
A Analysis

A.1 Preliminaries

We present two well-known inequalities that connect the concept of expected supremum to the metric
entropy of T denoted by logN (T, d, ✏).

First, we state Dudley’s inequality, which as stated by [49] gives the supremum of Xt in terms of the
metric entropy of T denoted by logN (T, d, ✏).

Theorem 6 (Dudley’s integral inequality). Let (Xt)t2T be a mean-zero random process on a
metric space (T, d) with sub-Gaussian increments. Then, there exists a constant C > 0 such
that
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We refer the reader to [49] for a detailed discussion and a proof of the theorem.

One can also obtain a lower bound on E [sup
t2T

Xt] by Sudakov’s inequality (see Theorem 7.4.1
by [49]) stated below.

Theorem 7 (Sudakov’s inequality). Let (Xt)t2T be a mean-zero Gaussian process on a
metric space (T, d). Then, for any ✏ > 0, we have
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where d is the canonical metric d(t, s) = (E(Xt �Xs)2)1/2.

A.2 One-dimensional case

A.2.1 Upper bound

We first derive an upper bound on the expected supremum of XH

t
introduced in Eq. (2).

Theorem 1 (Upper bound, 1-D case). Consider the stochastic process XH

t
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with X0 = 0,� 2 R and |�| < 1. Then, for t 2 [0, 1],
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where C� = e
3� and C are positive constants (independent of H).

Proof. We will use the bound on the supremum of a stochastic process Xt discussed in Theorem 6
that requires defining a metric � on [0, 1] such that
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First, we note that Zt,s := X
H

t
�X

H

s
is known to be randomly distributed [3]. For X0, we have

E[Zt,s] = 0 since E[XH
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�t = 0. The variance of the increments of the process is derived
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in [3, 29] as
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Next, we upper bound the two integrals. We assume w.l.o.g. that � is positive. Else, we can simply
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where we used C̄� � 1 and C� := e
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Let Z ⇠ N (0, 1) and fZ is the probability density function of Z. We have

E
"
exp

 
Z

2
t,s

�2(t, s)

!#
 E


exp

✓
C��

2(t� s)2HZ
2

�2(t, s)

◆�

=

Z 1

�1
fZ(z) exp

✓
C��

2(t� s)2Hz
2

�2(t, s)

◆
dz

=

Z 1

�1

1
p
2⇡

exp

✓
�
z
2

2

◆
exp

✓
C��

2(t� s)2Hz
2

�2(t, s)

◆
dz

=

Z 1

�1

1
p
2⇡

exp

✓
�z

2

✓
1

2
�

C��
2(t� s)2H

�2(t, s)

◆◆
dz.

Recall that the integral of the Gaussian function f(x) = e
�ax

2

for a > 0 is
R1
�1 e

�ax
2

dx =
p

⇡

a
,

therefore

E
"
exp

 
Z

2
t,s

�2(t, s)

!#
=

1
p
2

✓
1

2
�

C��
2(t� s)2H

�2(t, s)

◆� 1
2

, (11)

where we need
⇣

1
2 �

C��
2(t�s)2H

�2(t,s)

⌘
> 0.

Next, we choose � such that

1
p
2

✓
1

2
�

C��
2(t� s)2H

�2(t, s)

◆� 1
2

 2

=)

✓
1

2
�

C��
2(t� s)2H

�2(t, s)

◆
�

1

8

=)
C��

2(t� s)2H

�2(t, s)


3

8

17



e.g.
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Then, using Theorem 6, we obtain that there exists a constant C2 such that

E
"
sup

t2[0,1]
X

H

t

#
 C2

8
<

:2
p
log(2)�

p
C� +

r
1

H

Z 2�
p

C�

0

vuutlog

 
2�
p
C�

"

!
d"

9
=

; .

Finally, we obtain an analytical form for the integral using
R
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log( c

x
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p
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x
)dx =

p
⇡

2 combined with a change of variables).

A.2.2 Lower bound

We now turn our attention to a lower bound. This will demonstrate that the result obtained in the
upper bound is actually sharp in terms of the dependency to the Hurst parameter H .
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Theorem 2 (Lower bound, 1-D case). Consider the stochastic process XH
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where C� = e
�2|�| and c are positive constants (independent of H).

Proof. We will use Sudakov’s inequality that relies on the canonical metric
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Then
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A.3 Multi-dimensional case

A.3.1 Lower bound

We first derive a lower bound on the expected supremum of XH

t
introduced in Eq. (2) in the multi-

dimensional case.

Theorem 5 (Lower bound, d-dimensional case). Consider the d-dimensional stochastic
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where c is a constant independent of H .
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where �(t) is the fundamental solution, that solves the matrix equation

�̇(t) = A�(t), �(0) = Id. (18)

In the case where the matrix A is constant with time, the fundamental solution is given by
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where 0  C1  1. Then
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We conclude that
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Alternative proof for lower bound Recall we have shown that
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Let’s first focus on the term A:
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Combining the lower bounds on A and B, we obtain
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Let C1 = mint2[0,1](a1(i)t
2 + a2(i)t + 1) > 0. We can then choose the metric on [0, 1] as

�(t2, t1) = C1|t2 � t1|
H .

The rest of the proof is identical but we obtain a different constant C1 that covers different scenarios
of the entries of the matrix A.

A.3.2 Upper bound

We now turn our attention to an upper bound. This will demonstrate that the result obtained in the
lower bound is actually sharp in terms of the dependency to the Hurst parameter H .

Theorem 4 (Upper bound, d-dimensional case). Consider the d-dimensional stochastic
process XH

t
2 Rd defined by

dX
H

t
= AXtdt+ dB

H

t
, X0 = ⇠,

where A 2 Rd⇥d and B
H

t
= (BH,1

t
, . . . B

H,d

t
) is a fBM with H 2 (0, 1). Denote by aij(t)

the matrix entries of exp(tA)A. Then

E
"
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t2[0,1]
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� E[XH

t
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#
 Cd
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Cd
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p
H

,

where C2 = maxd
i,j=1 supt2[0,1] |aij(t)|

2 +maxd
i,j=1 supt2[0,1] |aij(t)|+ 1 and C > 0 is a

constant independent of H .

Proof. The solution Xt (we omit the superscript H for simplicity) is given by

Xt = �(t)

✓
⇠ +

Z
t

0
�
�1(s)AB

H

s
ds

◆
+B

H

t
, (22)

where �(t) is the fundamental solution, that solves the matrix equation

�̇(t) = A�(t), �(0) = Id. (23)

In the case where the matrix A is constant with time, the fundamental solution is given by

�(t) = e
tA =

1X

k=0

(tA)k

k!
. (24)

By centering Xt, we get

X̃t := Xt � E[Xt] =

Z
t

0
�(t)��1(s)| {z }
=exp((t�s)A)

AB
H

s
ds+B

H

t
. (25)

Using the stationarity of Xt, we find that for t1  t2,

kX̃t2 � X̃t1kL2(⌦) = kXt2 �Xt1 � E[Xt2 �Xt1 ]kL2(⌦)

= kX̃t2�t1kL2(⌦). (26)
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Denote by aij(t) the matrix entries of exp(tA)A. We have

kX̃t2�t1k
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where (i) uses E[(BH,i
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)2] = |t2 � t1|
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] =
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We will once again build on the proof in the 1-dimensional case. To do so, we first observe that, given
an interval T = [0, 1],
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Focusing on the i-th coordinate, we first get for the term A that
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For the term B, we have
Z

t2�t1

0

dX

j=1

aij(t2 � t1 � s)
�
|t2 � t1|

2H + |s|
2H

� |t2 � t1 � s|
2H
�
ds  d

d

max
j=1

sup
t2[0,1]

|aij(t)||t2 � t1|
2H+1

Combining the bound on the terms A and B, we obtain the following
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⇣
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Then, using Theorem 6 applied to each centered component process (with positive and negative sign),
we obtain that there exists a constant C such that
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Finally, we obtain an analytical form for the integral using
R
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log( c

x
)dx = c

p
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2 (which can be

derived using
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log( 1

x
)dx =

p
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2 combined with a change of variables).
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B Additional experiments

B.1 Demonstration of the 1/
p
H scaling from Theorems 1 and 2

Figure 5: Demonstration of the 1/
p
H scaling of the expectation of the fOUP, as shown in Thms. 1 and

2. Drift parameter � is set to � = 1/2. Each plot for a different value of � 2 {10�3
, 10�2

, 10�1
, 100}.

For all values of �, we get an almost perfect fit. More details in text.

In this section, we demonstrate the 1/
p
H scaling of the expected supremum of the one-dimensional

fOUP. Recall that Theorem 1 proved that

E
"
sup

t2[0,1]
kX

H

t
k

#
 C

1
p
H

,

for C > 0. Theorem 2 and Corollary 3 also provide a lower bound

E
"
sup

t2[0,1]
kX

H

t
k

#
� C

1
p
H

,

although they either require 1) � > e
2|�| 12 and |�| < 1 or 2) 0 < � < e

2|�|� 1
2 and |�| 

1
4 .

Here, we want to verify whether the lower bound E
h
sup

t2[0,1] kX
H

t
k

i
⇠

1p
H

holds generally, even
outside the range required for � and �. To this end, we ran a Monte Carlo simulation with 103

simulations of this expectation and plotted it next to a function of the form f(x) = w0 + w1
1p
H

,
where we fitted (w0, w1) by ordinary least squares. For the discretization, we used 105 steps (i.e. a
step size ⌘ of 10�5). For H , we chose an evenly spaced grid of mesh size 0.05 from 0.2 to 0.9.3

3We did not include H = 0.1 here because the Monte-Carlo approximation is known not be a good
approximation for such small values of H . This issue is described in more detail in [8] (see e.g. Figure
1 and description in the text). We remark that we still observe a relatively good fit (slightly worse than
H = 0.2) despite the poorer quality of the approximation; the relative errors in the four settings of Fig. B.1 are
(0.19, 0.10, 0.17, 0.17) then.
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The resulting plots are depicted in Fig. B.1 for noise scales � 2 {10�3
, 10�2

, 10�1
, 100}. In each

plot, we used � = 1/2 such that all values of � violate both conditions: 1) � > e
2|�|�1/2 and |�| < 1

or 2) 0 < � < e
2|�|� 1

2 and |�| 
1
4 . . Nonetheless, the fit between the simulation and the theoretical

scaling is almost perfect. This confirms our theoretical findings and shows that the scaling also holds
outside the regime of Theorem 2 and Corollary 3.

B.2 Justification for choice of � in Section 5.2

In this section, we justify the use of � = 0.005 in all experiments from Section 5.2. There, we used
� = 0.005 for all H 2 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} in Figure 4, i.e. in both the Markovian {0.0, 0.5}
and the non-Markovian cases {0.1, 0.2, 0.3, 0.4}. Here, we explain why � is not chosen dependent
on H .

Our justification is simple: The choice of � = 0.005 is a good choice for all H . To see this, consider
Figure 6. For a fixed H 2 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} and all � 2 {0.05, 0.005., 0.0005, 0.00005},
they depict the performance on the regularized quadratic from Section 5.2, analogous to Figure 4.

We observe that indeed, for all choices of H , the curve for � = 0.005 is best – in the sense that it
exits the saddle fastest (by reaching a negative value) and converges quickly to the final minimum.
Clearly, for all H , there is no point in picking an even smaller or larger order of magnitude for �.
Hence, we conclude that the choice of � = 0.005 is close to the optimal choice for all H . While we
acknowledge that grid-searching the optimal � at a finer scale would maybe uncover small differences
in the optimal �, such precision would be beyond our goal of a proof-of-concept and would distract
from the bigger picture. In fact, the constant � also ensures that the increments of fBM with different
H are distributed the same (but correlated differently). Thus, this experimental set-up allows us to
zoom in on the effect of the Hurst parameter H – with the result that the non-Markovian H = 0.3
performs best.

B.3 Moving to better local minima in bi-stable potentials
We consider the behavior of fPGD in a bi-stable optimization landscape, given by
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
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2
x
2
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v1 �
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2

✓
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a+ c

2

◆2
#
�a<xc +


v2 +

k2

2
(x�m)2

�
�x>c,

(27)

where � is the indicator function and the parameters (v0, v1, v2, a, c,m) determine the position
and shape of two adjacent local minima. Similar landscapes have been studied in the context of
escaping spurious local minima [55] and in the context of generalization in machine learning by
selecting flat minima [33, 53], which are by some believed to generalized better. We here study
both cases. For the former case, we set (v0, v1, v2, a, c,m) = (0.0, 45.0,�12.5, 3.5, 13.9, 18.0);
for the corresponding landscape see the upper left subplot of Fig. 7. For the latter case, we set
(v0, v1, v2, a, c,m) = (0.0, 30.0, 0.0, 1.2, 8.7, 15.0); for the for the corresponding landscape see the
upper left subplot of Fig. 8.

On these landscapes, we run fPGD with different choices of H . Note that, in the two minima (and
the saddle in between at (a+c)/2) fPGD is indeed a discretization of a fractional Ornstein–Uhlenbeck
process, like the one considered in Theorems 1 and 2. We thus expect that a small Hurst parameter
leads to a faster escape from the shallow minimum (left) to the deep minimum (right) in Fig. 7, or
from the sharp to the flat minimum in Fig. 8. In both cases, we run fPGD for N = 1000 iterations
with a fixed step size of ⌘ = 1.0, initialised at x = 0 (the bottom of the shallow/sharp minimum).
To stay in the setting of Theorems 1 and 2, we set � = 80.0 · N

�H . Thus, for all H 2 (0, 1),
the employed fBM B

H

t
, defined on the time interval t 2 [0, N ], is by Rmk. 1 distributed like

80.0 ·BH

t
on t 2 [0, 1] – in the sense that the discrete steps {BH

k
; k = 0, . . . , N} are distributed like

{80.0 · BH

k/N
; k = 0, . . . , N}. By this H-dependent choice of �, we give all fBMs the same final

variance of 80.02 which lets us zoom in on the impact of correlation. (Otherwise the perturbations
would have different variances; this way we disentangle the correlation from the variance.) We note
that here the experimental outcomes are not sensitive to the precise value of �.

Figs. 7 and 8 depict our findings. We say that fPGD is in the shallow/sharp minimum at iteration k if
its iterate xk is smaller than a, and in the deep/flat minimum if it is larger than c; both a and c are
plotted as dashed lines in the optimization landscape (top row) and in the trajectories (bottom row).
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Figure 6: Loss curves on the embedded saddle landscape, analogous to Figure 4. Each subplot
shows the loss curves for a fixed value of H and different values of �. For all H , the purple curve
is the best, which is the � = 0.005 used in the main paper. (For the case H = 0.5, maybe the pink
curve is equally good, but not better than the curves for H = 0.3 or H = 0.4.) Our claim that the
non-Markovian H 2 {0.3, 0.4} perform best in this setting is therefore confirmed.

In the bottom row, for all H , we start below the lower dashed line a (shallow/sharp minimum) and
then cross above the higher dashed line c (deep/flat minimum). It is evident that a smaller H enables
faster crossings. We thus escape faster from the spurious shallow/sharp minimum to the desirable
deep/flat one. (Note, however, if the noise is not cooled down, one might oscillate back.) The upper
right plot depicts the cumulative distribution function of the first-exit time (i.e. the first time fPGD
reaches the deep/flat minimum, above c). Again, we can observe that for a small Hurst parameter the
probability of a fast exit is significantly higher.

Overall, these findings for fPGD match the continuous-time result of Theorems 1 and 2. Note
that physicists [45] have also observed faster escapes for smaller Hurst parameters on a related
Kramer-like escape problem.
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Figure 7: Experiments with fPGD (4) on the bi-stable objective (27) initialised at shallow minimum x = 0.
Objective depicted on the upper right. Behavior of fPGD for H 2 {0.4, 0.5, 0.6} in bottom row. Smaller
H gives faster switching between minima. Faster first-exit times from the shallow to the deep minimum are
demonstrated by the cumulative density functions (cdf), depicted on the upper right. The cdf is computed by
averaging over 1000 simulations. Details in text.

Figure 8: Figure analogous to Figure 7, but with two minima of equal depth but different width.
Again, we find that a small Hurst parameters lead to faster fluctuations between the two minima
(bottom row). Also, a small H gives faster first-exit times from the sharp to the flat minimum (upper
left plot). All algorithmic parameters are as in Figure 7.
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