Appendix

Lemma 5 (Davis Kahn sin © bound [21]) Ler ¥, 3 e RPXD pe symmetric, with eigen values
A1 > Apand Ny > -+ Ap, where Yv; = A\, Vi € [D] and X0; = \U;, Vi € [D)]. Further,
define E = [v1,- -+ ,v4) € RPX4 E = [0y, 14| and assume that 5, = \g — Ag11 > 0.

Then, we have that,

2V/d

|sin@(E, Bl < =

1% — 22 (13)

Lemma 6 (Concentration of sub-Gaussian covariance) Let D be a zero-mean sub-Gaussian dis-
tribution in RP s.t. for X ~ D, we have that, ||(X, x)||y, < K||(X,x)|2, Vo € RP. Denote the

covariance matrix > = Ex..p [XXT] and ¥, = % Z?:l XZ-X;'—, where X; i D. Then V6 > 0,

we have that,
D+1log2 D+log?2
120 — Tl < CKAIT)| | 4 =28 + =22

with probability > 1 — 4, for some fixed small constant C.

Proof: Refer to Theorem 4.7.1 and Exercise 4.7.3 in Vershynin [17]. O

Note that in large data regime, i.e. n >> D, only the first term dominates while in the small data
and large dimension regime the second terms dominates. In large data regime, for any given error
parameter € > 0, one can sample n large enough and so the first term dominates the second one.

Lemma 7 (Concentration of Projection matrix) Let X € RP be a zero mean sub-gaussian random
vector with bounded sub-gaussian norm i.e.

IK e Rs.t. (X, 0) |y, < K|[(X,0)||2Vvs.t vl =1

Given n i.i.d sample { X, }|*_, Py let B, = L3 X; X! be the empirical estimate of the
covariance matrix ¥ = E[X X T|. Further, let the eigen decomposition of 32, %.,, be given as,

D
DESP T Sno= Y Aitigtt]
=1 =1

and Projg = Z?Zl uzuZT and Projp = Z?:l ﬁzf&: denote the projection operator onto the top
d true and empirical eigen subspaces E = span({u;}|%_,) and E,, = span({i;}|%_,) respectively.
4 2
Then, if n > CC{;KQiEH? (D + log %), we have,
w.p>1—9, ||Projg— Projg |2 <e€ (14)
where 0, is the eigen gap between top d and the rest eigen subspace of true covariance matrix X..

Proof: Let ETE, = U cos O(E, En)VT denote the singular value decomposition of £ TE, and

cos ©(FE, E,) = diag(cos by, - - - ,cos ;) be the diagonal matrix with the cosine of principal angles
{61, -+ ,04} between E and F,, subspaces as its diagonal entries. With this definition, it is easy to
show that,

IProj — Projg, ||l2 = V2| sin©(E, E,) |2
Next, using sin © variant of Davis Kahn theorem 5, we have,

N

| sin®(E, By < =

12, — X]l2 (15)

; ; . 2v2d
= ||Proji — Projg, ll2 < V2|[sin O(E, En)llr < =30 = 32 (16)
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Note that we have used the fact that L, norm is upper bounded by Frobenious norm. Next, using
concentration bound for covariance matrix of sub-gaussian random vectors 6(in large sample regime),
we have, w.p. > 1 — 4,

D—&-log(%)
n

120 — 22 < CK?||Zl2 (17
Using it along with (16), gives us, w.p. > 1 — 4,
IProjs — Proi, 2 < 22 o2y | 2080 19)
Finally, choosing n > M (D +log 2), establishes the lemma.
U

Lemma 8 (Performance difference lemma for a general policy) Let 7, ' be two time and history
dependent non-Markovian policies acting in environment MDP M. Then, the performance difference
between the value function of these policy in environment M is given by :

Vid(so) = Vi (s0) Zv [ @RCs0a 7(s0.0)) = QRalsoa, 7 (s0.)|  (19)
Further, if m, 7" are Markovian, we have,
’ 1 ’ ’
Vi(s0) = VEi(50) = 7= Eoway, @l m(s0)) = Via(s0)| 20)

Proof: We provide a complete proof of the performance difference lemma for self sufficiency.

Vii(s0) = Vi(s0) = E ny (se,m0 f(50)) | = VI (s0) 21
—E th (Rstsm o fls0)) + Vi (s0:) = Vi (s0:0 ) | = Vi (s0)

_ (22)

=k i 7 (R(se, w0 f(s0)) + V3™ (s:041) = Vi (s, f))] (23)

- iﬂ@ [(Rlstmo fls0)) + 9V (s0000) = VI (s00)) | @4

= inE [(Rlstm 0 f(s0)) + 9V (s0:041) = Vi (s04) )| (25)

~
Il
=)

M

v BB (R o) VR suen) = Vi 500)) o]

P s A
(26)
=> el (s0.m 0 F(s0:)) = VI (s0:0) @7
o f 01t M 0:t» 0:t M 0:t
t=0 S0t~
Further, if 7, 7’ are Markovian, it simplifies to
V(o) = V(o) = 300" B, [QRa(sem(on)) = V(o) (28)
t=0 °~
1 ' ,
=1_5 VEM% [Q”M(Sm(«%)) - Vi (st)] (29)
O
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