
A Deriving a Gaussian approximation to the posterior

We repeat the derivation in §2.2 for a Gaussian, rather than a point estimate of the posterior.

Recall that if p(x) is the likelihood (5) of x under a DDPM, then in the first expectation of (2) we
should use q(h = {xT , ...,x1}|x0 = x) =

∏T
t=1 q(xt | xt−1). A computationally and notationally

convenient form for the approximate posterior over x = x0 is a scalar-covariance Gaussian:

q(x) = N (x;
√

1− ψη, ψI). (16)

We can sample xt at any arbitrary time step as

q(xt) = N (xt;
√
ᾱtη, (1− ᾱt)I) (17)

where αt = 1− βt and ᾱt =
∏t

i=0 αt, with the convention that β0 = ψ (note the difference with (8),
which is the special case of (17) with β0 = 0). Analogously to [13], we can also extract a conditional
Gaussian q(xt−1 | xt, ψ, η) and express the first expectation in (2) as

−Eq(x)q(h|x)[log p(x,h)− log q(x)q(h|x)] =
∑
t

KL(q(xt−1 | xt, η, ψ) ∥ pθ(xt−1 | xt)), (18)

which after reparametrization [13] leads to∑
t

wt(β)Eϵ∼N (0,I)[∥ϵ− ϵθ(xt, t)∥22], xt =
√
ᾱtη +

√
1− ᾱtϵ (19)

where the link between the stage t noise reconstruction ϵθ(xt, t) and the model’s expectation µθ(xt, t)
is

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
. (20)

Assuming uniform weighting of the noising steps as before, the free energy in (2) reduces to

F =
∑
t

Eϵ∼N (0,I)[∥ϵ− ϵθ(xt, t)∥22]− Eq(x)[log c(x,y)]. (21)

Unlike (12), (21) involves an expectation over a Gaussian variable. To optimize through this expecta-
tion, one could use the reparametrization trick: Eq(x)[log c(x,y)] = Eϵq∼N (0,I)[log c(

√
1− ψη +

ϵq
√
ψ,y)].

B Experiment details and extensions

B.1 MNIST

Training the DDPM. To train the diffusion model we used the U-Net architecture of [7] with a
linear βt schedule and T = 1000 diffusion steps. We trained the network for 10 epochs, with a batch
size of 128 samples, using the Adam optimizer and a learning rate of 10−4.

Performing inference. For all inference examples, we performed 1000 optimization steps with
the Adam optimizer and a learning rate 10−2. We employed a cosine-modulated, linearly decreasing
t annealing schedule as shown in Fig. B.1 (a). We empirically designed this annealing process
following the observation that the linearly decreasing t values guide the inference procedure in a
coarse-to-fine manner that starts by deciding the overall structure of the inferred sample and then
adding in details. We also added the oscillating component to allow for revisions of the coarser
structures that are to be made after having inferred specific details.

When performing the optimization step of Algorithm 1, we observed that it was important to gradually
reduce the effect of the condition c(x,y) in order to obtain good sample quality. In practice, we
linearly decreased the weight of the conditional component of the loss, from λT = 10−2 to λ1 = 0
as we performed the optimization steps from T, . . . , 1. This can be attributed to the fact that the
conditions we used provide guidance for the steps made at larger values of t, where the shape and
orientation of a digit are decided. When combining two or more conditions the weighting is applied
to all of them.

15

0 200 400 600 800 1000
Steps

0

200

400

600

800

1000

t

t Annealing Schedule

0 25 50 75 100 125 150 175 200
Steps

0

100

200

300

400

t

t Annealing Schedule

(a) (b)

Figure B.1: Inference t annealing schedules for the (a) MNIST (b) Land Cover experiments. We do
not necessarily need to optimize for all T = 1000 values to generate samples, as shown in (b). The
TSP and FFHQ experiments use similarly defined schedules.

B.2 FFHQ

Performing inference. For the conditional generation experiments on the FFHQ dataset we utilized
the pretrained DDPM model provided by [3]. The face attribute classifier network was a ResNet-18
network trained on the face attributes given in the CelebA dataset [25]. To run our inference algorithm
we performed 200 optimization steps with the Adamax optimizer, choosing (β1, β2) = (0.9, 0.999)
and a linearly decreasing learning rate from 1 to 0.5. The t annealing schedule was similar to the one
used for the land cover segmentation experiments (Fig. B.1 (b)) but for t values now ranging from
1000 to 200. Additionally, in this experiment we found that balancing between the diffusion and
auxiliary losses with a carefully chosen weighting term was difficult. Thus, we opted for a different
approach where we clipped the gradient norm of the auxiliary objective to 1

2 of the gradient norm of
the diffusion denoising loss.

Further discussion on samples. In Fig. B.2 we demonstrate additional conditionally-generated
samples from the unconditional DDPM and the attribute classifier. In the first set of examples we
show that although we may find modes of pDDPM (x) that satisfy to a level the condition y set by the
classifier, the sample quality is not always on-par with unconditionally generated samples, like those
presented in [3]. We can attribute that to the fact that for natural images, in contrast to segmentation
labels, the mode may not always be a good-looking sample from the distribution. Our method to
mitigate that, along with the classifier noise artifacts left from the optimization process, is to run the
diffusion denoising procedure starting from a low temperature t. Although this may improve the
visual quality of the result, in some cases our choice of t is not large enough to move the sample far
enough from the inferred x. If we choose a larger t however we risk erasing the attributes we aimed
to generate in the first place.

In the second set of samples, we first show how conflicting attributes are resolved. When the constraint
is set to satisfy two attributes that contradict each other we observed that the inferred sample x tends
to gravitate towards a single randomly-chosen direction. This is evident in the first two examples
where we set the not male attribute along with a male-correlated attribute. In each of them only
a single condition, either the not male or the male-related, is satisfied. In the blonde+black hair
example we could argue that a mix of the two attributes is present in the inferred sample. However,
the classifier predictions for that specific image tell us that the person shown is exclusively blonde.

We also show a set of failure cases where the classifier ‘painted’ the features related to the desired
attribute but the diffusion prior did not complete the sample in a correct way. For instance, in the
eyeglasses example we see that the classifier has drawn an outline of the eyeglass edges on the
generated face but the diffusion model has failed to pick up the cue. Similarly, when asking for wavy
hair we see curves that can fool the classifier into thinking that the person has curly hair, or when the
attributes set are smiling+mustache we observe a comically drawn mustache on the generated face.
Since the conditioning depends both on the diffusion prior and the robustness of the classifier we
believe that with better classifier training we could improve the result in such cases.

16

Not Male Male Not Young Young Male & Male & Smiling
Rosy Cheeks & Mustache

(a)

Not Male & Not Male & Blonde & Eyeglasses Not Male & Smiling &
Bald Beard Black Hair Wavy Hair Mustache

(b)

Figure B.2: (a) Additional conditional samples x for constraints c(x,y) with various attribute sets
y. (b) Failure cases of conditional generation with their attribute sets y. For both sets of images
we show the inference results (top) and the image after denoising as in [31] to remove artifacts that
appear due to optimizing the classifier constraint (bottom).

B.3 Land cover

Training the DDPM. The land cover DDPM was trained on 1
4 -resolution, 64× 64 patches of land

cover labels, randomly sampled from the Pittsburgh, PA tiles of the EnviroAtlas dataset [32]. For
the diffusion network, we used the U-Net architecture of [7], a linear βt schedule and T = 1000
diffusion steps. We trained with 105 batches of size 32, using the Adam optimizer and a learning
rate of 10−4. Additional samples from the unconditional diffusion model are shown in Fig. B.3. We
observe that the model has learned both structures that are independent of the geography, such as
the continuity of roads and the suburban building planning, and PA-specific ones, such as buildings
nested in forested areas, which may not be as common in AZ for instance.

Performing inference. Since we initialize the inference procedure with the weak labels we require
fewer optimization steps and do not have to start the search from t = 1000. Thus, to infer the
land cover segmentations we only perform 200 optimization steps using the Adam optimizer, with a
linearly decreasing learning rate from 5×10−3 to 5×10−6 and (β1, β2) = (0, 0.999). The annealing
schedule we designed for this task reflects the needs for fewer overall steps and is shown in B.1 (b).
We also decrease the weights of both conditional components of the loss, from λT = 1 to λ1 = 0
as we perform the optimization steps T, . . . , 1 to reduce their influence on the final inferred sample.
In addition, we linearly decrease the σ parameter that is used to convert the one-hot representations
learned from the DDPM model to probabilities, from σT = 0.2 to σ1 = 0.02 to mimic the uncertainty
of this conversion process. Further examples of land cover segmentation inference are shown in
Fig. B.4. Despite the fact that the DDPM was trained only on PA land cover labels we show how
the weak label guidance allows us to perform inference in completely new geographies, such as

17

Water Impervious Surface Soil and Barren Trees and Forest Grass and Herbaceous

Figure B.3: Unconditional samples from the DDPM trained on land cover segmentations.

that of AZ (last two rows), where the most prominent label is now Soil and Barren. We can still
observe a few artifacts of the PA-related biases the model has learned, like the tendency to add
uninterrupted forested areas but the transferability of the semantic model is still far superior than an
of an image-based one.

Our hand-crafted constraint for land cover segmentation inference is split between two objectives; (i)
matching the structure of the target image using a local color clustering z and (ii) forcing the predicted
segments’ distribution to match the weak label distribution ℓweak when averaged in non-overlapping
blocks of the image.

The local color clustering z is computed as a local Gaussian mixture with a fixed number of com-
ponents. To match the structure between the predicted labels and the precomputed clustering we
compute the mutual information between the two distributions in overlapping patches of 31 × 31
pixels. This choice of constraint pushes the inferred land covers segments in a way that they should
match locally the color clustering segments. Although this allows us to infer the labels of large
structures like roads and buildings it also tends to add noisy labels at areas where the clustering has
a high entropy. By gradually reducing the weight of the auxiliary objective however, we allow the
inference procedure to ‘fill in’ these details as it is dictated by the diffusion prior.

The label guidance during inference is provided from probabilistic weak labels ℓweak which are
derived from coarse auxiliary data. These data are composed of the 30m-resolution National Land
Cover Database (NLCD) labels, augmented with building footprints, road networks and water-

18

Weak
Image Clustering z Labels ℓweak Inferred x Ground Truth

Water Impervious Surface Soil and Barren Trees and Forest Grass and Herbaceous

Figure B.4: Segmentation inference results.

19

Weak
Image Labels ℓweak Ground Truth

Inferred x Inferred x
Clustering z (no guidance) (with guidance)

Figure B.5: Inference with and without weak label guidance.

ways/waterbodies [34]. The corresponding weak label constraint is computed as the KL-divergence
between the average predicted and weak label distributions in non-overlapping blocks of 31 × 31
pixels. In the absence of such guidance the inference procedure can easily confuse semantic classes
while still producing segmentations that are likely under pDDPM (x). We showcase this in Fig. B.5
where we infer the land cover labels of an image, starting from a random initialization, with and
without the weak label guidance.

Domain transfer. Regarding the domain transfer experiments, we initially pretrained the standard
inference U-Net [35] on 2×104 batches of 16 randomly sampled 64×64 image patches in Pittsburgh,
PA, using the Adam optimizer with a learning rate of 10−4. We then inferred the land cover
segmentations of 640 randomly-sampled patches in each of the other geographic regions, (NC, TX,
AZ) using the inference procedure described above. With these generated labels, we first finetuned
the original network on a validation set of 5 tiles to determine the optimal finetuning parameters.
For Durham, NC and Austin, TX we only finetune the last layer of the network for a single epoch,
using a batch size of 16 patches and a learning rate of 5 × 10−4. For Phoenix, AZ we require 5
epochs of finetuning the entire network with a learning rate of 5 × 10−4 since the domain shift is
larger. Additionally, for all regions, following the experiments of [34], we multiply the predicted
probabilities with the weak labels and renormalize.

Finally, in Table 1, we also present the results when the inference network is trained from scratch, to
show that the resulting performance is not only an artifact of the pretraining. The U-Net was trained
for 20 epochs on all 640 generated samples, with a batch size of 16 and a learning rate of 10−3.

B.4 TSP

DDPM training. The DDPM was trained on 64×64 images of ground truth TSP solutions encoded
as images. The architecture was the same U-Net as used in the other experiments, with the architecture
from [7] and T = 1000 diffusion steps in training. We trained each model for 8 epochs with batch
size 16, which took about two days on one Tesla K80 GPU.

Performing inference. At inference time, we performed varying numbers of inference steps (see
Table 2 in the main text), using the Adam optimizer with (β1, β2) = (0, 0.9) and a learning rate
linearly decaying from 1 to 0.1. The noise schedule was the same as that used in the MNIST
experiment (Fig. B.1), with the time interval from 0 to 1000 linearly resampled to the number of
inference steps used.

To extract a tour from the inferred adjacency matrix A, we used the following greedy edge insertion
procedure.

• Initialize extracted tour with an empty graph with N vertices.

20

Optimize latent adjacency matrix w.r.t. denoising model Recover tour

Input t =256 t =192 t =128 t =64 t =0 Extracted + 2-opt Oracle

Figure B.6: Latent adjacency matrix inference in a 200-vertex TSP, using a model trained on 64× 64
images but 128× 128 images at inference time. The discovered tour is 2.12% longer than the optimal
one.

• Sort all the possible edges (i, j) in decreasing order of Aij/∥vi− vj∥ (i.e., the inverse edge weight,
multiplied by inferred likelihood). Call the resulting edge list (i1, j1), (i2, j2),

• For each edge (i, j) in the list:
– If inserting (i, j) into the graph results in a complete tour, insert (i, j) and terminate.
– If inserting (i, j) results in a graph with cycles (of length < N), continue.
– Otherwise, insert (i, j) into the tour.

It is easy to see that this algorithm terminates before the entire edge list has been traversed. The
tour is refined by a naïve implementation of 2-opt, in which, on each step, all pairs of edges in the
tour ((i, j), (k, l)) are enumerated and a 2-opt move is performed if the edges cross. For the ‘2-opt’
baseline, the same procedure is performed using a uniform adjacency matrix.

Results on larger problems. Extending the results in Table 2 of the main text, we evaluate the
model trained on TSP instances with 20 to 50 nodes on problems with 200 nodes. We find an
optimality gap of 3.77% (average number of uncrossing moves 219), compared to 3.81% for 2-opt
(average number of uncrossing moves 115), suggesting that the generalization potential is near-
saturated at this problem size. As shown in Fig. B.7, the vertices fill the 64× 64 image with such
high density that it is difficult to see the (light grey) tour; many edges are invisible (compare to Fig. 7
in the main text).

We suggest three directions to solving to this problem that should be explored in later work:

(1) Encoding: The size of the encoding image can be increased (for example, to 128×128) when the
number of vertices increases, without changing the model (trained on 64×64 images), which can
make denoising predictions on images of any size. We may expect to see better out-of-domain
generalization of the denoising model in this setting, as the density of nodes (mean number
of black pixels) would match that in the training set. Figs. B.8 and B.6 show the potential of
DDPMs to generalize to image sizes larger than those in which they were trained. Inference
using 128× 128 images gives an optimality gap of 2.59% (average number of uncrossings 81),
much lower than that obtained with in-domain image size.
In addition, encoding graphs with smaller dots and thinner lines can be explored, although the
generalization difficulties due to image ‘crowding’ would still appear at a larger value of N .

(2) Fractal behaviour and coarse-to-fine: Taking advantage of the fractal structure of Euclidean
TSP solutions, a denoising objective could be used to locally refine the tour by minimizing the
objective on a crop of the image representation (a form of DDPM-guided local search). This
could be done in a coarse-to-fine manner by application of the same model at different scales,
with a 128× 128 representation of a problem with 200 vertices being first optimized with respect
to the denoising objective globally, then on 64× 64 crops.

(3) Improved extraction: The 2-opt search can be improved by inexpensive heuristics, such as
choosing the 2-opt move that most improves the cost on every step, rather than iterating through
the edges of the candidate tour in order.

21

Input Solution

Figure B.7: A TSP instance and the ground truth
solution with N = 200 vertices encoded in a 64×
64 image.

Figure B.8: Unconditional 128×128 samples
from the DDPM trained on 64 × 64 image
representations of 50-vertex TSPs.

22

