Supplementary Material for Distributional
Convergence of the Sliced Wasserstein Process

Jiaqi Xi' and Jonathan Niles-Weed' >

!Courant Institute of Mathematical Sciences, New York University, NY 10012
2Center for Data Science, New York University, NY 10011

A Proofs

A.1 Proof of Theorem 2.1

To prove Theorem 2.1, we will first show a uniform central limit theorem for the empirical pro-
cess indexed by the set C x S9! where C := {f : [-R,R] — R, ¢(0) = 0, || f|lip < L} for
some positive quantity L. Explicitly, for f € C, v € S*!, write h,, for the function z — u 'z,
let Xy,...,X, ~ P Yy,....,Y, ~ @ denote n and m i.i.d. samples generated from P and @)
respectively, and define B,, € />°(C x S~1) by

B (f,u) := f(P — P)(fohy) +vVm(Qm —Q )(fcohu)
_i 'LLT A UT ) L C'LLT N C’U,T _
—\/ﬁ;f( X;) —Ef( X1)+ﬁj§::lf( ) —Efeu'Y;).

We first show that B,, possesses a weak limit.
Proposition A.1. As n, m — oo, the empirical process B,,,,, satisfies

Bnm ~B inf>* (C X Sdil),

where B is the tight Gaussian process with covariance

EB(f,u) /fu z)g(v'x)dP(z /fu x)dP(x / (v z)dP(z)
+ [ FaTreTaew - [ FaTaa) [eTaan. o

Moreover, this process is uniformly continuous with respect to the semimetric
p((f7 ’LL), (ga ’U)) = ”f o fy — go hv||L2(P) + ch 0 hy — gc o thLz(Q) ; (2)
with respect to which C x S~ is totally bounded.

Proof. The assertions of this proposition will follow from the fact that the classes of functions
Fi={fohy(z): (f,u) € CxS¥'}and FC := {f° o h,(x) : (f,u) € C x S*1} are P and
@-Donsker, respectively. Indeed, if we assume this Donsker property, then we have

Vn(P, — P) ~Bp in{l>®(F)
VI(Qm — Q) ~ Bg  in £>°(FC)
for tight P- and ()-Brownian bridges Bp and B, respectively [see 11, Section 2.1]. These tight

Gaussian processes possess uniformly continuous sample paths with respect to the semi-metrics pp
and pg, respectively, where for F',G € F,

p?D(F,G)Z/(F—G)ZdP— (/(F—G)dP)Q’
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and analogously for (), and F and F are totally bounded with respect to these semi-metrics [11,
Example 1.5.10]. In particular, since pp is dominated by the L?(P) norm, and likewise for (), these
processes are also uniformly L?(P) and L?(Q) continuous and F and F¢ are L?(P) and L%(Q)
totally bounded.

Since P,, and @, are independent, the above considerations imply that

(V(Po = P),Vm(Qm — Q) ~ (Bp,Bg) in £(F) x £>(FC),
for a tight Gaussian limit (Bp,Bg) with sample paths almost surely continuous with respect to
the metric on F x F¢ given by the sum of the L?(P) and L?(Q) metrics on F and F¢. Finally,
there exists a continuous map from ¢>°(F) x £(F¢) to £°(C x S?~!) given by associating
(S,T) € £°°(F)x£>(F) with the element of £>°(CxS?~!) sending (f,u) to S(foh,)+T(foh.),
and the continuous mapping theorem therefore furnishes the desired convergence.

It remains to show that F and F¢ are P- and Q-Donsker. We first prove that F is P-Donsker. By
[11, Theorem 2.5.6], it suffices to show that

/oo \/10g Ny(e, F, Ly(P)) de < oo 3)
0

By Lemma A.4, we may replace the bracketing number Njj(e, F, L2(P)) by the uniform covering
number N(¢/2, F, || - |loo)-

[11, Theorem 2.7.1] gives an upper bound for the covering entropy of C: there exists some positive
constant C depending on R and L such that

log N(£,C, || - |oo) < Cre™ 1. 4)
[12, Lemma 6.2] shows that there exists a positive constant C5 depending on R such that
N(Ev {hu> u € Sd_l}7 H ’ HOO) = N(5/27Sd_17 H ’ ”2) < 025_(1' )

Consequently, apply Lemma A.5 to N (e, F, || - ||oo) and we get
N(e F, - lloo) < log N(e,C, || - loo) +1og N(e/2,S77, || - [|2) < Cre™" +log(Cae™) . (6)
We obtain that

/ \/1ogzvﬂ(g,f,L2(P))deg/ VNG F ] Tl de
0 0
2diam(F)
- [ VR T

2diam (F)
< / \/016—1 + log(Cae~?) de
0

< 0.

Therefore F is P-Donsker. The argument for F' C is identical, since Lemma A.6 shows that the
estimate (6) holds for 7€ as well. L]

To prove Theorem 2.1, we combine the above result with the functional delta method. Let ¢ :
£°(C x S371) — ¢°°(S?~1) be defined by

U®)(u) := sup B(f, u). ()
fec

The following proposition shows that ¢« is Hadamard directionally differentiable tangentially to the set
of continuous functions at all functions for which the supremum in (7) is uniquely achieved.

Proposition A.2. Let ¢ : £>°(C x S71) — (>°(S9~1) be defined as in (7), and denote by C,,(C x
S4=1. p) the set of elements of £°°(C x S?~1) which are uniformly continuous with respect to the
semi-metric p defined in (2). Then for ® € C,,(C x ST, p) such that ®(-,v) has a unique maximizer

for every u € S, the function v is Hadamard directionally differentiable at ® tangentially to
Cu(C x S%71, p), with derivative 1’y : £2°(C x S4=1) — £>°(S4~1) given by

tp(W)(u) = U(fu,u), uweSTHLWECC ST p), ®)
where ®( f,,,u) = supe (-, w).



Proof. Fix an arbitrary u € S~ 1. [2, Theorem 2.1] shows that the function t* : £>°(C x S~1) = R

defined by
(@) = sup D(f, u)
fec
is Hadamard directionally differentiable, with derivative
(t")e(¥) =lim sup U(f,u) ©)

e—0 ngﬁﬂ (‘I))

where B, ,,(®) := {f € C: ®(f,u) > sup, ®(-,u) — ¢}. Moreover, we claim that if & and ¥ are
uniformly continuous, then the expression for the derivative simplifies to

(1) (V) = W(fu,u) = (V) (u). (10)
To see this, we define ¢, € £>°(C) by ¢(-) = ®(-,w) and ¢(-) = ¥(-,u), so that the right side of

(9) reads

lim sup ¥(f),

<70 feB.(¢)
where Bc(¢) := {f € C: ¢(f) > supe ¢ — €}. By assumption, the functions ¢ and ¢ are uniformly
continuous with respect to the semi-metric

p“(fr9) = foh" —goh"|p2py + If 0 h" =g o h"|[L2(q)

and C is totally bounded with respect to this semi-metric. Following [2, Corollary 2.5], it is enough
to show that C is complete with respect to p*. The completeness of L?((h,)4P) implies that any
sequence f,, € C which is Cauchy with respect to p" possesses a limit f, and by passing to a
subsequence we may assume that f,, — f pointwise, and, since the elements of C are bounded and
equicontinuous, we may further assume that f,, — f uniformly on [— R, R] by the Arzela—Ascoli
theorem. Since C is closed with respect to pointwise convergence, f € C, and since c-transforms
are preserved under uniform convergence, we also have fS — f¢uniformly in [~R, R]. Therefore
(frws fr,) = (f, f¢) for some f € C uniformly, and hence f,, — f in p*. This proves (10).

We now turn to the differentiability of . To prove the Hadamard differentiability of ¢, according

to Proposition 3.5 of [10], is equivalent to prove ¢ is Lipschitz and that the function ¢, (®, V) €
£>°(S%1) defined by

Ln(q)v \Il)() = Sup(sn@(fv ) + \Ij(fa )) — Sp SUp (I)(fa )
fec fec
converges uniformly to the limit ¢ (¥)() for any positive increasing sequence s,, — oo. The
Lipschitz property is obvious. Indeed, for any ®, &5 € £>°(C x S?~1),

SUp | |sup Py (f,u) - sup Do (f,u)| < Sup |1 (f,u) — Po(f,u)] < [|[ @1 — P2l goe (e xga-1)-
ueSa—1 K

As for the uniform convergence, we first show that ¢,, (®, ¥)(u) — ¢, (¥)(u) pointwise. This follows

directly from the Hadamard differentiability of +“, since
i (@, W) (1) = 1" (5, @ + W) — 5,.(D) — (1*)5 (V) = 15(¥)(u) asn — oo.

Moreover, we show in Lemma A.3 that the functions ¢,,(®, ¥') and /(®, ¥) are continuous on S~ 1,
Therefore, by [8, Theorem 7.13], to show uniform convergence on S?-1 it suffices to show that the
sequence {.,(®, ¥)},>1 is monotonically non-increasing for all u € S?~1. This follows directly
from the definition of ¢,,. Indeed, for any u € S%-1 we have

tn (P, \I’)(“) — tnt1(®, \Il)(u)
= sup (s, @(f,u) + V(f,u)) —sup (sp41P(f,u) + U(f, 1)) +sup(snt1 — 5n)P(f, 1)
fec fec fec
> ?élc) ((sn + snt1 = 82)2(f,u) + ¥(f,u) — f}ellci‘ (sn+1®(f, u) + ¥(f,u)) = 0.

The last inequality results from the reverse triangle inequality for the supremum. This finishes the
proof for Hadamard directional differentiability of ¢. O



Lemma A.3. For ®,V € C,(C x S1), then the functions v,(®, ) are continuous on S*~1. If
®(-,u) has a unique maximizer for every u € S, then ' (®, V) is also continuous.

Proof. For the continuity of ¢, it suffices to show that if u — v, then
Sup|q)(f,u)f<1)(f,v)|%0, (11)
fec

and analogously for W. This follows directly from uniform continuity: for any € > 0, there exist a

6 > 0 such that
p((f,u),(g,v)) <6 = [®(f,u) — ®(g,v)] <e.

In particular, we have sup e |9 (f,u) — ®(f,v)| < eif sup; p((f,u), (f,v)) < d. Moreover, since
the elements of C and their c-transforms are uniformly Lipschitz, we have

j‘};lgp((ﬁ w), (f,0)) < C (ha = hollL2py + |hu = holl2())

for a positive C' independent of f, and the right side of the above expression converges to 0 as u — v.
Therefore (11) holds, as does the analogous convergence for W. This proves continuity of ¢,,.

For ./, we have

te(V)(1) = 1o (V) (v) = ¥(fu,u) — ¥(fo,v)
where f,, f, are the maximizers of ®(-,u), ®(-, v) respectively. Choose any sequence v,, — v and
let f,, denote the unique maximizers of ®(-,v,,) correspondingly. Since C x S?~! is totally bounded
and complete, we may upon passing to a subsequence assume (f,,, v,,) — (f,v) € C x S9~1, and by
the uniform continuity of ® we must have ®(f,v) = sup ;¢ ®(f,v), and since we have assumed

that the supremum is uniquely achieved, f = f,. Since this argument holds on any subsequence, we
obtain that the whole sequence converges to (f,,v), and the uniform continuity of ¥ implies that

1i_>m V(fn,vn) =¥ (fp,v),
as desired. -

We are now in a position to prove the main theorem.

Proof of Theorem 2.1. For the sake of notational simplicity, we prove the special case of (6) when
n = m with both sides multiplied by v/2. Namely, we are going to show

Vi (WE(Py.,Qn.) — WE(P,Q.)) ~ V2G  in£>(S*1). (12)
The general conclusion with n # m follows by an analogous argument.
Fix u € S?~!. By Kantorovich duality, we may write the Wasserstein distance as
Wy(PLQu) =sup [ fol,dP+ [ f7oh,dq.
fec
Define ®pg) : C x S™! = Rby ®pg) = Expf o hu(X) + Exqf®o hy(Y). Note that

®p ) is uniformly continuous with respect to p. Indeed, for any f, g € C and u,v € Sa-1,

|®(p.o)(f,u) — p.g)(g:v)|
<Ex~p|fohy(X)—gohy(X)|+Eyag|foh,(Y)—g°oh,(Y)]

< (Bxerlf o miX) =90 m(X)7) "+ (Braals o ha¥) =g o m(F)
— p((f). (0.0)

Moreover, for any u € Se-1, ®(-, u) achieves the maximum over C at a unique f,, € C, since under
the assumption of (CC), the Kantorovich potential corresponding to P, and @), is unique.

We now apply the functional delta method to Proposition A.1 with the supremum function ¢. By
Kantorovich duality, «(®(p,q))(u) = WP (Pu, Qu) and 1(®(p, q,)) (1) = WP (Pyu, Qnu) Proposi-
tion A.2 implies that ¢ is Hadamard directionally differentiable and the derivative of ¢ at ®(p ) in

the direction B is given by
Lo (Bp.g)) (1) = Bpqg)(fus u).



Hence,
Vi (U®p,.0.) = UPP.@)) ~ oy B)() =B(f,-) XS (13)

This is a centered tight Gaussian process on S, and a direct computation shows that its covariance
agrees with that of V2@, as desired. The case where n # m follows similarly; the details are
omitted. O

A.1.1 Additional Lemmas

The following lemma is included in the proof for Corollary 2.7.2 of [11]. For the sake of clarity, we
state it here separately.

Lemma A.4. Suppose that P is a probability distribution on R, then the bracketing number of
any class of functions H with respect to Lo(P) can be bounded above by the covering number with
respect to the uniform norm. Explicitly, for ¢ > 0, we have

N[](257H7L2(P)) < N(&'H, || . ||oo) (14)

Proof. The proof is inspired by that of Lemma 6.2 of [12]. Take any g € H and suppose that it lies
in some ball B, _(f,e). Letl = f —e,u = f 4 ¢, then

l—g=f-g9g-ec<e—-e=0u—g=f—-g+te>—-ec+e=0,
and ||l—u||L2(p)=2€. O]

The next lemma is included in the proof for Lemma 4.2 of [4]. Again we state and prove it here
separately for completeness.

Lemma A.5. Consider some set of composite functions Ay := {f oh: f € A, h € H} where the
functions in A are K-Lipschitz. Then

N((K +1),Cr, [ - lloo) < N(&,Cr, [| - loc) X N(&, F, | - [loo)- (15)

Proof. Indeed, for any g := f o h € Ay, there exists some fy € A and hy € H such that
Hf - fOHom ||h - hO”oo < ¢, then

lg = foohollse < [If ©h = f ohollac +[1f ©ho = fo o holleo
< Kb = holloe + If = folloo < (K + 1)e.

O
Lemma A.6. The covering entropy of FC with respect to L is upper bounded by that of F.
Proof. Fix any f¢ € FC. There exists some fo € F such that || f — fo|leo < €. Then
1 = Fglloo = linf (|2 — y[? — () — inf (|2 — y]? ~ folz))

= lIsup (fo(@) = | = yI”) = sup (Jz = y|" = f(2)) |l

< llsup (o —yl” = (@) = (o = y” = fo(2)) o

= lIsup (fo(@) = f(@)) lloo < [lfo = flloo <&
The conclusion follows immediately. [

A.2 Proof of Theorem 2.6

Proposition A.7. Consider two probability distributions P and @) that satisfy (CC) and have compact
supports contained in the ball B(0, R) for some R > 0. Let f,, f, € C be the unique Kantorovich
potentials for (Py, Q) and (P,, Qy), respectively. Then there exists a constant Cr , depending on
R and p such that

Hfu*fv”OO SCRvP”u*rU”gil' (16)
Moreover, if P and Q are discrete probability distributions on {x1,...,zn5},{y1,--.,yn} C
B(0, R) respectively such that P(x;) = Q(y;) = 1/N fori = 1,..., N, then the inequality

above also holds.




Proof. By the representation of one-dimensional Wasserstein costs [see 1, Theorem 2.10], we have
for any u € S41,

1
_ -1 -1
Wp(Pa Q) = [P0 - Qi o ar.
where, by abuse of notation, P, Land Q. I denote the inverses of the cumulative distribution functions
of P, and ), i.e.,
P lt)=inf{z e R:Pp{X Tu <} >1t},

and analogously for Q, 1. Under (CC), note that these inverses satisfy

P7l(t) <z <= t < P,(2)

P7lt) > 2 <= t> P,(x),
and likewise for (),, (this follows from the considerations in [9, Section 2.1] combined with the fact
that P, ! is a right inverse for P, since the support of P, is connected).

It follows from [9, Theorem 1.17] that the derivative of any optimal Kantorovich potential f,, must
satisfy

fule) =plz — Q1 o Pu(2)P7*(z — Q' o Pu(2)).

Note that |z — Q! o P,(x)| < 2R, so that this expression is bounded by p(2R)?~*. Therefore, if
we define

fulz) = / pla — QYo Pu(e) P2 (e — Q' o Pula’)) da’ |

then f, is p(2R)P~! Lipschitz, satisfies f,,(0) = 0, and is a Kantorovich potential, and under (CC),
it must therefore be the unique optimal potential in C.

If we define g, (/) = 2 — Q" o P, (') ["~2(«/ — Q" o P,(')). it follows that

I fu — follo = L

R
<p / 19u(e') = gu(a")] da’.

/0 " p(gu(e’) — gu(a)) da’

The function v + |v|P~2v is p — 1-Holder, with norm depending on R and p [see, e.g 5, proof of
Corollary 3]. Letting C'r ;, denote a constant depending on R and p whose value may vary from line
to line, we obtain

R
o = folloo < CR,p/ Qu" o Pu(a') = Q) o Py(a) P da
-R
R
OR’P/ Qi o Pu(a') = Q1 o Pu(a)lP™t +1Qy " o Pu(a’) = Q' o Py(a) [P~ da
-R
R
< Crp(lQu" 0 Pu = QT o Pl + / Qi o Pula’) = Q" o Po(a) P! )
-R

For the first term, it suffices to note that ||Q; ' — Q, !||oc is bounded. Indeed, [1, equation (2.3)]
implies
”Q;l - Q;lnoo = Woo(Qua Qv)
<Y Tu =Y Tl 1< (g)
< Rfu—vl2,

where the first inequality follows from the fact that (Y Tu, Y Tv) with Y ~ Q is a valid coupling of
Qv and Q. Therefore HQ;l o Py — Q;l 0 Pylloo < R|lu—v2.



For the second term, we first derive an upper bound for the case p = 2. The idea is borrowed from
the proof of [9, Proposition 2.17]. Through computations, we have

R
| @t r) - @it o pl s

=L ({(m’,y) €[-R, R x [-R,R]: Q' o P,(2)) <y < Q,' o Py(2)
or Qo P(x) <y<Q,lto Pu(x’)})
=L ({(m’,y) €[-R, R x[-R,R]: Q' o P,(2)) <y < Q,' o Py(2) )
+ L2 ({(m’,y) €[-R, R x[-R,R]: Q' oP,(z)) Sy<Q, o P,(a )}) )

By Fubini’s theorem along with the monotonicity of cumulative distribution functions, we have

L2 ({(2",y) € [=R, Rl x [-R,R] : Q" o Pu(2') Sy < Q" 0 Py(2')})

R
= [ R R oQu) < < P 0 Qu))
Similarly,
£ ({(«',y) € [-R, R x [-R,R] : Q' o P, (/) <y < Q, ' o Py(2")})

R
:/—R£1 ({xl € [—R,R]:Pu_lon(y) < ng_lon(y)}) d

Summing up the integrals, we obtain

R R
/ Qrt o Pu(a’) — Qo <>|dx—/ P70 Qu(y) — Pyt o Qu(y)] dy
-R

<2R|P; = P oo < 2R?(u— ]2
When p > 2, we have

R R
/ Qy" o Pu(a) = Q1 o Py(a”)[P~ da’ < (2R)P / |Qy" o Pu(a) — Qy1 o Py(a”)] da
—R —R
< (2R)P[lu—wvllz-
Finally, when 1 < p < 2, again we consider z’ as a random variable of the uniform distribution U’

n [— R, R], and then by Jensen’s inequality
R
[ 10t e e - Qo P ' = 2R
-R

1 R
2R
1
< 2R(3g / Q; 0 Pula’) = Qo Pu(a) da')r
< 2R(R|lu—vl[2)?" < 2R”u— w5~
Hence, combining the upper bounds for the first and second term, we obtain for p > 1,
-1 1)V -1
1fu = Follse < Crop(lu— |5~ + flu— ol < Crpllu—vf5 "
Now we turn to consider the discrete distributions. In this case, the inverse P, 1 only satisfies
P7l(t) <z < t < P,()
P7Y(t) >z < t> P,(z),

\Q;l o Py(2') = Qyt o Py(a)|P~t da’

and likewise for Q1.
Fix any y € [—R, R], we have
L' ({z' € [-R,R] : Py(z') < Qu(y) and P,(z") > Qu(y)})
= L' ({z" € [=R, R] : P(2') < Qu(y) and P, (z") > Qu(y)})
+ L ({2" € [-R,R] : Pu(2') = Qu(y) and P,(a") > Qu(y)})
<L'({#' €[-R,R: P, oQu(y) <2’ < P, oQu(y)})
+ L' ({2’ € [-R,R]: P, ' 0 Qu(y) <z < Py o (Qu(y) +1/N)})
=L'({a' € [-R.R]: Py o Quly) <2’ < Pl o(Quly) +1/N)}) .



Analogously,

L ({2 € [-R,R]: Py(2") < Qy,(y) and P, (2") > Q,(y)})
<L'({#' €[-R,R]: P, 0oQu(y) <2’ < P, o(Qu(y) +1/N)}) .

In addition, the two sets have no intersection. Therefore,
R
1@t o Puta) = Qi o P
/ P70 (Quly) + 1/N) = P 0 Quly) + P 0 Quly) - P o (Quly) + 1/N)| dy

/ P10 (Quly) + 1/N) = Pl o (Quly) + 1/N)| + [Pt o Quly) — Prto Qu(y)| dy
<AR|P7Y = PV oo < AR Ju — o).
O

Proof of Theorem 2.6. We may assume without loss of generality that m = n by discarding addition
samples from either P or Q, if necessary. We define an estimator for u, v € S¢~! by setting

EAIW, =(1-2X) / fnu(uTx)fM(vTx) dP,(x)

(1— A (/fnuude )(/fM)vde())

+A/fﬁu(uTy) o (019) dQn(y)

—A(/fnuu y) dQn (y ></f,wv y) dQn(y )>,

where f,,. € C denotes a Kantorovich potential for P,,. and @),,.. We are done if we can show the
convergence of the first term to the corresponding one in (7). The proof for the other three terms
follows similar routine.

7

We first split the absolute difference between the objective quantities into two terms:

sup

/fnu (u'2) fro (v 2) APy ( /fu (u'z)f, (v x)dP(z)

u,veSd—1
1 n
< n SUSB ) anu(uTXi)fnv(vTXi) _fu(uTXi)fv(UTXi)
u,veES*™ i=1
s LS (T X (0T X ~ BT X))
u,ve i=1

For the second term, we notice that P, — P ~ 0in £°(C x S~ 1)and H : £>(C x S%~1) = R
defined by H (g) = 9(fu,u)g(fy,v)| is continuous. Therefore, the second term converges
to zero in distribution and consequently in probability. Since all f,.,, f., © € S*~! are uniformly
bounded by some constant depending only on R and p, dominated convergence theorem yields
convergence in mean.

For the first term, we have

E sup [Py ((fau © ha)(frw © ho) = (fu © hu)(fo 0 he))l

u,veSi—1

<E sup |fnu(uTX)fm,(vTX) - fu(uTX)fv(vTX)‘

u,peSd—1

< CrpE sup |fou(u'X) = fu(u' X)| .

u€eSd—1



Proposition A.7 implies that
[ fon(u" @) = fu(u" @) = [fow (07 2) = fu (0T 2)[|
< (fou(u"a) = fulu"2) = (fau(v'2) = fov 2))]lo

< Crpllu—vl5™". (18)
Therefore, for any & > 0, there exists some partition of S?~! such that for n € N* large enough,

Ne
Sd_l g U B(Ui, 65)7

i=1

H’fnuu x) — fulu m‘—’fnu, (wi" @) — fu,( H’ <f i1=1,..., N,
E sup |fnu(uTX) — fu(uTX)| <<
i=1,...,N. 2

The last inequality follows from the the P-a.s. convergence of Kantorovich potentials by [3, Theorem
2.8] with dominated convergence theorem applied to it and and the finiteness of terms taken over
supremum.

Altogether, the first term may be bounded by arbitrarily small numbers when n — oo:

g
E sup |f”“(uTX)_fu(uTX)| <E sup |fnu(UTX)—fu(uTX)|+* < €.
ueSd—1 i=1,...,N- 2

This completes the deduction of convergence in mean of the estimator (17). O

A.3 Proof of Theorem 3.1

Proof. We define H : (°>°(S*"') — Ras H(f) := [qo1 f(u)do(u). W3 (., v.) indeed belongs to
£>°(S?~1) since the Wasserstein distance between any one-dimensional projections of probability
distributions p and v is bounded above by the one between p and v themselves. Besides, the

integral over unit sphere with respect to uniform measure preserves the sup norm of the functions in
£°(S41),

By definition of weak convergence in £°°(S?~!), the uniform CLT implies that
VA(SW(PaQu) = SWE(P.Q)) = [ VWY (P, Qo) = WY (o Qu)) o) = .

For any w in the probability space 2, o, |Gy (w)| do(u) < oo. This can be easily deduced from

the fact that G has continuous sample paths a.s. In addition, G : S¥~1 x  — R is jointly measurable
and thus w — S(w) is a random variable. Finally, S is Gaussian due to the Riemann integrability of
u = Gy (w).

Finally we compute the mean and variance of .S. Trivially, ES = 0. In terms of the variance, we have

Var(S):IE( SMG( ) /S/S G(v)) do(u) do(v)
- [([, stwroras) arw —([([ s x)do(u))dP<x>)2

+f ( [, ) do<u>)2 aQ(x) - ( [ s aotw) dQ<y>)2

= Varx.p ( fu(u' X) da(u)) + Vary g < /S » fe(u'y) da(u)) . (19)

Sd—l
O

Remark A.8. The variance of S is identical with that of Zp,q) derived in Theorem 3 and Lemma 8
of [6] with 6 = 0. The variance of Z p,q) can be reduced to

/S /S ( /01 1PN = Qi OPIPT () — Q7 (B)[F dt — WE (P, Qu)W, <PU,QU>) o(w) do (v).



Let w,, and T, denote the optimal transport plans between P,, Q,, and P,, Q, respectively. Letting
(Xu,Y,) ~ my and (X,,Y,) ~ m,, it follows that the expression above is equal to

/ / cov (| Xy = Y|P, | Xy — Yo|?) do(u) do(v)
Sd—l Sd—l

— Var (/S X, — Yu|pda(9)>

= Var( - fulu" X) + fE(u'Y) da(u)>

= Varx~p ( fulu X) da(u)) + Vary g < /S » fo(u'y) da(u)> .

§d—1

B Additional Experiments

We present more simulation results in this section, including those with p = 1. As mentioned in the
main text, the only obstacle to including p = 1 is that there do not seem to be general conditions
under which the Kantorovich potentials under p = 1 are unique. We will show; however, if this fact
can be verified by other means in specific cases, then the central limit theorem still holds.

B.1 Sliced Wasserstein Distance.

Consider the example in section 4.1. Instead of p = 2, we investigate the asymptotic behavior of the
case p = 1. We first give an explicit representation of the theoretical limit of the example given in
section 4.1. Then the unique 1-Lipschitz function that achieves the 1-Wasserstein distance between
Py and Qg is ¢§(x) = —sign(ag)z. Hence, we have

Vi (Wi(Py.,Qn.) — Wi(P,Q.)) ~ G,

where G is the mean-zero Gaussian process indexed by S? with covariance functions
2
EG(u)G(v) = gsign(au)sign(av)<u7v>.

It follows from Theorem 3.1 that the limiting distribution of the empirical 1-Wasserstein distance is
the centered Gaussian S with variance

Var(S) = §/82 /S2 sign(a,,)sign(a, ) (u, v) do®(u)do®(v) ~ 0.164.

We sample i.i.d. observations X;,...,X,, ~ Pand Yy,...,Y, ~ @ with size n = 50,100, 500.
This process is repeated 500 times. We then compare the finite distributions of 1-Wasserstein distance
with the theoretical limit given in section 3.1. We demonstrate the results using kernel density
estimators in Figure 1. We see that the finite-sample empirical distribution gets closer to the limiting
Gaussian distribution in 9 as the sample size n increases.

In addition, we simulate the re-scaled plug-in bootstrap approximations by sampling n = 1000
observations of P and Q. Fix some empirical SW /nSW3(P,,Q,), we generate B = 500
replications of vI(SWy (P, Q%) —SW1(P,,Q,)). The distributions of the replications with various
replacement numbers [, compared with the finite-sample empirical distribution and the theoretical
limit, are shown in Figure 2. We observe that the naive bootstrap (I = n) better approximates the
finite sample distribution compared to fewer replacements (I = n'/2,n3/%). This is consistent with
the observation of inference on finite spaces. [7]

B.2 Max-Sliced Wasserstein Distance

Consider the example in section 4.2. Again we estimate the distributional limit of the empirical
distributions of 1-Wasserstein distance but with a = 2. The unique 1-Lipschitz function that achieves
1-Wasserstein distance between P., and ()., or equivalently P_., and Q_., is ¢¢' () = —|z|.
Consequently, the theoretical limit in this case is the mean-zero Gaussian with variance

2 2

Var(G )—1/1 2 1/1 2| d +1/2 2 1/2|d _ 3
ta) = 9 _1$ v 2/ e 4 _2y Y 4 —2y ) T 1
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sample size n = 50 sample size n = 100 sample size n = 500
10 2

Density
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Figure 1: Comparison of the finite sample density (pale turquoise) and the limit distribution of the
empirical sliced distance (pink).

replacement | = n"1 replacement | = n"3/4 replacement | = n"1/2

-20 -15 -10 -05 00 05 10 15 20 20 -15 -10 -05 00 05 10 15 20 —20 -15 -10 -05 00 05 10 15 20
x

Figure 2: Bootstrap for the empirical sliced distance. Illustration of the re-scaled plug-in bootstrap
approximation (n = 1000) with replacement [ € {n,n%/4 n'/2}. Finite bootstrap densities (pale
green) are compared to the corresponding finite sample density (pale turquoise) and the limit distribu-
tion (pink).

The plots of comparison between the theoretical limit and the finite sample distributions of
n = 100, 500, 1000 each of which is repeated 1000 times are given in Figure 3. The simulation of
bootstrap is plotted in Figure 4. The naive bootstrap (I = n) better approximates the finite sample
distribution compared to fewer replacements (I = n'/2, n3/4).

In order to give some sense of non-Gaussian limiting distributions, i.e. when the directions that
maximize the Wasserstein distance of 1-dimensional projections are not unique, we give an example
of such cases. Let P be the uniform distribution over S? and @ uniform over 2S2. The plots of
comparison between the theoretical limit and the finite sample distributions of n = 1000, 5000, 10000
each of which is repeated 5000 times are given in Figure 5. The simulation of bootstrap with B = 500
replications is plotted in Figure 6. We see that the overall performance is worse than the cases when
the limits are Gaussian. The replacement [ = 3/4 has the closest approximation comparatively.

sample size n = 100 sample size n = 500 sample size n = 1000

~ - -
a\ 06 > 06 7\

0o — =— 00 — — 00

Figure 3: Comparison of the finite sample density (pale turquoise) and the limit distribution of the
empirical max-sliced Wasserstein distance (pink).

replacement| =n"1 replacement | = n"3/4 replacement | = n*1/2

x

x

Figure 4: Bootstrap for the empirical max-sliced Wasserstein distance. Illustration of the re-scaled
plug-in bootstrap approximation (n = 1000) with replacement I € {n,n3/*,n'/?}. Finite bootstrap
densities (pale green) are compared to the corresponding finite sample density (pale turquoise) and
the limit distribution (pink).
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sample size n = 1000 sample size n = 5000 sample size n = 10000

- N 10 A
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J ~ / "N S
00 — 0o - — 00 < -
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Figure 5: Comparison of the finite sample density (pale turquoise) and the limit distribution of the
empirical max-sliced Wasserstein distance (pink).

replacement | = n*1 replacement | = n™3/4 replacement | = n"1/2

A\ A\ A

Figure 6: Bootstrap for the empirical one-dimensional WPP. Illustration of the re-scaled plug-in
bootstrap approximation (n = 10000) with replacement [ € {n,n?/* n'/2}. Finite bootstrap
densities (pale green) are compared to the corresponding finite sample density (pale turquoise) and
the limit distribution (pink).

B.3 Distributional Sliced Wasserstein Distance

In this section, we present a simple example for DSW. Consider two distributions P which is uniform
on the surface of the ellipsoid {z?/4 + 4y* + 2% = 1} and Q the uniform distribution on S?. Let P¢
be a set of 10 two-point probability measures on S2. Explicitly, for each 7 € Pg, 7 ~ %5u + %%

for some u, v € S%. One of the measures takes u = (1,0,0) and v = (—1,0,0). The discussion in
Section 3.3 yields that

1 2
We sample i.i.d. observations Xy, ..., X, ~ P and Y7,...,Y, ~ @ with size n = 100, 500, 1000.

This process is repeated 1000 times. The plots of comparison between the theoretical limit and the
finite sample distributions are given in Figure 7.
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sample size n = 100 sample size n = 100

Sample Quantiles.

Theoretical Quantiles

sample size n = 500

Sample Quantiles.

-3 -2 -1 0 1 2 3 4
Theoretical Quantiles

sample size n = 1000

Density
=
g
Sample Quantiles
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Figure 7: Comparison of the finite sample density (pale turquoise) and the limit distribution of the
empirical distributional sliced Wasserstein distance (pink).
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