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A Proofs

A.1 Proof of Theorem 2.1

To prove Theorem 2.1, we will first show a uniform central limit theorem for the empirical pro-
cess indexed by the set C × Sd−1 where C := {f : [−R,R] → R, φ(0) = 0, ‖f‖Lip ≤ L} for
some positive quantity L. Explicitly, for f ∈ C, u ∈ Sd−1, write hu for the function x 7→ u>x,
let X1, . . . , Xn ∼ P, Y1, . . . , Ym ∼ Q denote n and m i.i.d. samples generated from P and Q
respectively, and define Bn ∈ `∞(C × Sd−1) by

Bnm(f, u) :=
√
n(Pn − P )(f ◦ hu) +

√
m(Qm −Q)(f c ◦ hu)

=
1√
n

n∑
i=1

f(u>Xi)− Ef(u>Xi) +
1√
m

m∑
j=1

f c(u>Yi)− Ef c(u>Yi) .

We first show that Bn possesses a weak limit.
Proposition A.1. As n,m→∞, the empirical process Bnm satisfies

Bnm  B in `∞(C × Sd−1),
where B is the tight Gaussian process with covariance

EB(f, u)B(g, v) =

∫
f(u>x)g(v>x) dP (x)−

∫
f(u>x) dP (x)

∫
g(v>x) dP (x)

+

∫
f c(u>y)gc(v>y) dQ(y)−

∫
f c(u>y) dQ(y)

∫
gc(v>y) dQ(y) . (1)

Moreover, this process is uniformly continuous with respect to the semimetric
ρ((f, u), (g, v)) = ‖f ◦ hu − g ◦ hv‖L2(P ) + ‖f c ◦ hu − gc ◦ hv‖L2(Q) , (2)

with respect to which C × Sd−1 is totally bounded.

Proof. The assertions of this proposition will follow from the fact that the classes of functions
F := {f ◦ hu(x) : (f, u) ∈ C × Sd−1} and FC := {f c ◦ hu(x) : (f, u) ∈ C × Sd−1} are P and
Q-Donsker, respectively. Indeed, if we assume this Donsker property, then we have√

n(Pn − P ) BP in `∞(F)
√
m(Qm −Q) BQ in `∞(FC)

for tight P - and Q-Brownian bridges BP and BQ, respectively [see 11, Section 2.1]. These tight
Gaussian processes possess uniformly continuous sample paths with respect to the semi-metrics ρP
and ρQ, respectively, where for F,G ∈ F ,

ρ2
P (F,G) =

∫
(F −G)2 dP −

(∫
(F −G) dP

)2

,
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and analogously for Q, and F and FC are totally bounded with respect to these semi-metrics [11,
Example 1.5.10]. In particular, since ρP is dominated by the L2(P ) norm, and likewise for Q, these
processes are also uniformly L2(P ) and L2(Q) continuous and F and FC are L2(P ) and L2(Q)
totally bounded.

Since Pn and Qm are independent, the above considerations imply that

(
√
n(Pn − P ),

√
m(Qm −Q)) (BP ,BQ) in `∞(F)× `∞(FC),

for a tight Gaussian limit (BP ,BQ) with sample paths almost surely continuous with respect to
the metric on F × FC given by the sum of the L2(P ) and L2(Q) metrics on F and FC . Finally,
there exists a continuous map from `∞(F) × `∞(FC) to `∞(C × Sd−1) given by associating
(S, T ) ∈ `∞(F)×`∞(FC) with the element of `∞(C×Sd−1) sending (f, u) to S(f◦hu)+T (f c◦hu),
and the continuous mapping theorem therefore furnishes the desired convergence.

It remains to show that F and FC are P - and Q-Donsker. We first prove that F is P -Donsker. By
[11, Theorem 2.5.6], it suffices to show that∫ ∞

0

√
logN[](ε,F , L2(P )) dε <∞ . (3)

By Lemma A.4, we may replace the bracketing number N[](ε,F , L2(P )) by the uniform covering
number N(ε/2,F , ‖ · ‖∞).

[11, Theorem 2.7.1] gives an upper bound for the covering entropy of C: there exists some positive
constant C1 depending on R and L such that

logN(ε, C, ‖ · ‖∞) ≤ C1ε
−1. (4)

[12, Lemma 6.2] shows that there exists a positive constant C2 depending on R such that

N(ε, {hu, u ∈ Sd−1}, ‖ · ‖∞) = N(ε/2,Sd−1, ‖ · ‖2) ≤ C2ε
−d . (5)

Consequently, apply Lemma A.5 to N(ε,F , ‖ · ‖∞) and we get

N(ε,F , ‖ · ‖∞) ≤ logN(ε, C, ‖ · ‖∞) + logN(ε/2,Sd−1, ‖ · ‖2) ≤ C1ε
−1 + log(C2ε

−d) . (6)

We obtain that∫ ∞
0

√
logN[](ε,F , L2(P )) dε ≤

∫ ∞
0

√
N(ε/2,F , ‖ · ‖∞) dε

=

∫ 2diam(F)

0

√
N(ε/2,F , ‖ · ‖∞) dε

≤
∫ 2diam(F)

0

√
C1ε−1 + log(C2ε−d) dε

<∞ .

Therefore F is P -Donsker. The argument for FC is identical, since Lemma A.6 shows that the
estimate (6) holds for FC as well.

To prove Theorem 2.1, we combine the above result with the functional delta method. Let ι :
`∞(C × Sd−1)→ `∞(Sd−1) be defined by

ι(Φ)(u) := sup
f∈C

Φ(f, u) . (7)

The following proposition shows that ι is Hadamard directionally differentiable tangentially to the set
of continuous functions at all functions for which the supremum in (7) is uniquely achieved.
Proposition A.2. Let ι : `∞(C × Sd−1) → `∞(Sd−1) be defined as in (7), and denote by Cu(C ×
Sd−1, ρ) the set of elements of `∞(C × Sd−1) which are uniformly continuous with respect to the
semi-metric ρ defined in (2). Then for Φ ∈ Cu(C ×Sd−1, ρ) such that Φ(·, u) has a unique maximizer
for every u ∈ Sd−1, the function ι is Hadamard directionally differentiable at Φ tangentially to
Cu(C × Sd−1, ρ), with derivative ι′Φ : `∞(C × Sd−1)→ `∞(Sd−1) given by

ι′Φ(Ψ)(u) = Ψ(fu, u) , u ∈ Sd−1,Ψ ∈ Cu(C × Sd−1, ρ) , (8)

where Φ(fu, u) = supC Φ(·, u).
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Proof. Fix an arbitrary u ∈ Sd−1. [2, Theorem 2.1] shows that the function ιu : `∞(C × Sd−1)→ R
defined by

ιu(Φ) := sup
f∈C

Φ(f, u)

is Hadamard directionally differentiable, with derivative

(ιu)
′
Φ(Ψ) = lim

ε→0
sup

f∈Bε,u(Φ)

Ψ(f, u) (9)

where Bε,u(Φ) := {f ∈ C : Φ(f, u) ≥ supC Φ(·, u)− ε}. Moreover, we claim that if Φ and Ψ are
uniformly continuous, then the expression for the derivative simplifies to

(ιu)
′
Φ(Ψ) = Ψ(fu, u) = ι′Φ(Ψ)(u) . (10)

To see this, we define φ, ψ ∈ `∞(C) by φ(·) = Φ(·, u) and ψ(·) = Ψ(·, u), so that the right side of
(9) reads

lim
ε→0

sup
f∈Bε(φ)

ψ(f) ,

where Bε(φ) := {f ∈ C : φ(f) ≥ supC φ− ε}. By assumption, the functions φ and ψ are uniformly
continuous with respect to the semi-metric

ρu(f, g) := ‖f ◦ hu − g ◦ hu‖L2(P ) + ‖f c ◦ hu − gc ◦ hu‖L2(Q) ,

and C is totally bounded with respect to this semi-metric. Following [2, Corollary 2.5], it is enough
to show that C is complete with respect to ρu. The completeness of L2((hu)]P ) implies that any
sequence fn ∈ C which is Cauchy with respect to ρu possesses a limit f , and by passing to a
subsequence we may assume that fn → f pointwise, and, since the elements of C are bounded and
equicontinuous, we may further assume that fn → f uniformly on [−R,R] by the Arzelà–Ascoli
theorem. Since C is closed with respect to pointwise convergence, f ∈ C, and since c-transforms
are preserved under uniform convergence, we also have f cnk → f c uniformly in [−R,R]. Therefore
(fnk , f

c
nk

)→ (f, f c) for some f ∈ C uniformly, and hence fnk → f in ρu. This proves (10).

We now turn to the differentiability of ι. To prove the Hadamard differentiability of ι, according
to Proposition 3.5 of [10], is equivalent to prove ι is Lipschitz and that the function ιn(Φ,Ψ) ∈
`∞(Sd−1) defined by

ιn(Φ,Ψ)(·) := sup
f∈C

(snΦ(f, ·) + Ψ(f, ·))− sn sup
f∈C

Φ(f, ·)

converges uniformly to the limit ι′Φ(Ψ)(·) for any positive increasing sequence sn → ∞. The
Lipschitz property is obvious. Indeed, for any Φ1,Φ2 ∈ `∞(C × Sd−1),

sup
u∈Sd−1

∣∣∣∣∣sup
f

Φ1(f, u)− sup
f

Φ2(f, u)

∣∣∣∣∣ ≤ sup
f,u
|Φ1(f, u)− Φ2(f, u)| ≤ ‖Φ1 − Φ2‖`∞(C×Sd−1]).

As for the uniform convergence, we first show that ιn(Φ,Ψ)(u)→ ι′Φ(Ψ)(u) pointwise. This follows
directly from the Hadamard differentiability of ιu, since

ιn(Φ,Ψ)(u) = ιu(snΦ + Ψ)− snιu(Φ)→ (ιu)
′
Φ(Ψ) = ι′Φ(Ψ)(u) as n→∞.

Moreover, we show in Lemma A.3 that the functions ιn(Φ,Ψ) and ι′(Φ,Ψ) are continuous on Sd−1.
Therefore, by [8, Theorem 7.13], to show uniform convergence on Sd−1 it suffices to show that the
sequence {ιn(Φ,Ψ)}n≥1 is monotonically non-increasing for all u ∈ Sd−1. This follows directly
from the definition of ιn. Indeed, for any u ∈ Sd−1, we have

ιn(Φ,Ψ)(u)− ιn+1(Φ,Ψ)(u)

= sup
f∈C

(snΦ(f, u) + Ψ(f, u))− sup
f∈C

(sn+1Φ(f, u) + Ψ(f, u)) + sup
f∈C

(sn+1 − sn)Φ(f, u)

≥ sup
f∈C

((sn + sn+1 − sn)Φ(f, u) + Ψ(f, u))− sup
f∈C

(sn+1Φ(f, u) + Ψ(f, u)) = 0.

The last inequality results from the reverse triangle inequality for the supremum. This finishes the
proof for Hadamard directional differentiability of ι.
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Lemma A.3. For Φ,Ψ ∈ Cu(C × Sd−1), then the functions ιn(Φ,Ψ) are continuous on Sd−1. If
Φ(·, u) has a unique maximizer for every u ∈ Sd−1, then ι′(Φ,Ψ) is also continuous.

Proof. For the continuity of ιn, it suffices to show that if u→ v, then

sup
f∈C
|Φ(f, u)− Φ(f, v)| → 0 , (11)

and analogously for Ψ. This follows directly from uniform continuity: for any ε > 0, there exist a
δ > 0 such that

ρ((f, u), (g, v)) ≤ δ =⇒ |Φ(f, u)− Φ(g, v)| ≤ ε .
In particular, we have supf∈C |Φ(f, u)−Φ(f, v)| ≤ ε if supf ρ((f, u), (f, v)) ≤ δ. Moreover, since
the elements of C and their c-transforms are uniformly Lipschitz, we have

sup
f∈C

ρ((f, u), (f, v)) ≤ C
(
‖hu − hv‖L2(P ) + ‖hu − hv‖L2(Q)

)
for a positive C independent of f , and the right side of the above expression converges to 0 as u→ v.
Therefore (11) holds, as does the analogous convergence for Ψ. This proves continuity of ιn.

For ι′, we have

ι′Φ(Ψ)(u)− ιΦ(Ψ)(v) = Ψ(fu, u)−Ψ(fv, v)

where fu, fv are the maximizers of Φ(·, u),Φ(·, v) respectively. Choose any sequence vn → v and
let fn denote the unique maximizers of Φ(·, vn) correspondingly. Since C × Sd−1 is totally bounded
and complete, we may upon passing to a subsequence assume (fn, vn)→ (f, v) ∈ C × Sd−1, and by
the uniform continuity of Φ we must have Φ(f, v) = supf∈C Φ(f, v), and since we have assumed
that the supremum is uniquely achieved, f = fv . Since this argument holds on any subsequence, we
obtain that the whole sequence converges to (fv, v), and the uniform continuity of Ψ implies that

lim
n→∞

Ψ(fn, vn) = Ψ(fv, v) ,

as desired.

We are now in a position to prove the main theorem.

Proof of Theorem 2.1. For the sake of notational simplicity, we prove the special case of (6) when
n = m with both sides multiplied by

√
2. Namely, we are going to show

√
n
(
W p
p (Pn·, Qn·)−W p

p (P·, Q·)
)
 
√

2G in `∞(Sd−1). (12)

The general conclusion with n 6= m follows by an analogous argument.

Fix u ∈ Sd−1. By Kantorovich duality, we may write the Wasserstein distance as

W p
p (Pu, Qu) = sup

f∈C

∫
f ◦ hu dP +

∫
f c ◦ hu dQ .

Define Φ(P,Q) : C × Sd−1 → R by Φ(P,Q) = EX∼P f ◦ hu(X) + EX∼Qf c ◦ hu(Y ). Note that
Φ(P,Q) is uniformly continuous with respect to ρ. Indeed, for any f, g ∈ C and u, v ∈ Sd−1,∣∣Φ(P,Q)(f, u)− Φ(P,Q)(g, v)

∣∣
≤ EX∼P |f ◦ hu(X)− g ◦ hv(X)|+ EY∼Q |f c ◦ hu(Y )− gc ◦ hv(Y )|

≤
(
EX∼P |f ◦ hu(X)− g ◦ hv(X)|2

)1/2

+
(
EY∼Q |f c ◦ hu(Y )− gc ◦ hv(Y )|2

)1/2

= ρ((f, u), (g, v)).

Moreover, for any u ∈ Sd−1, Φ(·, u) achieves the maximum over C at a unique fu ∈ C, since under
the assumption of (CC), the Kantorovich potential corresponding to Pu and Qu is unique.

We now apply the functional delta method to Proposition A.1 with the supremum function ι. By
Kantorovich duality, ι(Φ(P,Q))(u) = W p

p (Pu, Qu) and ι(Φ(Pn,Qn))(u) = W p
p (Pnu, Qnu) Proposi-

tion A.2 implies that ι is Hadamard directionally differentiable and the derivative of ι at Φ(P,Q) in
the direction B is given by

ι′Φ(B(P,Q))(u) = B(P,Q)(fu, u).
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Hence,
√
n
(
ι(Φ(Pn,Qn))− ι(Φ(P,Q))

)
 ι′Φ(P,Q)

(B)(·) = B(f·, ·) in `∞(Sd−1). (13)

This is a centered tight Gaussian process on Sd−1, and a direct computation shows that its covariance
agrees with that of

√
2G, as desired. The case where n 6= m follows similarly; the details are

omitted.

A.1.1 Additional Lemmas

The following lemma is included in the proof for Corollary 2.7.2 of [11]. For the sake of clarity, we
state it here separately.
Lemma A.4. Suppose that P is a probability distribution on Rd, then the bracketing number of
any class of functionsH with respect to L2(P ) can be bounded above by the covering number with
respect to the uniform norm. Explicitly, for ε > 0, we have

N[](2ε,H, L2(P )) ≤ N(ε,H, ‖ · ‖∞). (14)

Proof. The proof is inspired by that of Lemma 6.2 of [12]. Take any g ∈ H and suppose that it lies
in some ball B‖·‖∞(f, ε). Let l = f − ε, u = f + ε, then

l − g = f − g − ε ≤ ε− ε = 0, u− g = f − g + ε ≥ −ε+ ε = 0,

and ‖l − u‖L2(P ) = 2ε.

The next lemma is included in the proof for Lemma 4.2 of [4]. Again we state and prove it here
separately for completeness.
Lemma A.5. Consider some set of composite functions AH := {f ◦ h : f ∈ A, h ∈ H} where the
functions in A are K-Lipschitz. Then

N((K + 1)ε, CF , ‖ · ‖∞) ≤ N(ε, CR, ‖ · ‖∞)×N(ε,F , ‖ · ‖∞). (15)

Proof. Indeed, for any g := f ◦ h ∈ AH, there exists some f0 ∈ A and h0 ∈ H such that
‖f − f0‖∞, ‖h− h0‖∞ < ε, then

‖g − f0 ◦ h0‖∞ ≤ ‖f ◦ h− f ◦ h0‖∞ + ‖f ◦ h0 − f0 ◦ h0‖∞
≤ K‖h− h0‖∞ + ‖f − f0‖∞ < (K + 1)ε.

Lemma A.6. The covering entropy of FC with respect to L∞ is upper bounded by that of F .

Proof. Fix any f c ∈ FC . There exists some f0 ∈ F such that ‖f − f0‖∞ < ε. Then
‖f c − f c0‖∞ = ‖ inf

x
(|x− y|p − f(x))− inf

x
(|x− y|p − f0(x)) ‖∞

= ‖ sup
x

(f0(x)− |x− y|p)− sup
x

(|x− y|p − f(x)) ‖∞

≤ ‖ sup
x

(|x− y|p − f(x))− (|x− y|p − f0(x)) ‖∞

= ‖ sup
x

(f0(x)− f(x)) ‖∞ ≤ ‖f0 − f‖∞ < ε .

The conclusion follows immediately.

A.2 Proof of Theorem 2.6

Proposition A.7. Consider two probability distributions P andQ that satisfy (CC) and have compact
supports contained in the ball B(0, R) for some R > 0. Let fu, fv ∈ C be the unique Kantorovich
potentials for (Pu, Qu) and (Pv, Qv), respectively. Then there exists a constant CR,p depending on
R and p such that

‖fu − fv‖∞ ≤ CR,p‖u− v‖p−1
2 . (16)

Moreover, if P and Q are discrete probability distributions on {x1, . . . , xN}, {y1, . . . , yN} ⊂
B(0, R) respectively such that P (xi) = Q(yi) = 1/N for i = 1, . . . , N , then the inequality
above also holds.
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Proof. By the representation of one-dimensional Wasserstein costs [see 1, Theorem 2.10], we have
for any u ∈ Sd−1,

W p
p (Pu, Qu) =

∫ 1

0

|P−1
u (t)−Q−1

u (t)|p dt ,

where, by abuse of notation, P−1
u andQ−1

u denote the inverses of the cumulative distribution functions
of Pu and Qu, i.e.,

P−1
u (t) = inf{x ∈ R : PP {X>u ≤ x} ≥ t} ,

and analogously for Q−1
u . Under (CC), note that these inverses satisfy

P−1
u (t) ≤ x ⇐⇒ t ≤ Pu(x)

P−1
u (t) ≥ x ⇐⇒ t ≥ Pu(x) ,

and likewise for Qu (this follows from the considerations in [9, Section 2.1] combined with the fact
that P−1

u is a right inverse for Pu since the support of Pu is connected).

It follows from [9, Theorem 1.17] that the derivative of any optimal Kantorovich potential fu must
satisfy

f ′u(x) = p|x−Q−1
u ◦ Pu(x)|p−2(x−Q−1

u ◦ Pu(x)) .

Note that |x−Q−1
u ◦ Pu(x)| ≤ 2R, so that this expression is bounded by p(2R)p−1. Therefore, if

we define

fu(x) =

∫ x

0

p|x′ −Q−1
u ◦ Pu(x′)|p−2(x′ −Q−1

u ◦ Pu(x′)) dx′ ,

then fu is p(2R)p−1 Lipschitz, satisfies fu(0) = 0, and is a Kantorovich potential, and under (CC),
it must therefore be the unique optimal potential in C.

If we define gu(x′) = |x′ −Q−1
u ◦ Pu(x′)|p−2(x′ −Q−1

u ◦ Pu(x′)), it follows that

‖fu − fv‖∞ = max
x∈[−R,R]

∣∣∣∣∫ x

0

p(gu(x′)− gv(x′)) dx′
∣∣∣∣

≤ p
∫ R

−R
|gu(x′)− gv(x′)|dx′ .

The function v 7→ |v|p−2v is p − 1-Hölder, with norm depending on R and p [see, e.g 5, proof of
Corollary 3]. Letting CR,p denote a constant depending on R and p whose value may vary from line
to line, we obtain

‖fu − fv‖∞ ≤ CR,p
∫ R

−R
|Q−1

u ◦ Pu(x′)−Q−1
v ◦ Pv(x′)|p−1 dx′

CR,p

∫ R

−R
|Q−1

u ◦ Pu(x′)−Q−1
v ◦ Pu(x′)|p−1 + |Q−1

v ◦ Pu(x′)−Q−1
v ◦ Pv(x′)|p−1 dx′

≤ CR,p(‖Q−1
u ◦ Pu −Q−1

v ◦ Pu‖p−1
∞ +

∫ R

−R
|Q−1

v ◦ Pu(x′)−Q−1
v ◦ Pv(x′)|p−1 dx′)

For the first term, it suffices to note that ‖Q−1
u − Q−1

v ‖∞ is bounded. Indeed, [1, equation (2.3)]
implies

‖Q−1
u −Q−1

v ‖∞ = W∞(Qu, Qv)

≤ ‖Y >u− Y >v‖L∞(Q)

≤ R‖u− v‖2 ,

where the first inequality follows from the fact that (Y >u, Y >v) with Y ∼ Q is a valid coupling of
Qu and Qv . Therefore ‖Q−1

u ◦ Pu −Q−1
v ◦ Pu‖∞ ≤ R‖u− v‖2.
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For the second term, we first derive an upper bound for the case p = 2. The idea is borrowed from
the proof of [9, Proposition 2.17]. Through computations, we have∫ R

−R
|Q−1

v ◦ Pu(x′)−Q−1
v ◦ Pv(x′)|dx′

= L2
({

(x′, y) ∈ [−R,R]× [−R,R] : Q−1
v ◦ Pu(x′) ≤ y < Q−1

v ◦ Pv(x′)
or Q−1

v ◦ Pv(x′) ≤ y < Q−1
v ◦ Pu(x′)

})
= L2

({
(x′, y) ∈ [−R,R]× [−R,R] : Q−1

v ◦ Pu(x′) ≤ y < Q−1
v ◦ Pv(x′)

})
+ L2

({
(x′, y) ∈ [−R,R]× [−R,R] : Q−1

v ◦ Pv(x′) ≤ y < Q−1
v ◦ Pu(x′)

})
.

By Fubini’s theorem along with the monotonicity of cumulative distribution functions, we have
L2
({

(x′, y) ∈ [−R,R]× [−R,R] : Q−1
v ◦ Pu(x′) ≤ y < Q−1

v ◦ Pv(x′)
})

=

∫ R

−R
L1
({
x′ ∈ [−R,R] : P−1

v ◦Qv(y) < x′ ≤ P−1
u ◦Qv(y)

})
dy .

Similarly,
L2
({

(x′, y) ∈ [−R,R]× [−R,R] : Q−1
v ◦ Pv(x′) ≤ y < Q−1

v ◦ Pu(x′)
})

=

∫ R

−R
L1
({
x′ ∈ [−R,R] : P−1

u ◦Qv(y) < x′ ≤ P−1
v ◦Qv(y)

})
dy .

Summing up the integrals, we obtain∫ R

−R
|Q−1

v ◦ Pu(x′)−Q−1
v ◦ Pv(x′)|dx′ =

∫ R

−R

∣∣P−1
u ◦Qv(y)− P−1

v ◦Qv(y)
∣∣ dy

≤ 2R‖P−1
u − P−1

v ‖∞ ≤ 2R2‖u− v‖2 .
When p > 2, we have∫ R

−R
|Q−1

v ◦ Pu(x′)−Q−1
v ◦ Pv(x′)|p−1 dx′ ≤ (2R)p−2

∫ R

−R
|Q−1

v ◦ Pu(x′)−Q−1
v ◦ Pv(x′)|dx′

≤ (2R)p‖u− v‖2 .

Finally, when 1 < p < 2, again we consider x′ as a random variable of the uniform distribution U ′
on [−R,R], and then by Jensen’s inequality∫ R

−R
|Q−1

v ◦ Pu(x′)−Q−1
v ◦ Pv(x′)|p−1 dx′ = 2R

1

2R

∫ R

−R
|Q−1

v ◦ Pu(x′)−Q−1
v ◦ Pv(x′)|p−1 dx′

≤ 2R(
1

2R

∫ R

−R
|Q−1

v ◦ Pu(x′)−Q−1
v ◦ Pv(x′)|dx′)p−1

≤ 2R(R‖u− v‖2)p−1 ≤ 2Rp‖u− v‖p−1
2 .

Hence, combining the upper bounds for the first and second term, we obtain for p > 1,

‖fu − fv‖∞ ≤ CR,p(‖u− v‖p−1
2 + ‖u− v‖(p−1)∨1

2 ) ≤ CR,p‖u− v‖p−1
2 .

Now we turn to consider the discrete distributions. In this case, the inverse P−1
u only satisfies

P−1
u (t) ≤ x ⇐⇒ t ≤ Pu(x)

P−1
u (t) > x ⇐⇒ t > Pu(x) ,

and likewise for Q−1
u .

Fix any y ∈ [−R,R], we have
L1 ({x′ ∈ [−R,R] : Pu(x′) ≤ Qv(y) and Pv(x′) > Qv(y)})
= L1 ({x′ ∈ [−R,R] : Pu(x′) < Qv(y) and Pv(x′) > Qv(y)})

+ L1 ({x′ ∈ [−R,R] : Pu(x′) = Qv(y) and Pv(x′) > Qv(y)})
≤ L1

({
x′ ∈ [−R,R] : P−1

v ◦Qv(y) < x′ < P−1
u ◦Qv(y)

})
+ L1

({
x′ ∈ [−R,R] : P−1

u ◦Qv(y) ≤ x < P−1
u ◦ (Qv(y) + 1/N)

})
= L1

({
x′ ∈ [−R,R] : P−1

v ◦Qv(y) < x′ < P−1
u ◦ (Qv(y) + 1/N)

})
.
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Analogously,

L1 ({x′ ∈ [−R,R] : Pv(x
′) ≤ Qv(y) and Pu(x′) > Qv(y)})

≤ L1
({
x′ ∈ [−R,R] : P−1

u ◦Qv(y) < x′ < P−1
v ◦ (Qv(y) + 1/N)

})
.

In addition, the two sets have no intersection. Therefore,∫ R

−R

∣∣Q−1
v ◦ Pu(x′)−Q−1

v ◦ Pv(x′)
∣∣ dx′

≤
∫ R

−R

∣∣P−1
u ◦ (Qv(y) + 1/N)− P−1

v ◦Qv(y) + P−1
u ◦Qv(y)− P−1

v ◦ (Qv(y) + 1/N)
∣∣ dy

≤
∫ R

−R

∣∣P−1
u ◦ (Qv(y) + 1/N)− P−1

v ◦ (Qv(y) + 1/N)
∣∣+
∣∣P−1
u ◦Qv(y)− P−1

v ◦Qv(y)
∣∣ dy

≤ 4R‖P−1
u − P−1

v ‖∞ ≤ 4R2‖u− v‖2 .

Proof of Theorem 2.6. We may assume without loss of generality that m = n by discarding addition
samples from either P or Q, if necessary. We define an estimator for u, v ∈ Sd−1 by setting

Σ̂u,v =(1− λ)

∫
fnu(u>x)fnv(v

>x) dPn(x)

− (1− λ)

(∫
fnu(u>x) dPn(x)

)(∫
fnv(v

>x) dPn(x)

)
+ λ

∫
f cnu(u>y)f cnv(v

>y) dQn(y)

− λ
(∫

f cnu(u>y) dQn(y)

)(∫
f cnv(v

>y) dQn(y)

)
,

(17)

where fn· ∈ C denotes a Kantorovich potential for Pn· and Qn·. We are done if we can show the
convergence of the first term to the corresponding one in (7). The proof for the other three terms
follows similar routine.

We first split the absolute difference between the objective quantities into two terms:

sup
u,v∈Sd−1

∣∣∣∣∫ fnu(u>x)fnv(v
>x) dPn(x)−

∫
fu(u>x)fv(v

>x) dP (x)

∣∣∣∣
≤ 1

n
sup

u,v∈Sd−1

∣∣∣∣∣
n∑
i=1

fnu(u>Xi)fnv(v
>Xi)− fu(u>Xi)fv(v

>Xi)

∣∣∣∣∣
+ sup
u,v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(
fu(u>Xi)fv(v

>Xi)− Efu(u>Xi)fv(v
>Xi)

)∣∣∣∣∣ .
For the second term, we notice that Pn − P  0 in `∞(C × Sd−1) and H : `∞(C × Sd−1) → R
defined by H(g) = supu,v |g(fu, u)g(fv, v)| is continuous. Therefore, the second term converges
to zero in distribution and consequently in probability. Since all fnu, fu, u ∈ Sd−1 are uniformly
bounded by some constant depending only on R and p, dominated convergence theorem yields
convergence in mean.

For the first term, we have

E sup
u,v∈Sd−1

|Pn ((fnu ◦ hu)(fnv ◦ hv)− (fu ◦ hu)(fv ◦ hv))|

≤ E sup
u,v∈Sd−1

∣∣fnu(u>X)fnv(v
>X)− fu(u>X)fv(v

>X)
∣∣

≤ CR,pE sup
u∈Sd−1

∣∣fnu(u>X)− fu(u>X)
∣∣ .
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Proposition A.7 implies that∥∥∣∣fnu(u>x)− fu(u>x)
∣∣− ∣∣fnv(v>x)− fv(v>x)

∣∣∥∥
∞

≤ ‖(fnu(u>x)− fu(u>x))− (fnv(v
>x)− fv(v>x))‖∞

≤ CR,p‖u− v‖p−1
2 . (18)

Therefore, for any ε > 0, there exists some partition of Sd−1 such that for n ∈ N∗ large enough,

Sd−1 ⊆
Nε⋃
i=1

B(ui, δε),∥∥∣∣fnu(u>x)− fu(u>x)
∣∣− ∣∣fnui(ui>x)− fui(ui>x)

∣∣∥∥
∞ <

ε

2
, i = 1, . . . , Nε,

E sup
i=1,...,Nε

∣∣fnu(u>X)− fu(u>X)
∣∣ < ε

2
.

The last inequality follows from the the P -a.s. convergence of Kantorovich potentials by [3, Theorem
2.8] with dominated convergence theorem applied to it and and the finiteness of terms taken over
supremum.

Altogether, the first term may be bounded by arbitrarily small numbers when n→∞:

E sup
u∈Sd−1

∣∣fnu(u>X)− fu(u>X)
∣∣ ≤ E sup

i=1,...,Nε

∣∣fnu(u>X)− fu(u>X)
∣∣+

ε

2
< ε.

This completes the deduction of convergence in mean of the estimator (17).

A.3 Proof of Theorem 3.1

Proof. We define H : `∞(Sd−1)→ R as H(f) :=
∫
Sd−1 f(u) dσ(u). W 2

2 (µ·, ν·) indeed belongs to
`∞(Sd−1) since the Wasserstein distance between any one-dimensional projections of probability
distributions µ and ν is bounded above by the one between µ and ν themselves. Besides, the
integral over unit sphere with respect to uniform measure preserves the sup norm of the functions in
`∞(Sd−1).

By definition of weak convergence in `∞(Sd−1), the uniform CLT implies that
√
n(SW p

p (Pn, Qn)− SW p
p (P,Q)) =

∫
Sd−1

√
n(W p

p (Pnu, Qnu)−W p
p (Pu, Qu)) dσ(u) S.

For any ω in the probability space Ω,
∫
Sd−1 |Gu(ω)| dσ(u) <∞. This can be easily deduced from

the fact that G has continuous sample paths a.s. In addition, G : Sd−1×Ω→ R is jointly measurable
and thus ω 7→ S(ω) is a random variable. Finally, S is Gaussian due to the Riemann integrability of
u 7→ Gu(ω).

Finally we compute the mean and variance of S. Trivially, ES = 0. In terms of the variance, we have

Var(S) = E
(∫

Sd−1

G(u) dσ(u)

)2

=

∫
Sd−1

∫
Sd−1

E(G(u)G(v)) dσ(u) dσ(v)

=

∫ (∫
Sd−1

fu(u>x) dσ(u)

)2

dP (x)−
(∫

(

∫
Sd−1

fu(u>x) dσ(u)) dP (x)

)2

+

∫ (∫
Sd−1

f cu(u>y) dσ(u)

)2

dQ(x)−
(∫

(

∫
Sd−1

f cu(u>y) dσ(u)) dQ(y)

)2

= VarX∼P

(∫
Sd−1

fu(u>X) dσ(u)

)
+ VarY∼Q

(∫
Sd−1

f cu(u>Y ) dσ(u)

)
. (19)

Remark A.8. The variance of S is identical with that of Z(P,Q) derived in Theorem 3 and Lemma 8
of [6] with δ = 0. The variance of Z(P,Q) can be reduced to∫
Sd−1

∫
Sd−1

(∫ 1

0

|P−1
u (t)−Q−1

u (t)|p|P−1
v (t)−Q−1

v (t)|p dt−W p
p (Pu, Qu)W p

p (Pv, Qv)

)
dσ(u) dσ(v).
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Let πu and πv denote the optimal transport plans between Pu, Qu and Pv, Qv respectively. Letting
(Xu, Yu) ∼ πu and (Xv, Yv) ∼ πv , it follows that the expression above is equal to∫

Sd−1

∫
Sd−1

cov
(
|Xu − Yu|p, |Xv − Yv|2

)
dσ(u) dσ(v)

= Var
(∫

Sd−1

|Xu − Yu|p dσ(θ)

)
= Var

(∫
Sd−1

fu(u>X) + f cu(u>Y ) dσ(u)

)
= VarX∼P

(∫
Sd−1

fu(u>X) dσ(u)

)
+ VarY∼Q

(∫
Sd−1

f cu(u>Y ) dσ(u)

)
.

B Additional Experiments

We present more simulation results in this section, including those with p = 1. As mentioned in the
main text, the only obstacle to including p = 1 is that there do not seem to be general conditions
under which the Kantorovich potentials under p = 1 are unique. We will show; however, if this fact
can be verified by other means in specific cases, then the central limit theorem still holds.

B.1 Sliced Wasserstein Distance.

Consider the example in section 4.1. Instead of p = 2, we investigate the asymptotic behavior of the
case p = 1. We first give an explicit representation of the theoretical limit of the example given in
section 4.1. Then the unique 1-Lipschitz function that achieves the 1-Wasserstein distance between
Pθ and Qθ is φθ0(x) = −sign(aθ)x. Hence, we have

√
n (W1(Pn·, Qn·)−W1(P·, Q·)) G,

where G is the mean-zero Gaussian process indexed by S2 with covariance functions

EG(u)G(v) =
2

3
sign(au)sign(av)〈u, v〉.

It follows from Theorem 3.1 that the limiting distribution of the empirical 1-Wasserstein distance is
the centered Gaussian S with variance

Var(S) =
2

3

∫
S2

∫
S2

sign(au)sign(av)〈u, v〉 dσ3(u)dσ3(v) ≈ 0.164.

We sample i.i.d. observations X1, . . . , Xn ∼ P and Y1, . . . , Yn ∼ Q with size n = 50, 100, 500.
This process is repeated 500 times. We then compare the finite distributions of 1-Wasserstein distance
with the theoretical limit given in section 3.1. We demonstrate the results using kernel density
estimators in Figure 1. We see that the finite-sample empirical distribution gets closer to the limiting
Gaussian distribution in 9 as the sample size n increases.
In addition, we simulate the re-scaled plug-in bootstrap approximations by sampling n = 1000
observations of P and Q. Fix some empirical SW

√
nSW 2

2 (Pn, Qn), we generate B = 500

replications of
√
l(SW1(P̂ ∗n , Q̂

∗
n)−SW1(Pn, Qn)). The distributions of the replications with various

replacement numbers l, compared with the finite-sample empirical distribution and the theoretical
limit, are shown in Figure 2. We observe that the naive bootstrap (l = n) better approximates the
finite sample distribution compared to fewer replacements (l = n1/2, n3/4). This is consistent with
the observation of inference on finite spaces. [7]

B.2 Max-Sliced Wasserstein Distance

Consider the example in section 4.2. Again we estimate the distributional limit of the empirical
distributions of 1-Wasserstein distance but with a = 2. The unique 1-Lipschitz function that achieves
1-Wasserstein distance between Pe1 and Qe1 or equivalently P−e1 and Q−e1 is φe10 (x) = −|x|.
Consequently, the theoretical limit in this case is the mean-zero Gaussian with variance

Var(G±e1) =
1

2

∫ 1

−1

x2 dx−
(

1

2

∫ 1

−1

−|x| dx
)2

+
1

4

∫ 2

−2

y2 dy −
(

1

4

∫ 2

−2

|y| dy
)2

=
5

12
.
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Figure 1: Comparison of the finite sample density (pale turquoise) and the limit distribution of the
empirical sliced distance (pink).

Figure 2: Bootstrap for the empirical sliced distance. Illustration of the re-scaled plug-in bootstrap
approximation (n = 1000) with replacement l ∈ {n, n3/4, n1/2}. Finite bootstrap densities (pale
green) are compared to the corresponding finite sample density (pale turquoise) and the limit distribu-
tion (pink).

The plots of comparison between the theoretical limit and the finite sample distributions of
n = 100, 500, 1000 each of which is repeated 1000 times are given in Figure 3. The simulation of
bootstrap is plotted in Figure 4. The naive bootstrap (l = n) better approximates the finite sample
distribution compared to fewer replacements (l = n1/2, n3/4).

In order to give some sense of non-Gaussian limiting distributions, i.e. when the directions that
maximize the Wasserstein distance of 1-dimensional projections are not unique, we give an example
of such cases. Let P be the uniform distribution over S2 and Q uniform over 2S2. The plots of
comparison between the theoretical limit and the finite sample distributions of n = 1000, 5000, 10000
each of which is repeated 5000 times are given in Figure 5. The simulation of bootstrap withB = 500
replications is plotted in Figure 6. We see that the overall performance is worse than the cases when
the limits are Gaussian. The replacement l = 3/4 has the closest approximation comparatively.

Figure 3: Comparison of the finite sample density (pale turquoise) and the limit distribution of the
empirical max-sliced Wasserstein distance (pink).

Figure 4: Bootstrap for the empirical max-sliced Wasserstein distance. Illustration of the re-scaled
plug-in bootstrap approximation (n = 1000) with replacement l ∈ {n, n3/4, n1/2}. Finite bootstrap
densities (pale green) are compared to the corresponding finite sample density (pale turquoise) and
the limit distribution (pink).
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Figure 5: Comparison of the finite sample density (pale turquoise) and the limit distribution of the
empirical max-sliced Wasserstein distance (pink).

Figure 6: Bootstrap for the empirical one-dimensional WPP. Illustration of the re-scaled plug-in
bootstrap approximation (n = 10000) with replacement l ∈ {n, n3/4, n1/2}. Finite bootstrap
densities (pale green) are compared to the corresponding finite sample density (pale turquoise) and
the limit distribution (pink).

B.3 Distributional Sliced Wasserstein Distance

In this section, we present a simple example for DSW. Consider two distributions P which is uniform
on the surface of the ellipsoid {x2/4 + 4y2 + z2 = 1} and Q the uniform distribution on S2. Let PC
be a set of 10 two-point probability measures on S2. Explicitly, for each τ ∈ PC , τ ∼ 1

3δu + 2
3δv

for some u, v ∈ S2. One of the measures takes u = (1, 0, 0) and v = (−1, 0, 0). The discussion in
Section 3.3 yields that

√
n
(
DSW 2

2 (Pn, Qn)−DSW 2
2 (P,Q)

)
→ 1

3
G((1, 0, 0)) +

2

3
G((−1, 0, 0)) = G((1, 0, 0)).

We sample i.i.d. observations X1, . . . , Xn ∼ P and Y1, . . . , Yn ∼ Q with size n = 100, 500, 1000.
This process is repeated 1000 times. The plots of comparison between the theoretical limit and the
finite sample distributions are given in Figure 7.

12



Figure 7: Comparison of the finite sample density (pale turquoise) and the limit distribution of the
empirical distributional sliced Wasserstein distance (pink).
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