, consider the splitting

2" = 12t + 5 o(2(0)aws, 2 = 2027t (A.79)

where dZ; = dZt(l) + dZt(2) when Z; = Zt(l) = Zt(Q). For the split SDE make the forward-Euler
discretisation
1 o 1 o 1 1 1 1
20 =20+ [ @M [ F D aw s 20 4 Ta2) + 20,
' ' (A.80)

Now the second deterministic component can also be approximated with a forward-Euler discretisa-
tion

?

AR A / Ton(ZPdt ~ 22 + 12,22, (A.81)

As Zy = 0, we need only show the update at a time ¢, so assume we have Z;. First we update in the
SDE step, so make the assignment and update

zM « 7, 28 =z + 57,2 + T2 Aawy, (A.82)
Now assign ZZ-( ) A (1 )1 so we may update in the mean direction with

7@ _

& =2% 1 522, (A.83)

with the total update Z;, Zi(f_)l. This gives the cell update for NVAE in Figure A.1. To help

enforce the growth || Z;||2 > || Zs||2, VDVAE splits Zi(l) = Z; + Z; 4+ where Z;  increases the norm
of the latent process Z;. This connection and the associated update are illustrated in Figure A.1 [left].
Note here that if no residual connection through the cell was used (just the re-parameterisation trick in
a VAE), then we degenerate to a standard Markovian diffusion process and yield the Euler-Maruyama
VAE structure in Figure A.1 [right].

Remark 1. To simplify the stepping notation in the HVAE backward cells (Figures 4 and A.1), we
use Zi(l) = Zi+ 01.4(Z) + T 4(Z:) (W) and Z(2) Z(l) + Q(Z(l)) so that the index i refers
to all computations of the i*" backward cell.

O

A.6 Time-homogenuous model

Recall VDVAE has the continuous time analogue
dZy = (Hre(Ze) + Waa(Ze))dt + G o(Z) AW, (A.84)

where Zy = 0, || Z:¢]l2 > || Zs||2 with 0 < s < t < T and for a measure v; € D(V_;). Due to
Theorem 5, we know that the initial condition of VDVAE’s U-Net is the point mass 5{0}. As the
backwards pass flows from zero to positive valued functions, this direction is increasing and the
equation is stiff with few layers. The distance progression from zero is our proxy for time, and we
can use its ‘position’ to measure this. Thus, the coefficients TR <ﬁt 2, . need not have a time

26



dependence as this is already encoded in the norm of the Z, processes. Thus, the time-homogeneous
model postulated in the main text is:

dZ = (01(Ze) + Wa(Z0)dt + 5 (Z)dWr, (A.85)

Zo =0, [[Zi|2 > [|Zs]|2- (A.86)

In practice, the loss of time dependence in the components corresponds to weight sharing the parame-

ters across time, as explored in the experimental section. Weight sharing, or a time-homogeneous

model, is common for score based diffusion models [40, 41], and due to our identification we are
able to utilise this for HVAEs.

A.7 HVAE Sampling

Here we use our framework to comment on the sampling distribution imposed by the U-Net within
VDVAE.

Theorem 5. Consider the SDE in Eq. (A.76), trained through the ELBO in Eq. B.101. Let v;
denote the data measure and 1y = d(o) be the initial multi-resolution bridge measure imposed by
VDVAEs. If g4 ; and py ; are the densities of By 1) F717; and By 1)1 respectively, then a VDVAE
optimises the boundary condition ming ¢ K L(¢4 0,1]/¢s,000,1), where a double index indicates the
joint distribution.

Proof. We need to only show two things. First, due to Theorems 3 and 4, we know that the architecture
imposes

J—1

projy, Fy 1175 @ R) 603, (A.87)
j=1

so we must analyse how projy, F(ﬁ’ 7|1V is trained. Second, we use Theorem 4 to view the discretised
version of the continuous problem, and identify the error in the two-step forward Euler splitting.

On the first point, VDVAE uses an ELBO reconstruction with a KL divergence between the backwards
pass of the data §¢7 J|1F¢’ 7117 (the ‘gg4-distribution’), and the backwards pass of the model imposed
by the U-Net By, 5|11 (the ‘pg distribution’). As Zj is zero initialised, we know o = d(o;. We need
to show the cost function used imposes this initialisation on By 110 F'¢, 7107 Let X7 ~ Fy 700,
call the distribution of this g4 9. We also use Z; ~ gy 1 for a sample from By 10F'¢ 07 and
Z1 ~ pe,1 for a sample from By 1|9vo. For a realisation = of X7, VDVAE computes

KL(qpa10(- | X7 = 2)||pg,110( - |Z0 = 0)) = KL(qp110( - | X7 = 2)||pe,1()), (A.88)

which in training is weighted by each datum, so the total cost in this term is

/ K L(ggapo(-1Xr = 2)l[po.(-))gso(Xr = 2)da. (A.89)

But this is equal to,

q (Z1=z|Xr =2
// ( o.10(Z1 X7 )) 4p110(Z1 = 2| X1 = x)qg,0( X1 = x)dzdx (A.90)

po.1(Z1 = 21)
4$,01(Z1 = 2, X7 = 1) )
lo Z1 =2z, Xr =x)dzdx (A91)
// s (pe 1(Z1 = 21)4p,0( X7 =2) 4s.01(Z1 T )
= K L(¢,01(Z1, X1)llpo,1(Z1)as,0(X1)) = KL(q
The distribution of pg ; is Gaussian as a one time step diffusion evolution from the initial point mass
vy = 5{0}.

0)- (A.92)

O

Theorem 1 states that the choice of the initial latent variable in VDVAE imposes a boundary condition
on the continuous SDE formulation. Further, this boundary condition is enforced into the final output
X7 of the encoder within VDVAE.

27



"UOTIIPPE 9STM-JUIW[A SBIIPUL B "[[90 [enpIsal }xau ) 031 Indino ayy 1 pue ‘snoraaid ay) woij ndur
oy st *g ‘ssed dn-wionoq oNseyo0)s-uou 193153 ur ay) woiy ndur ue st *y A[panoadsar ‘uonerouss pue Sururen Surnp (saur] panop oy Aq paresrpur) doys Surjdures
ay) u1 pasn Are (Jeuonipuodun) fd 1o ([euonIpuod) #b 1oyNg “GVA vweAnreN-1ong e [ySu] pue [01] AVAN [FIppiu] ‘(6] AVAQA [3R1] Jo s21monns [ [enpisl
o) op1aoad 919y op "9/ bH ur $s0001d UOTSNFIP SWIT)-SNONUNUOD B JO SUONEBSNAIISIP Io[nF premIiof dojs-om) Surquuasal axe s[[oo umop-dol gVAH :1°V 2Indry

A 54 :WNIV 54 " A |84 @_Nl IS4 " A |54 @NNIV |54
1 1
( ) " ( _lmu ! ) A ! vwl + ' — ! " é b ! A 1 Nl 1 1
\ @Z| (W2 1+ yZ— 2, >D )z (D M+HZ = @Z
_ z ! z
_ ?WNU w_ " ?WNV m
_ | S " |
1 1
:WN aidwes - ‘ CSQQNVW+ ! :WN adwes - , H\,\_QQNW; ! :WN ajdwes - , 'M QQNVW+
®b 10 0d esooyp - w7z QNVHHN +l7— :WN ! b 10 0d esooyo - wZ A._NVHHN +l7 > :WN ! ?h 10 0d esooyo - wZ QNVHHN + 77— QWN
N ! N A ! N A
! ’ 1 1 / /1 1oy 1 [, 11
1 (xzlgjz)% g (X Zlaiz) gt (X2002)%
: ! : ! :
.................. ) 1 7 +1
(Z1jz)o | (z1jz)o m (z14jz)od > Yz| wZtZo 7
(d)
1 | 1 | 1
. J AN J AN J
7 " 7 " Iz

VA eweAnie-19|n3 IVAN AVAAA

28



B Background

B.1 Multi-Resolution Hierarchy and thought experiment

Let X C R™ be compact and L?(X) be the space of square-integrable functions over this set. We are
interested in decomposing L?(X) across multiple resolutions.

Definition 1 (abbreviated). A multi-resolution hierarchy is one of the form

.cVicVycCcVo - (B.93)
U v =r’®m) (B.94)
JEZL
(Vi = {0} (B.95)
JEZ
fO eV, < f(27)eV (B.96)
fGOyeVo < f(- —n)e Vy,forn e Z. (B.97)

Each V_; is a finite truncation of L?(X). What we are interested in is to consider a function
f € L*(X) and finding a finite dimensional approximation in V_ ;, say, for J > 0. Further, for
gray-scale images, X = [0, 1]2, the space of pixel-represented images. To simplify notation, we just
consider X = [0, 1] for the examples below, but we can extend this to gray-scale images, and to
colour images with a Cartesian product.

The ‘pixel’ multi-resolution hierarchy is given by the collection of sub-spaces
V_j = {f S L2([0, 1]) | f|[27j.k-’27j.(k+1)) =cp, k € {0, .. .,2j - 1}, Cr € R}. (B.9%)

It can be readily checked that these sub-spaces obey the assumptions of Definition 1. An example
image projected into such sub-spaces, obtained from a discrete Haar wavelet transform, is illustrated
in Fig. B.2. We call it the pixel space of functions as elements of this set are piece-wise constant on
dyadically split intervals of resolution 27, i.e a pixelated image. For each V_; there is an obvious
basis of size 2/ where we store the coefficients (co, c1,...,c9i_1) € R?’. The set of basis vectors

for it is the standard basis {ei}?]zgl which are 0 for all co-ordinates except for the i'" + 1 entry
which is 1. This basis is not natural to the multi-resolution structure of V_;. This is because all
the basis functions change when we project down to V_; ;. We want to use the multi-resolution
structure to create a basis which naturally relates V_;, V_;_ 1, and any other sub-space. To do this
consider V_; N V_Lj 11 C V_;. Define this orthogonal compliment to be U_; 1 = V_Lj 11, then see

V_; = V_;4+1 ® U_;j4+1. Doing this recursively finds V_; = Vo @ @::J(;Ll U;, and taking the limit
LX) =PUui o (B.99)
i=0

Each of the sub-spaces {U_; }(f:o are mutually orthogonal as each V_; L U_;. Now suppose we had
abasis set ¥; for each U_; and ® for ;. As these spaces are orthogonal, so are the basis sets to each
other, too. We can make a basis for V_; with span(®g, ¥, --- , ¥_, 7). For the above examples,

Vo needs only a single basis function ¢ x = L x4 1), further if ¢ = \/5(]1[071/2) - 11[1/2,1)), then
given the functions = — 1, x(z) := 29/2 - ¢)(277 (x — k)) we have {1; .} is a basis for V_.

29



original (512 x 512) gray-scaled original (512 x 512)

V_1 (2 X 2) V_2 (4 X 4) V_3 (8 X 8)

V_4 (16 X 16)

V_q (128 x 128) V_s (256 x 256) V_g (512 x 512)

Figure B.2: The thought experiment discussed in §2. The original colour image [top-left], its
gray-scale version [top-right], and its Haar wavelet projections to the approximation spaces V_; for

jed{l,...,9}.

30



B.2 U-Net

In practice, a U-Net [1] is a neural network struc-

ture which consists of a forward pass (encoder) and V- Vs Vo
backward pass (decoder), wherein layers in the for-

ward pass have some form of dimension reduction,

and layers in the backward pass have some form out out mn
of dimension embedding. Furthermore, there are T T l
‘skip connection’ between corresponding layers on v v V.
the same level of the forward and backward pass. - -J -
‘We now formalise this notion, referring to an illustra- 5 B l ”
tion of a U-Net in Fig. B.3. In black, we label the la- ~7* e 7o
tent spaces to be V_; for all j, where the original data Skip connection

isin V_; and the U-Net ‘bend’ (bottleneck) occurs V., V_j - V_;
at V5. We use f; ¢ to be the forward component, or 5 o
encoder, of the U-Net, and similarly b; ¢ as the back- T _"T J, it
ward component or decoder, operating on the latent 1, Vit V_j1
space V_;. P_; refers to the dimension reduction

operation between latent space V_; and V_;;, and T T l
E_; refers to its corresponding dimension embed- out out in
ding operation between latent spaces V_; 1 and V_;.

A standard dimension reduction operation in practice

is to take P°_ ;1 as average pooling, reducing the res- Vo Vo Bend / Bottleneck Vi

olution of an image. Similarly, the embedding step
may be some form of deterministic interpolation of
the image to a higher resolution. We note that the skip
connection in Fig. B.3 occur before the dimension
reduction step, in this sense, lossless information is
fed from the image of f; ¢ into the domain of b, ¢.

Figure B.3: The repeated structure in a U-
Net, where V_;; is a lower dimensional la-
tent space compared to V_;. f;4,b; ¢ are in
practice typically parameterised by neural net-

works (e.g. convolutional neural networks);
P_; 11 is a dimension reduction operation
(e.g. average pooling) to a lower-dimensional
latent space; and, F/_; is a dimension em-
bedding operation (e.g. deterministic interpo-
lation) to a higher-dimensional latent space.
This structure is repeated to achieve a desired
dimension of the latent space at the U-Net
bottleneck.

In blue, we show another backward process b; 4 that
is often present in U-Net architectures for generative
models. This second backward process is used for
unconditional sampling. In the context of HVAEs,
we may refer to it as the (hierarchical) prior (and like-
lihood model). It is trained to match its counterpart in
black, without any information from the forward pro-
cess. In HVAEg, this is enforced by a KL-divergence
between distributions on the latent spaces V_;. The
goal of either backward process is as follows:

1. b; ¢ must be able to reconstruct the data from f; g, and in this sense it is reasonable to require
bjofie =1
2. b; ¢ must connect the data to a known sampling distribution.

The second backward process can be absent when the backward process b; g is imposed to be the
inverse of f; g, such as in Normalising Flow based models, or reversible score-based diffusion models.
In this case the invertibility is assured, and the boundary condition that the encoder connects to a
sampling distribution must be enforced. For the purposes of our study, we will assume that in the
absence of dimension reduction, the decoder is constrained to be an inverse of the encoder. This is a
reasonable assumption: for instance, in HVAEs near perfect data reconstructions are readily achieved.

For variational autoencoders, the encoder and decoder are not necessarily deterministic and involve
resampling. To encapsulate this, we will work with the data as a measure and have Fjy ; and By ; as
the corresponding kernels imposed by f; ¢ and b; g, respectively.

With all of these considerations in mind, for the purposes of our framework we provide a definition of
an idealised U-Net which is an approximate encapsulation of all models using a U-Net architecture.

Definition 3. (Idealised U-Net for generative modelling)
For each j € {0,...,J}, let Fj g, Bjo : D(V_;) = D(V_;) such that B; gF; 9 = Iyv_;. A U-Net

31



with (average pooling) dimension reduction P_; and dimension embedding E_; is the operator
U :D(V_;) — D(V_;) given by

U = BJygE_JO~~~OBl79E_1OP()FL@O~~~OP_J+1E]79, Bij =1. (BlOO)
Remark 2. The condition B; ¢ F}; 9 = Iv_; in our idealised U-Net (for unconditional sampling here)
is either imposed directly (reversible flow based model), or approximated via skip connections. For
instance, in our HVAE case, we have both a U-Net without skip connections (the p distribution) and
a U-Net with skip connections (the g distribution). The U-Net related to the ¢ distribution learns
how to reconstruct our data from the reconstruction term in the ELBO cost function. The U-Net
related to the p distribution learns to mimic the ¢ distribution via the KL term in the ELBO of the
HVAE, whose decoder is trained to invert its encoder — B; 4 Fj 4 = Iy_, — but the p U-Net lacks
skip connections. Thus, in the HVAE context, we are analysing U-Nets which must simultaneously
reconstruct our data and lose their reliance on their skip connections due to the condition that the ¢
U-Net must be approximately equal to the p U-Net.

B.3 Hierarchical VAEs

= ®

©
Ko

Figure B.4: Conditioning structure in state-of-the-art HVAE models (VDVAE[9] / NVAE[10]) with
L = 3. [Left] Amortised variational posterior go(Z | x). [Right] Generative model py(x, Z).

A hierarchical Variational Autoencoder (HVAE) * is a VAE [48] where latent variables are separated
into L groups Z = (z1, 29, . . ., z,) which conditionally depend on each other. L is often referred
to as stochastic depth. For convenience, we refer to the observed variable x as zg, so x = zg. In
HVAESs, latent variables typically follow a ‘bow tie’, U-Net [1] type architecture with an information
bottleneck [53], so dim(z;+1) < dim(z;) foralll = 0,..., L — 1. Latent variables live on multiple
resolutions, either decreasing steadily [36, 54] or step-wise every few stochastic layers [10, 9] in
dimension. We consider this multi-resolution property an important characteristic of HVAEs. It
distinguishes HVAEs from other deep generative models, in particular vanilla diffusion models where
latent and data variables are of equal dimension [13].

As in a plain VAE with only a single group of latent variables, an HVAE has a likelihood py(x|Z), a
prior p,(Z) and an approximate posterior ¢y (Z|x). To train the HVAE, one optimises the ELBO w.r.t.
parameters ¢ and 6 via stochastic gradient descent using the reparametrization trick

log p(D) > £(D; 0, 9) = Exwp [Egmgy a1 [l08 1 (x12)] — KL[ao (Zx) [ps (2))].  (B.101)

Reconstruction loss Prior loss

Numerous conditioning structures of the latent variables in HVAEs exist, and we review them in §4.
In this work, we follow [9, 10, 28]: the latent variables in the prior and approximate posterior are
estimated in the same order, from zj, to z;, conditioning ‘on all previous latent variables’, i.e.

L-1 L-1

ps(Z) = ps(zr) [ [ pos(zilzs)  (B.102) go(Z]x) = go(z]x) [ ] ao(zilz51,%) (B.103)
=1 =1
We visualise the graphical model of this HVAE in Fig. B.4. Recent HVAEs [9, 10] capture this

“We closely follow the introduction of hierarchical VAEs in [9, §2.2].

32



dependence on all previous latent variables z; in their residual state as shown in §2.3, imposing this
conditional structure. This implies a 1st-order Markov chain conditional on the previous residual
state, not the previous z;. Such Ist-order Markov processes have shown great success empirically,
such as in LSTMs [38]. Further, note that in all previous work on HVAEs, the neural networks
estimating the inference and generative distributions of the [-th stochastic layer are not sharing
parameters with those estimating other stochastic layers.

Intuitively, HVAEs’ conditional structure together with a U-Net architecture imposes an inductive
bias on the model to learn a hierarchy of latent variables where each level corresponds to a different
degree of abstraction. In this work, we characterise this intuition via the regularisation property of
U-Nets in §2.2.

The distributions over the latent variables in both the inference and generative model are Gaussian

with mean p and a diagonal covariance matrix 3, i.e. foralll =1,..., L,
90 (2z1|z>1,%) ~ N(py 9, Z10), (B.104)
po(Z1|z>1) ~ N (19, 200), (B.105)

where mean and variances are estimated by neural networks with parameters ¢ and 6 corresponding
to stochastic layer [. Note that py(z1|z>;) = py(2z1), where the top-down block estimating py(zy,)
receives the zero-vector as input, and ¢y (21 |2>1,X) = ¢o(z1|x), meaning that we infer without
conditioning on other latent groups at the L-th step. Further, VDVAE chooses p,(x|Z) to be a
discretized Mixture-of-Logistics likelihood.

B.4 Sampling of Time Steps in HVAEs

Monte Carlo sampling of time steps in ELBO of HVAEs.

We here provide one additional theoretical result. We show that the ELBO of an HVAE can be written
as an expected value over uniformly distributed time steps.

Previous work [19] [41] (Eq. (13), respectively) showed that the diffusion loss term L1 (x) in the
ELBO of discrete-time diffusion models can be written as

T )
Lr(x) = SEeunonimv,1) [(SNR(S) — SNR(1)) ||x — %o (2; t)H;} (B.106)

which allows maximizing the variational lower-bound via a Monte Carlo estimator of Eq. B.106,
sampling time steps.

Inspired by this result for diffusion models, we provide a similar form of the ELBO for an HVAE with
factorisation as in Egs. (B.102)-(B.103) (and the graphical model in Fig. B.4). An HVAE’s ELBO
can be written as

(Zl ‘ Z>1, X) :|

. q
1 > Ezg(apo 1 = LB unir(1,L) | Ezg(apo |
0gp(x) = Ezq(zlx) [log p(x|2)] I~ UL, L) [ T PP

Proof.
log p(x) > Ezq(z)x) [log p(x|Z)] — KL [q(Z]x)||p(Z)]

Hf_1q<zl|z>l,x>]
[T, p(zilz0)
L
. Lo (z1]z>1,%)
g gz [log p(x|Z)] — dZq(Z|x) log | L2IE>LX)
(#)x) [log p ;/ q g[ }

p(zi1]Z>1)

— q(Zl‘Z>l,X)
= By iz [ — LEyn By gy log REWZZLX) |
d~q(7lx) (108 P(X|Z)] I~Unif(1,L) [ a@polo8 = S ]

= Ezq(z)x) [log p(x|Z)] — /diq(ZIX) logl

O

This allows reducing the computational and memory costs of the KL-terms in the loss and depends on
how many Monte Carlo samples are drawn. However, in contrast to diffusion models, all intermediate
stochastic layers (up to the top-most and bottom-most layer chosen when sampling time steps in the
recognition and generative model, respectively) still need to be computed as each latent variable’s
distribution depends on all previous ones.

33



C Code, computational resources, existing assets used

Code. We provide our PyTorch code base at https://github.com/FabianFalck/unet-vdvae. Our
implementation is based on, modifies and extends the official implementation of VDVAE [9]. Below,
we highlight key contributions:

* We implemented weight-sharing of individual ResNet blocks for a certain number of
repetitions.

* We implemented the datasets and the preprocessing of MNIST and CelebA, which were
previously not used with VDVAE.

* We implemented the option of synchronous and asynchronous processing in time (see
Appendix G.4.5).

* We implemented Fourier features with hyperparameters choosing their frequencies following
VDM [19]. One can concatenate them at three different locations as options.

* We simplified the multi-GPU implementation.

* We implemented an option to convert the VDVAE cell into a non-residual cell (see Appendix
G.4.4).

* We implemented logging of various metrics and plots with weight&biases.

* We implemented gradient checkpointing [55] as an option in the decoder of VDVAE
where the bulk of the computation occurs. We provide two implementations of gradient
checkpointing, one based on the official PyTorch implementation which is unfortunately
slow when using multiple GPUs, and a prototype for a custom implementation based on
https://github.com/csrhddlam/pytorch-checkpoint.

The README . md contains instructions on installation, downloading the required datasets, the setup of
weights&biases, and how to reproduce our main results.

Computational resources. For the majority of time during this project, we used two compute
clusters: The first cluster is a Microsoft Azure server with two Nvidia Tesla K80 graphic cards with
11GB of GPU memory each, which we had exclusive access to. The second cluster is an internal
cluster with 12 Nvidia GeForce GTX 1080 graphic cards and 10GB of GPU memory each, shared
with a large number of users. In the late stages of the project, in particular to perform runs on
ImageNet32, ImageNet64 and CelebA, we used a large-scale compute cluster with A100 graphic
cards with 40GB of GPU memory each. We refer to the acknowledgements section for further details.

In the following, we provide a rough estimate of the total compute required to reproduce our main
experiments. Compute time until convergence scales with the depth of the HVAEs. For the shallower
HVAEs in our small-scale experiments in §G.1, training times range from several days to a week. For
our larger-scale experiments on MNIST and CIFAR10, training times range between 1 to 3 weeks.
For our deepest runs on ImageNet32 and CelebA, training times range between 2.5 to 4 weeks.

For orientation, in Table C.1, we provide an estimate of the training times of our large-scale runs in
Table 1. We note that these runs have been computed on different hardware, i.e. the training times are
only to some degree comparable, yet give an indication.

Existing assets used. In the experiments, our work directly builds on top of the official imple-
mentation of VDVAE [9] (MIT License). We use the datasets reported in Appendix D. In our
implementation, we make use of the following existing assets and list them together with their
licenses: PyTorch [56], highlighting the torchvision package for image benchmark datasets, and
the gradient checkpointing implementation (custom license), Numpy [57] (BSD 3-Clause License)
Weights&Biases [58] (MIT License), Apex [59] (BSD 3-Clause “New” or “Revised” License),
Pickle [60] (license not available), Matplotlib [61] (PSF License), ImagelO [62] (BSD 2-Clause
“Simplified” License), MPI4Py [63] (BSD 2-Clause “Simplified” License), Scikit-learn [64] (BSD
3-Clause License), and Pillow [65] (custom license).

D Datasets

In our experiments, we make use of the following datasets: MNIST [42], CIFAR10 [43], ImageNet32
[44, 45], ImageNet64 [44, 45], and CelebA [46]. We briefly discuss these datasets, focussing on

34


https://github.com/FabianFalck/unet-vdvae
https://github.com/openai/vdvae
https://github.com/csrhddlam/pytorch-checkpoint
https://github.com/openai/vdvae
https://github.com/openai/vdvae

Table C.1: A large-scale study of parameter efficiency in HVAEs. For all our runs in Table 1, we
report their stochastic depth and estimated training time.

Method Depth  Training time
MNIST (28 x 28)
WS-VDVAE (ours) 57 ~ b days
VDVAE* (ours) 43 ~ 5 days

CIFARI10 (32 x 32)
WS-VDVAE (ours) 268 ~ 18 days
WS-VDVAE (ours) 105 ~ 13 days
VDVAE* (ours) 43 ~ 9 days

ImageNet (32 x 32)
WS-VDVAE (ours) 169 ~ 20 days
WS-VDVAE (ours) 235 ~ 24 days
VDVAE* (ours) 78 ~ 16 days

CelebA (64 x 64)
WS-VDVAE (ours) 125 ~ 27 days
VDVAE* (ours) 75 ~ 21 days

their preprocessing, data splits, data consent and commenting on potential personally identifiable
information or offensive content in the data. We refer to the training set as images used during
optimisation, the validation set as images used to guide training (e.g. to compute evaluation metrics
during training) but not used for optimisation directly, and the test set as images not looked at
during training and only to compute performance of completed runs. For all datasets, we fix the
training-validation-test split over different runs, and we scale images to be approximately centred and
having a standard deviation of one based on statistics computed on the respective training set. If not
stated otherwise, we use a modified version of the implementation of these datasets in [9].

MNIST. The MNIST dataset [42] contains gray-scale handwritten images of 10 digit classes (‘0 to
‘9’) with resolution 28 x 28. It contains 60, 000 training and 10, 000 test images, respectively. From
the training images, we use 55, 000 images as the training set and 5000 images as the validation set.
We use all 10, 000 test images as the testing set. We build on top of the implementation provided
in NVAE [10] (https://github.com/NVlabs/NVAE/blob/master/datasets.py), which itself
uses torchvision [56], and dynamically binarize the images, meaning that pixel values are binary, as
drawn from a Bernoulli distribution with the probabilities given by the scaled gray-scale values in
[0, 1]. Furthermore, we pad each image with zeros so to obtain the resolution 32 x 32.

The dataset is highly standardised and cropped to individual digits so that offensive content or
personally identifiable information can be excluded. As the original NIST database from which
MNIST was curated is no longer available, we cannot comment on whether consent was obtained
from the subjects writing and providing these digits [27].

CIFAR10. The CIFARI1O dataset [43] contains coloured images from 10 classes (Cairplane’,
“automobile’, ’bird’, *cat’, ’deer’, ’dog’, *frog’, *horse’, ’ship’, "truck’) with resolution 32 x 32. It
contains 50, 000 training and 10, 000 test images, respectively. We split the training images into
45,000 images in the training set and 5000 images in the validation set, and use all 10,000 test
images as the test set.

CIFAR10 was constructed from the so-called 80 million tiny images dataset by Alex Krizhevsky,
Vinod Nair, and Geoffrey Hinton [66]. On the official website of the 80 million tiny images dataset,
the authors state that this larger dataset was officially withdrawn by the authors on June 29th, 2020
due to offensive images being identified in it [67]. The authors of the 80 million tiny images dataset
do not comment on whether CIFAR10, which is a subset of this dataset, likewise contains these
offensive images or is unaffected. [43] states that the images in the 80 million tiny images dataset
were retrieved by searching the web for specific nouns. The authors provide no information to which
degree consent was obtained from the people who own these images.

ImageNet32. The ImageNet32 dataset, a downsampled version of the ImageNet database [44, 45],
contains 1, 281, 167 training and 50, 000 test images from 10, 000 classes with resolution 32 x 32.

35


https://github.com/NVlabs/NVAE/blob/master/datasets.py
https://github.com/NVlabs/NVAE/blob/master/datasets.py

From the training images, 5, 000 images as the validation set and the remaining 1, 276, 167 as the
training set, and further use all 50, 000 test images as the test set.

ImageNet is a human curated collection of images downloaded from the web via search engines. While
ImageNet used Amazon Mechanical Turk to lable the images, we were unable to find information on
processes which ensured no personally identifiable or offensive content was contained in the images,
which is somewhat likely given the “in-the-wild” nature of the dataset. The ImageNet website states
that the copyright of the images does not belong to authors of ImageNet.

ImageNet64. The ImageNet64 dataset, a second downsampled version of the ImageNet database
[44, 45], likewise contains 1,281, 167 training and 50, 000 validation images with resolution 64 x 64.
We use the same data splits as for ImageNet32. Refer to the above paragraph on ImageNet32 for
discussion of personally identifiable information, offensive content and consent.

CelebA. The CelebA dataset [46] contains 162, 770 training, 19, 867 validation and 19, 962 test
images with resolution 64 x 64 which we directly use as our training, validation and test set,
respectively. Our implementation is a modified version of the one provided in NVAE [10] (https:
//github.com/NVlabs/NVAE/blob/master/datasets.py).

CelebA images are “obtained from the Internet”. The authors state that these images are not the
property of the authors of associated institutions [68]. As this dataset shows the faces of humans,
these images are personally identifiable. We were unable to identify a process by which consent for
using these images was obtained, or how potential offensive content was prevented.

E Potential negative societal impacts

Our work provides mainly theoretical and methodological contributions to U-Nets and HVAEs, and
we hence see no direct negative societal impacts. Since U-Nets are widely used in applications, our
theoretical results and any future work derived from them may downstream improve such applications,
and thus also enhance their performance in malicious uses. In particular, U-Nets are widely used
in generative modelling, and here, our work may have an effect on the quality of ‘deep fakes’, fake
datasets or other unethical uses of generative modelling. For HVAESs, our work may inspire novel
models which may lead to improved performance and stability of these models, also when used in
applications with negative societal impact.

F Model and training details

On the stability of training runs. VDVAE uses several techniques to improve the training stability
of HVAEs: First, gradient clipping [69] is used, which reduces the effective learning rate of a
mini-batch if the gradient norm surpasses a specific threshold. Second, gradient updates are skipped
entirely when gradient norms surpass a second threshold, typically chosen higher than the one for
gradient clipping. Third, gradient updates are also skipped if the gradient update would cause an
overflow, resulting in NaN values.

In spite of the above techniques to avoid deterioration of training in very deep HVAEs, particularly
when using a lot of weight-sharing, we experienced stability problems during late stages of training.
These were particularly an issue on CIFAR10 in the late stages of training (on average roughly after 2
weeks of computation time), and often resulted in NaN values being introduced or posterior collapse.
We did not extensively explore ways to prevent these in order to do minimal changes compared to
vanilla VDVAE. We believe that an appropriate choice of the learning rate (e.g. with a decreasing
schedule in later iterations) in combination with other changes to the hyperparameters may greatly
help with these issues, but principled fixes of, for instance, the instabilities identified in Theorem 5
are likewise important.

Gradient checkpointing, and other alternatives to reduce GPU memory cost. A practical
limitation of training deep HVAEs (with or without weight-shared layers) is their GPU memory
cost: Training deeper HVAEs means storing more intermediate activations in GPU memory during
the forward pass, when memory consumption reaches its peak at the start of the backward pass.
This limits the depth of the networks that can be trained on given GPU resources. To address this
issue, particularly when training models which may not even fit on used hardware, we provide a

36


https://github.com/NVlabs/NVAE/blob/master/datasets.py
https://github.com/NVlabs/NVAE/blob/master/datasets.py
https://github.com/NVlabs/NVAE/blob/master/datasets.py
https://github.com/NVlabs/NVAE/blob/master/datasets.py

prototype of a custom® gradient checkpointing implementation. Checkpointing occurs every few
ResNet blocks which trades off compute for memory and can be used as an option. In gradient
checkpointing, activations are stored only at specific nodes (checkpoints) in the computation graph,
saving GPU memory, and are otherwise recomputed on-demand, requiring one additional forward
pass per mini-batch [55]. Training dynamics remain unaltered. We note that other techniques exist
specifically targeted at residual networks: For example, [70] propose to stochastically drop out
entire residual blocks at training time ©. This technique has two disadvantages: It changes training
dynamics, and peak memory consumption varies between mini-batches, where particularly the latter
is an inconvenient property for the practitioner as it may cause out-of-memory errors.

G Additional experimental details and results

In this section, we provide additional experimental details and results.

Hyperparameters and hyperparameter tuning. In the following, we describe the hyperparameters
chosen in our experiments. As highlighted in the main text, we use the state-of-the-art hyperparame-
ters of VDVAE [9] wherever possible. This was possible for CIFAR10, ImageNet32 and ImageNet64.
On MNIST and CelebA, VDVAE [9] did not provide experimental results. For MNIST, we took the
hyperparameters of CIFAR10 as the basis and performed minimal hyperparameter tuning, mostly
increasing the batch size and tuning the number and repetitions of residual blocks. For CelebA, we
used the hyperparameters of ImageNet64 with minimal hyperparameter tuning, focussing on the
number and repetitions of the residual blocks. For all datasets, the main hyperparameter we tuned was
the number and repetitions (through weight-sharing) of residual blocks ceteris paribus, i.e. without
searching over the space of other important hyperparameters. As a consequence, it is likely that
further hyperparameter tuning would improve performance as changing the number of repetitions
changes (the architecture of) the model.

We provide three disjunct sets of hyperparameters: global hyperparameters (Table G.2), which are
applicable to all runs, data-specific hyperparameters (Table G.3), which are applicable to specific
datasets, and run-specific hyperparameters, which vary by run. The run-specific hyperparameters will
be provided in the respective subsections of §G, where applicable.

In the below tables, ‘factor of # channels in conv. blocks’ refers to the multiplicative factor of the
number of channels in the bottleneck of a (residual) block used throughout VDVAE. ‘# channels of z;’
refers to C in the shape [C, H, W] of the latent conditional distributions in the approximate posterior
and prior, where height H and width W are determined by the resolution of latent z;. Likewise, ‘#
channels in residual state’ refers to C in the shape [C, H, W] of the residual state flowing through the
decoder of VDVAE. ‘Decay rate y of evaluation model’ refers to the multiplicative factor by which
the latest model parameters are weighted during training to update the evaluation model.

Table G.2: Global hyperparameters.

factor of # channels in conv. blocks  0.25

Gradient skipping threshold 3000
Adam optimizer: Weight decay 0.01
Adam optimizer: 0.9
Adam optimizer: 39 0.9

G.1 “More from less”: Parameter efficiency in HVAEs

In this experiment, we investigate the effect of repeating ResNet blocks in the bottom-up and top-down
pass via weight-sharing. rN indicates that a ResNet block is repeated N times through weight-sharing
where r is to be treated like an operator and N is a positive integer. In contrast, xN, already used in the
official implementation of VDVAE, indicates N number of ResNet blocks without weight-sharing.

3Our implementation deviates from the official PyTorch implementation of gradient checkpointing which is
slow when using multiple GPUs, and is based on https://github.com/csrhddlam/pytorch-checkpoint.

SThis technique is called “stochastic depth” as the active depth of the network varies at random. In this work,
however, we go with our earlier definition of this term which refers to the number of stochastic layers in our
network, and thus avoid using its name to prevent ambiguities.

37


https://github.com/csrhddlam/pytorch-checkpoint

Table G.3: Data-specific hyperparameters.

Dataset MNIST CIFARIO ImageNet32 ImageNet64 CelebA
Learning rate 0.0001 0.0002 0.00015 0.00015 0.00015
# iterations for learning rate warm-up 100 100 100 100 100
Batch size 200 16 8 4 4
Gradient clipping threshold 200 200 200 220 220
# channels of z; 8 16 16 16 16
# channels in residual state 32 384 512 512 512
Decay rate v of evaluation model 0.9999 0.9999 0.999 0.999 0.999

In Tables G.4 and G.5, we provide the NLLs on the test set at convergence corresponding to the NLLs
on the validation set during training which we reported in Fig. 5. In general, weight-sharing tends to
improve NLL, and models with significantly less parameters reach or even surpass other models with
more parameters. We refer to the main text for the intuition of this behavior. In Table G.5 (CIFAR10),
we find that the not weight-sharing runs have test NLLs noticeably deviating from the results on the
validation set, yet the overall trend of more weight-sharing improving NLL tends to be observed. This
is in line with our general observation that our HVAE models are particularly unstable on CIFAR10.

Table G.4: A small-scale study on parameter efficiency of HVAEs on MNIST. We compare mod-
els with one, two, three and four parameterised blocks per resolution ({z1,z2, 3, x4}) against
models with a single parameterised block per resolution weight-shared {2,3,5,10,20} times
({r2,r3,r5,r10,720}). We report NLL (]) measured on the test set, corresponding to the results on
the validation set in Fig. 5. NLL performance increases with more weight-sharing repetitions and
surpasses models without weight-sharing but with more parameters.

Neural architecture  # Params NLL ({)

ri/x1 107k < 86.87
r2 107k < 85.25
r3 107k < 84.92
r5 107k < 83.92
r10 107k < 82.67
r20 107k < 81.84
x2 140k < 84.44
x3 173k < 82.64
x4 206k < 82.46

In Table G.6, we provide key run-specific hyperparameters for the large-scale runs corresponding to
Table 1 in the main text. Two points on the architecture of the encoder and the decoder are worth
noting: First, note that the decoder typically features more parameters and a larger stochastic depth
than the encoder. We here follow VDVAE which observed this distribution of the parameters to be
beneficial. Second, note that while we experienced a benefit of weight-sharing, there is a diminishing
return of the number of times a specific cell is repeated. Hence, we typically repeat a single block for
no more than 10-20 times, beyond which performance does not improve while computational cost
increases linearly with the number of repetitions. Exploring how to optimally exploit the benefit of
weight-sharing in HVAEs would be an interesting aspect for future work.

38



Table G.5: A small-scale study on parameter efficiency of HVAEs on CIFARIO. We compare
models with with one, two, three and four parameterised blocks per resolution ({z1, 2, x3, z4})
against models with a single parameterised block per resolution weight-shared {2, 3, 5, 10, 20} times
({r2,r3,r5,7r10,720}). We report NLL (}) measured on the test set, corresponding to the results on
the validation set in Fig. 5. NLL performance tends to increase with more weight-sharing repetitions.
However, in contrast to the validation set (see Fig. 5) where this trend is evident, it is less so on the
test set.

Neural architecture  # Params NLL (])

ri/x1 8.7m <4.17
r2 8.7m < 4.93
r3 8.7m <4.78
r5 8.7m -
rl0 8.7m <4.32
r20 8.7m < 3.54
x2 13.0m <5.77
x3 17.3m < 3.07
x4 21.6m <3.01

39



Table G.6: A large-scale study of parameter efficiency in HVAEs. We here provide key run-specific
hyperparameters corresponding to the results reported in Table 1 in the main text. Note that the row
order of our runs directly corresponds with Table 1. § refers to gradient clipping threshold. ~y refers to
the gradient skipping threshold. We use the same nomenclature for number of cells (x) and number
of repetitions for one block (r) as before. In addition, as in VDVAE’s official code base, we use d
to indicate average pooling, where the integer before d indicates the resolution on which we pool,
and the integer after indicates the down-scaling factor. Further, m indicates interpolating, where we
up-scale from a source (integer after m) to a target resolution (integer before m).

Dataset Method Batch & ¥ Encoder Architecture Decoder Architecture
size
WS-VDVAE 70 - 200 32r3,32r3,32r3,32r3,32r3,32d2, 1x1,4m1,4x2,8m4,
= 2 (ours) 16r3,16r3,16r3,16d2, 8x5,16m8,16r3,16r3,16r3,16r3,16r3,32mi6,
(é’ X 8x6,8d2,4x3,4d4,1x3 32r3,32r3,32r3,32r3,32r3,32r3,32r3,
=Y 32r3,32r3,32r3

VDVAE* 70 - 200 32x11,32d2,16x6,16d2, 1x1,4m1,4x2,8m4,8x5,16m8,16x10,32m16,32x21

(ours) 8x6,8d2,4x3,4d4,1x3

WS-VDVAE 16 400 4000 32r12,32r12,32r12,32r12,32r12,32r12, 1r12,4m1,4r12,4r12,8m4,

(ours) 32d2,16r12,16r12,16r12,16r12,1642, 8r12,8r12,8r12,8r12,8r12,
8r12,8r12,8r12,8r12,8r12,8r12,842, 16m8,16r12,16r12,16r12,16r12,16r12,
4r12,4r12,4r12,4d4,1r12,1r12,1r12 32m16,32r12,32r12,32r12,32r12,

32r12,32r12,32r12,32r12,32r12

= 2 WS-VDVAE 16 200 2500 32r3,32r3,32r3,32r3,32r3,32r3, 1x1,4m1,4x2,8m4,8x5,

E X (ours) 32r3,32r3,32r3,32r3,32r3,32d2, 16m8,16r3,16r3,16r3,16r3,16r3,

o8 16r3,16r3,16r3,16r3,16r3,16r3,16d2, 16r3,16r3,16r3,16r3,16r3,32m16,

8x6,8d2,4x3,4d4,1x3 32r3,32r3,32r3,32r3,32r3,32r3,

32r3,32r3,32r3,32r3,32r3,32r3,
32r3,32r3,32r3,32r3,32r3,32r3,
32r3,32r3,32r3

VDVAE* 16 200 400 32x11,32d2,16x6,16d2, 1x1,4m1,4x2,8m4,8x5,

(ours) 8x6,8d2,4x3,4d4,1x3 16m8,16x10,32m16,32x21

WS-VDVAE 8 200 5000 32r10,32r10,32r10,32r10,32d2, 1x2,4m1,4x4,8m4,8x9,16m8,

(ours) 16r10,16r10,16r10,16d2,8x8,8d2, 16r10,16r10,16r10,16r10,16r10,32mi16,
4x6,4d4,1x6 32r10,32r10,32r10,32r10,32r10,32r10,

32r10,32r10,32r10,32r10

g R WS-VDVAE 8 200 5000 32r6,32r6,32r6,32r6,32r6, 1x2,4m1,4x4,8m4,8x9,

z" x  (ours) 32r6,32r6,32r6,32r6,3242, 16m8,16r6,16r6,161r6,

EQ 16r6,16r6,16r6,16r6,16r6,16d2, 16r6,16r6,16r6,16r6,161r6,1616,

8x8,8d2,4x6,4d4,1x6 16r6,16r6,32m16,32r6,32r6,

32r6,32r6,32r6,32r6,32r6,32r6,
32r6,32r6,32r6,32r6,32r6,32r6,32r6,32r6,
32r6,32r6,32r6,32r6,32r6,32r6,32r6,32r6,32r6

VDVAE* 8 200 300 32x15,32d2,16x9,16d2,8x8,8d2, 1x2,4m1,4x4,8m4,8x9,16m8,16x19,32m16,32x40

(ours) 4x6,4d4,1x6

WS-VDVAE 4 220 3000 64r3,64r3,64r3,64r3,64r3,64r3,64r3, 1r3,1r3,4ml1,4r3,4r3,4r3,

(ours) 64d2,32r3,32r3,32r3,32r3,32r3,32r3, 8m4,8r3,8r3,8r3,8r3,

< 32r3,32r3,32r3,32r3,32r3,3242, 16m8,16r3,16r3,16r3,16r3,16r3,16r3,16r3,
=z i 16r3,16r3,16r3,16r3,16r3,16r3,16d2, 32m16,32r3,32r3,32r3,32r3,32r3,32r3,
3 < 8r3,8r3,8r3,8d2,4r3,4r3,4r3,44d4, 32r3,32r3,32r3,32r3,32r3,32r3,32r3,
co 1r3,1r3,1r3 32r3,32r3,32r3,64m32,64r3,64r3,64r3,64r3,
64r3,64r3,64r3,64r3
VDVAE* 4 220 3000 64x11,64d2,32x20,32d2, 1x2,4m1,4x3,8m4,8x7,16m8,
(ours) 16x9,16d2,8x8,8d2,4x7,4d4,1x5 16x15,32m16,32x31,64m32,64x12

40



G.2 HVAESs secretly represent time and make use of it

In this experiment, we measure the L, norm of the residual state at every ResNet block in both
the forward (bottom-up/encoder) and backward (top-down/decoder) model. Let x; be the output of
ResNet block 7 in the bottom-up model, and y; be the input of ResNet block ¢ in the top-down model
for one batch. In the following, augmenting Fig. 6 on MNIST in the main text, we measure ||2;||2 or
|lyi||2, respectively, over 10 batches. We also use this data to compute appropriate statistics (mean
and standard deviation) which we plot. We measure the state norm in the forward and backward pass
for models trained on CIFAR10 and ImageNet32 in Figs. G.5 and G.6, respectively. We note that the
forward pass of the ImageNet32 has a slightly unorthodox, yet striking pattern in terms of state norm
magnitude, presumably caused by an overparameterisation of the model. In summary, these findings
provide further evidence that the residual state norm of VDVAESs represents time.

1400

N
1=}
o

-

N

=3

1<

1000

-
1%
o

©

S

S

—
o
S

o
=3
S

u

o
N
o
1<

|1xi||2 with output X; of bottom-up block
|lyill2 with input y; of top-down block

N
=3
S

gy g g g g & 3 mppe|
axa

1
1
1 1

1 1

1 1

T T T T 1 T T Iv T vl T T T T
0 5 10 15 20 25 30 10 15 20 25 30 35 40

Bottom-up block i Top-down block i

o

o
5

Figure G.5: HVAE: are secretly representing time on CIFAR10: We measure the Ly-norm of the
residual state at every residual block ¢ for the [Left] forward (bottom-up) pass, and [Right] the
backward (top-down) pass, respectively, over 10 batches with 100 data points each. The thick line
refers to the average and the thin, outer lines refer to -2 standard deviations.

41



400,
E 3000

Bx8
poas
axd
8x8
16x16
32032

W
o
=}

N
o
=3
S

300 -

2000 A

N
o
1<}

N
=}
o

1500

o
1%
I}

1000

[Ixil|2 with output x; of bottom-up block
|lyill> with input y; of top-down block

u
=3
S
!

w
o

=
o
S

o

10 20 30 40 0 10 20 30 40 50 60 70
Bottom-up block i Top-down block i

o

Figure G.6: HVAE:s are secretly representing time on ImageNet32: We measure the Lo-norm of
the residual state at every residual block ¢ for the [Left] forward (bottom-up) pass, and [Right] the
backward (top-down) pass, respectively, over 10 batches with 100 data points each. The thick line
refers to the average and the thin, outer lines refer to 2 standard deviations.

When normalising the residual state in our experiments in Table 2 (case “normalised”), we do so at
the same positions where we measure the state norm above. At the output of every forward ResNet
block x; and the input of every backward ResNet block y;, we assign

"y ,
_Fi yi

Ti 4 -
il llyill2

for every mini-batch during training. This results in a straight line in these plots for the “normalised”
case. As the natural behavior of VDVAEs is—as we measured—to learn a non-constant norm,
normalising the state norm has a deteriorating consequence, as we observe in Table 2. In contrast, the
regular, unnormalised runs (case “non-normalised”’) show well-performing results.

We further analysed the normalised state norm experiments in Table 2. The normalised MNIST
and CIFARI1O0 runs terminated early (indicated by X), more precisely after 18 hours and 4.5 days
of training, respectively. From the very start of the optimisation, the normalised models have poor
training behavior. To show this, in Fig. G.7, we illustrate the NLL on the validation set during
training for the three normalised runs as compared to regular, non-normalised training. Validation
ELBO only improves for a short time, after which the normalised runs deteriorate, showing no further
improvement or even a worse NLL.

1000

— Normalised
— Non-normalised

800

NLL [nats] (validation set)
o

NLL [bits per dim] (validation set)

NLL [bits per dim]

200

3
k 20k a0k 60k 80k 100k k 20k 40k 60k 80k 100k k 20k 40k 60k 80k 100k

Figure G.7: On the training dynamics of VDVAE with and without a normalised residual state norm.
NLL () measured on the validation set of MNIST [left], CIFAR10 [middle] and ImageNet32 [right].
The normalised runs suffer from poor training dynamics from the very start of the optimisation
and even terminate early on MNIST and CIFARI10, indicating that VDVAE makes use of the time
representing state norm during training.

42



G.3 Sampling instabilities in HVAEs

When retrieving unconditional samples from our models, we scale the variances in the unconditional
distributions with a temperature factor 7, as is common practice. We tune 7 “by eye” to improve
the fidelity of the retrieved images, yet do not cherry pick these samples. In Figs. G.8 to G.12,
we provide additional, not cherry-picked unconditional samples for models trained on CIFAR10,
ImageNet32, ImageNet64, MNIST and CelebA, extending those presented in Fig. 7. As shown
earlier, the instabilities in VDVAE result in poor unconditional samples for CIFAR10, ImageNet32
and ImageNet64, but relatively good samples for MNIST and CelebA.

Figure G.8: Further unconditional samples (not cherry-picked) of VDVAE* on CIFARI0, augmenting
those presented in Fig. 7. While samples on MNIST and CelebA demonstrate high fidelity and
diversity, samples on CIFAR10, ImageNet32 and ImageNet64 are diverse, but unrecognisable,
demonstrating the instabilities identified by Theorem 5. We chose the temperature as 7 = 0.9.

Figure G.9: Further unconditional samples (not cherry-picked) of VDVAE* on ImageNet32, augment-
ing those presented in Fig. 7. While samples on MNIST and CelebA demonstrate high fidelity
and diversity, samples on CIFAR10, ImageNet32 and ImageNet64 are diverse, but unrecognisable,
demonstrating the instabilities identified by Theorem 5. We chose the temperature as 7 = 1.0.

43



Figure G.10: Further unconditional samples (not cherry-picked) of VDVAE* on ImageNet64, aug-
menting those presented in Fig. 7. While samples on MNIST and CelebA demonstrate high fidelity
and diversity, samples on CIFAR10, ImageNet32 and ImageNet64 are diverse, but unrecognisable,
demonstrating the instabilities identified by Theorem 5. Temperatures 7 are tuned for maximum
fidelity. We chose the temperature as 7 = 0.9.

g 058808868 %

Figure G.11: Further unconditional samples (not cherry-picked) of VDVAE* on MNIST, augment-
ing those presented in Fig. 7. While samples on MNIST and CelebA demonstrate high fidelity
and diversity, samples on CIFARI10, ImageNet32 and ImageNet64 are diverse, but unrecognis-
able, demonstrating the instabilities identified by Theorem 5. We chose the temperatures as
7€ {1.0,0.9,0.8,0.7,0.5} (corresponding to the rows).

44



Figure G.12: Further unconditional samples (not cherry-picked) of VDVAE* on CelebA, augmenting
those presented in Fig. 7. While samples on MNIST and CelebA demonstrate high fidelity and
diversity, samples on CIFAR10, ImageNet32 and ImageNet64 are diverse, but unrecognisable,
demonstrating the instabilities identified by Theorem 5. We chose the temperature as 7 = 0.5.

45



In addition, we here also visualise the representational advantage of HVAEs. Fig. G.13 shows samples
where we gradually increase the number of samples from the posterior vs. the prior distributions in
each resolution across the columns. This means that in column 1, we sample the first latent z; in each
resolution from the (on encoder activations conditional) posterior g, and all other latents from the
prior p. A similar figure, but gradually increasing the contribution of the posterior across the blocks
of all resolutions (i.e. column 1 samples z; from the posterior in the very first resolution only) is
shown in VDVAE [9, Fig. 4]. Fig. G.13

> "‘3‘ "'%“?f%ﬂy‘@ ﬂzﬂzﬂzﬂfﬂxﬁﬂ ”‘%‘ﬁ

B PABARA B B B B B B B B B B
-g-ﬁr‘»-;»-; S S S S S S S

Figure G.13: Samples drawn from our model when gradually increasing the contribution of the
approximate posterior. In each column with integer s, we sample the first s latent variables from
the approximate posterior in each resolution, i.e. z; ~ ¢(z;|z~;) (up to the maximum number of
latent variables in each resolution), and z; ~ p(z;|z~ ;) for all other latent variables. The percentage
number indicates the fraction of the number of latent variables among all latent variables sampled
from the approximate posterior. In the left-most column, we visualise corresponding input images.

46



G.4 Ablation studies

G.4.1 Number of latent variables

The number of latent variables increase when increasing the stochastic depth through weight-sharing.
Thus, an important ablation study is the question whether simply increasing the number of latent
variables improves HVAE performance, which may explain the weight-sharing effect. On CIFAR10,
we find that this is not the case: In Table G.7, we analyse the effect of increasing the number of latent
variables ceteris paribus. Furthermore, in Fig. G.14, we report validation NLL during training for the
same runs. In this experiment, we realise the increase in number of latent variables by increasing the
number of channels in each latent variable z; exponentially while slightly decreasing the number of
blocks so to keep the number of parameters roughly constant. Both results indicate that the number
of latent variables, at least for this configuration on CIFAR10, do not add performance and hence
cannot explain the weight-sharing performance.

Table G.7: On the effect of the number of latent variables on CIFAR10. We report the NLL on the
test set at convergence.

# of latent variables # Params NLL ({)

396k 39m 2.88
792k 39m 2.88
1.584m 39m 2.87
3.168m 39m 2.88

3.3
— 396k
— 792k
—— 1.584m

3.2 3.168m

3.1
3.0

2.8

NLL [bits per dim] (validation set)

0ok 200k 400k 600k 800k 1000k
Iterations

Figure G.14: On the effect of the number of latent variables. We report NLL on the validation set of
CIFAR10 during training.

47



G.4.2 Fourier features

In this experiment, we are interested in the effect of Fourier features imposed onto a Haar wavelet
basis due to the inductive bias of the U-Net. Intuitively, we would expect that Fourier features do
not add performance as the U-Net already imposes a good basis for images. We now validate this
hypothesis experimentally: We compute Fourier features in every ResNet block at three different
locations as additional channels and varying frequencies. We implement Fourier features closely
following VDM [19]: Let h; ; 1, be an element of a hidden activation of the network, for example of a
sampled latent & = z;, in spatial position (3, j) and channel k. Then, for each scalar h; ; 5., we add
two transformed scalars for each frequency governed by (3 as follows:

ffjk = sin (zi,j7k257r) , and gf:j’k = cos (ziyj,kQBw) .

In our experiments, we experiment with different choices for 3, but typically select two values at a
time (as in VDM), increasing the number of channels in the resulting activation by a factor of five.
Fourier features are computed on and concatenated to activations at three different locations (in three
separate experiments): At the input of the ResNet block, after sampling, and for the input of the two
branches parameterising the posterior and prior distributions.

In Tables G.8 and G.9, we report performance when concatenating Fourier features at every ResNet
block in these three locations. In all cases, Fourier features deteriorate performance in this multi-
resolution wavelet basis, particularly for high-frequencies which often lead to early termination
due to numeric overflows. However, if training only a single-resolution model where no basis is
enforced, training does not deteriorate, not even for high-frequency Fourier features, yet performance
can neither be improved. Furthermore, we experimented with computing and concatenating the
Fourier features only to the input image of the model, hypothesising numerical instabilities caused
by computing Fourier transforms at every ResNet block, and report results in Table G.10. Here,
performance is significantly better as runs no longer deteriorate, but Fourier features still do not
improve performance compared to not using Fourier features at all.

Table G.8: Fourier features introduced and concatenated in every ResNet block at three different
locations on MNIST. VDVAE typically deteriorates or has poor performance.

Exponent 3 NLL
Loc. 1
[1,2] <784
[3,4] < 80.55
[57 6] (X) -
Loc. 2
[1,2] < 554.50
[37 4] (X) -
[5,6] (X) -
Loc. 3
[1,2] (X) -
[2,3] < 306.67
(3,4] < 345.67
Loc. 1 & single-res.
[3,4] < 87.55
[5, 6] < 86.96
[7,8] < 91.67
No Fourier Features < 79.81

48



Table G.9: Fourier features introduced and concatenated in every ResNet block at three different
locations on CIFAR10. VDVAE typically deteriorates or achieves a poor performance.

Exponent 3 NLL

Loc. 1

3,4] (X) -

5, 6] (X) -
[7,8] <8.94

Loc. 2

3,4] (%) -

5, 6] (X) -

7,8] (X) -

Loc. 3

[3,4] (X¥) -
[5, 6] <8.94
[7,8] < 8.99

No Fourier Features < 2.87

Table G.10: Fourier features introduced on the input image of the model only, with results on
CIFARI0. While performing better than if introduced at every ResNet block, still Fourier features do
not improve performance compared to using no Fourier features at all.

Exponent 3 NLL
Fourier Features on input only
(3, 4] <295
(5, 6] < 2.96
[7,8] <2.89
No Fourier Features <287

49



G.4.3 On the effect of a multi-resolution bridge.

State-of-the-art HVAEs have a U-Net architecture with pooling and, hence, are multi-resolution
bridges (see Theorem 4). We investigate the effect of multiple resolutions in HVAEs (here with spatial
dimensions {322,162, 82,42, 12}) against a single resolution (here with spatial dimension 322). We
choose the number of blocks for the single resolution model such that they are distributed in the
encoder and decoder proportionally to the multi-resolution model and the total number of parameters
are equal in both, ensuring a fair comparison. As we show in Table G.11, the multi-resolution
models perform slightly better than their single-resolution counterparts, yet we would have expected
this difference to be more pronounced. We also note that it may be worth measuring other metrics
for instance on fidelity, such as the FID score [71]. Additionally, multi-resolution models have a
representational advantage due to their Haar wavelet basis representation (illustrated in Appendix G.4,
Fig. G.13).

Table G.11: Single- vs. multi-resolution HVAESs.
# Resolutions  # Params NLL

MNIST

Single 328k < 81.40
Multiple 339k <80.14
CIFAR10

Single 39m <2.89
Multiple 39m < 2.87

ImageNet32

Single 119m < 3.68

Multiple 119m < 3.67

G.4.4 On the importance of a stochastic differential equation structure in HVAEs

A key component of recent HVAEs is a residual cell, as outlined in §4. The residual connection
makes HVAE:s discretise an underlying SDE, as we outlined in this work. Experimentally, it was
previously noted as being crucial for stability of very deep HVAEs. Here, we are interested in ablating
the importance of imposing an SDE structure into HVAEs: We compare models with a residual
HVAE cell (as in VDVAE) with a non-residual HVAE cell which is as close to VDVAE as possible to
ensure a fair comparison. The non-residual VDVAE cell does not possess a residual state which flows
through the backbone architecture. We achieve this by removing the connection between the first
and second element-wise addition in VDVAE’s cell (see [9, Fig. 3]), which is equivalent to setting
Z; + = 0. Hence, in the non-residual cell, during training and evaluation, the reparameterised sample
is directly taken forward. Note that this is distinct from the Euler-Maruyama cell which features
a residual connection. Our experiments confirm that a residual cell is key for training stability, as
illustrated in Table G.12 and Fig. G.15: Without a residual state flowing through the decoder, models
quickly experience posterior collapse of the majority of layers during training.

G.4.5 Synchronous vs. asynchronous processing in time

During the bottom-up pass, VDVAE takes forward the activation of the last time step in each resolution
which is passed to every time step in the top-down pass on the same resolution (see Fig. 3 in VDVAE
[9D. In this ablation study, we were interested in this slightly peculiar choice of an asynchronous
forward and backward process and to what degree it is important for performance. We thus compare
an asynchronous model, with skip connections as in VDVAE [9], with a synchronous model, where
activations from the bottom-up pass are taken forward to the corresponding time step in the top-down
pass. In other words, in the synchronous case, the skip connection mapping between time steps in the
encoder and decoder is ‘bijective’, and it is not ‘injective’, but ‘surjective’ in the asynchronuous case.
We realise the synchronous case by choosing the same number of blocks in the encoder as VDVAE*
has in the decoder, i.e. constructing a ‘symmetric’ model. To ensure a fair comparison, both models
(synchronous and asynchronous) are further constructed to have the same number of parameters.
In Table G.13, we find that synchronous and asynchronous processing achieve comparable NLL,
indicating that the asynchronous design is not an important contributor to performance in VDVAE. We

50



Table G.12: Residual vs. non-residual VDVAE cell. The residual HVAE strongly outperforms a
non-residual VDVAE cell, where the latter’s training deteriorates. This is also analysed in Fig. G.13.
We report NLL on the test set at convergence, or at the last model checkpoint before deterioration of
training.

Cell type NLL
MNIST
Residual VDVAE cell < 80.05
Non-residual VDVAE cell < 112.58
CIFAR10
Residual VDVAE cell < 2.87
Non-residual VDVAE cell < 3.66
ImageNet
Residual VDVAE cell < 3.667

Non-residual VDVAE cell (X) < 4.608

o o o Iy = [
> o © 5 N} IS

o
N}

Cumulative, batch-averaged KLs [bits per dim]
Cumulative, batch-averaged KLs [bits per dim]

o
=]

0 10 20 30 o 0 10 20 30 2
Layer index Layer index
Figure G.15: Cumulative sum of KL-terms in the ELBO of a residual and non-residual VDVAE,
averaged over a batch at convergence. We report the two CIFAR10 runs in Table G.12. The posterior
collapses for the majority of the latent variables in the non-residual VDVAE cell case [right], but
carries information for all latent variables in the regular, residual cell case [left].

note, however, that an advantage of the asynchronous design, which is exploited by VDVAE, is that
the bottom-up and top-down architectures can have different capacities, i.e. have a different number
of ResNet blocks. VDVAE found that a more powerful decoder was beneficial for performance [9].

Table G.13: Synchronous vs. asynchronous processing in time. We report NLL on the test set on
CIFAR10 and ImageNet32, respectively.

Processing NLL

CIFAR10
Synchronous < 2.85
Asynchronous < 2.86

ImageNet32
Synchronous < 3.69
Asynchronous < 3.69

51



	Introduction
	The Multi-Resolution Framework
	Multi-Resolution Framework: Definitions and Intuition
	The regularisation property imposed by U-Net architectures with average pooling
	Example: HVAEs as Diffusion Discretisations

	Experiments
	``More from less'': Improving parameter efficiency in HVAEs
	HVAEs secretly represent time and make use of it
	Sampling instabilities in HVAEs
	Ablation studies

	Related work
	Conclusion
	Appendices
	Framework Details and Technical Proofs
	Definitions and Notations
	Dimension Reduction Conjugacy
	Average pooling Truncation Error
	U-Nets in V-J
	Forward Euler Diffusion Approximations
	Time-homogenuous model
	HVAE Sampling

	Background
	Multi-Resolution Hierarchy and thought experiment
	U-Net
	Hierarchical VAEs
	Sampling of Time Steps in HVAEs

	Code, computational resources, existing assets used
	Datasets
	Potential negative societal impacts
	Model and training details
	Additional experimental details and results
	``More from less'': Parameter efficiency in HVAEs
	HVAEs secretly represent time and make use of it
	Sampling instabilities in HVAEs
	Ablation studies
	Number of latent variables
	Fourier features
	On the effect of a multi-resolution bridge. 
	On the importance of a stochastic differential equation structure in HVAEs
	Synchronous vs. asynchronous processing in time



