
A Breaking down the Continuous Treatment Marginal Sensitivity Model

Let’s go deeper into the Continuous Treatment Marginal Sensitivity Model (CMSM).

A.1 MSM for binary treatment values

This section details the Marginal Sensitivity Model of [Tan06]. For binary treatments, TB = {0, 1},
the (nominal) propensity score, e(x) ≡ Pr(T = 1 | X = x), states how the treatment status, t,
depends on the covariates, x, and is identifiable from observational data. The potential outcomes,
Y0 and Y1, conditioned on the covariates, x, are distributed as P (Y0 | X = x) and P (Y1 | X = x).
Each of these conditional distributions can be written as mixtures with weights based on the propensity
score:

P (Y0 | X = x) = (1− e(x))P (Y0 | T = 0,X = x) + e(x)P (Y0 | T = 1,X = x),

P (Y1 | X = x) = (1− e(x))P (Y0 | T = 1,X = x) + e(x)P (Y1 | T = 1,X = x).
(16)

The conditional distributions of each potential outcome given the observed treatment, P (Y0 | T =
0,X = x) and P (Y1 | T = 1,X = x), are identifiable from observational data, whereas the
conditional distributions of each potential outcome given the counterfactual treatment, P (Y0 | T =
1,X = x) and P (Y1 | T = 0,X = x) are not. Under ignorability, {Y0,Y1} ⊥⊥ T | X = x, P (Y0 |
T = 0,X = x) = P (Y0 | T = 1,X = x) and P (Y1 | T = 1,X = x) = P (Y1 | T = 0,X = x).
Therefore, any deviation from these equalities will be indicative of hidden confounding. However,
because the distributions P (Y0 | T = 1,X = x) and P (Y1 | T = 0,X = x) are unidentifiable, the
MSM postulates a relationship between each pair of identifiable and unidentifiable components.

The MSM assumes that P (Yt | T = 1 − t,X = x) is absolutely continuous with respect to
P (Yt | T = t,X = x) for all t ∈ TB . Therefore, given that P (Yt | T = t,X = x) and
P (Yt | T = 1 − t,X = x) are σ-finite measures, by the Radon-Nikodym theorem, there exists a
function λB(Yt,x; t) : Y → [0, inf) such that,

P (Yt | T = 1− t,X = x) =

∫
Y
λB(Yt,x; t)dP (Yt | T = t,X = x). (17)

Rearranging terms, λB(Yt,x; t) is expressed as the Radon-Nikodym derivative or ratio of densities,

λB(Yt,x; t) =
dP (Yt | T = 1− t,X = x)

dP (Yt | T = t,X = x)
,

=
p(yt | T = 1− t,X = x)

p(yt | T = t,X = x)
.

(18)

By Bayes’s rule, λ(Y0,x; 0) and λ(Y1,x; 1) are expressed as odds ratios,

λB(Y0,x; 0) =
1− e(x)

e(x)

/
1− e(x, y0)

e(x, y0)
,

λB(Y1,x; 1) =
e(x)

1− e(x)

/
e(x, y1)

1− e(x, y1)
,

(19)

where e(x, yt) ≡ Pr(T = 1 | X = x,Yt = yt) is the unidentifiable complete propensity for
treatment.

Finally, the MSM further postulates that the odds of receiving the treatment T = 1 for subjects with
covariates X = x can only differ from e(x)/(1− e(x)) by at most a factor of Λ,

Λ−1 ≤ λB(Yt,x; t) ≤ Λ. (20)

α(e(x, t),Λ) =
1

Λe(x, t)
+ 1− 1

Λ
≤ 1

e(x, t, yt)
≤ Λ

e(x, t)
+ 1− Λ = β(e(x, t),Λ) (21)
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A.2 Modifying the MSM for categorical treatment values

For categorical treatments, TC = {ti}nc
i=1, the (nominal) generalized propensity score [HI04],

r(x, t) ≡ Pr(T = t | X = x), states how the treatment status, t, depends on the covariates, x,
and is identifiable from observational data. The potential outcomes, {Yt : t ∈ TC}, conditioned on
the covariates, x, are distributed as {P (Yt | X = x) : t ∈ TC}. Again, each of these conditional
distributions can be written as mixtures with weights based on the propensity density, yielding the
following set of mixture distributions:{

P (Yt | X = x) =
∑

t′∈TC

r(x, t′)P (Yt | T = t′,X = x)

}
. (22)

Each conditional distribution of the potential outcome given the observed treatment, P (Yt | T =
t,X = x), is identifiable from observational data, but each conditional distribution of the potential
outcome given the counterfactual treatment, P (Yt | T = t′,X = x), and therefore each mixture
P (Yt | X = x), is not. Under the ignorability assumption, P (Yt | T = t,X = x) = P (Yt | T =
t′,X = x) for all t′ ∈ TC .

In order to recover the form of the binary treatment MSM, we can postulate a relationship between
the unidentifiable P (Yt | X = x) − r(x, t)P (Yt | T = t,X = x) and the identifiable P (Yt |
T = t,X = x) − r(x, t)P (Yt | T = t,X = x). Under the assumption that P (Yt | X =
x) − r(x, t)P (Yt | T = t,X = x) is absolutely continuous with respect to P (Yt | T = t,X =
x)− r(x, t)P (Yt | T = t,X = x), we define the Radon-Nikodym derivative

λC(Yt,x; t) =
d(P (Yt |,X = x)− r(x, t)P (Yt | T = t,X = x))

d(1− r(x, t))P (Yt | T = t,X = x)
,

=
1

1− r(x, t)

(
dP (Yt |,X = x)

dP (Yt | T = t,X = x)
− r(x, t)dP (Yt | T = t,X = x)

dP (Yt | T = t,X = x)

)
,

=
1

1− r(x, t)

(∑
t′∈TC

r(x, t′)dP (Yt | T = t′,X = x)

dP (Yt | T = t,X = x)
− r(x, t)dP (Yt | T = t,X = x)

dP (Yt | T = t,X = x)

)
,

=
1

1− r(x, t)

(∑
t′∈TC

r(x, t′)p(yt | T = t′,X = x)

p(yt | T = t,X = x)
− r(x, t)p(yt | T = t,X = x)

p(yt | T = t,X = x)

)
,

=
1

1− r(x, t)

∑
t′∈TC

����r(x, t′)p(T=t′|yt,x)��p(yt)

���r(x,t′)

p(T=t|yt,x)��p(yt)
r(x,t)

−
r(x, t)p(T=t|yt,x)��p(yt)

���r(x,t)

p(T=t|yt,x)��p(yt)

���r(x,t)

 ,

=
r(x, t)

1− r(x, t)

1− p(T = t | yt,x)
p(T = t | yt,x)

,

=
r(x, t)

1− r(x, t)

/
r(x, t, yt)

1− r(x, t, yt)
,

(23)

where, r(x, t, yt) ≡ p(T = t | yt,x) is the unidentifiable complete propensity density for treatment.

Finally, the categorical MSM further postulates that the odds of receiving the treatment T = t for
subjects with covariates X = x can only differ from r(x, t)/(1− r(x, t)) by at most a factor of Λ,

Λ−1 ≤ λC(Yt,x; t) ≤ Λ. (24)

α(r(x, t),Λ) =
1

Λr(x, t)
+ 1− 1

Λ
≤ 1

r(x, t, yt)
≤ Λ

r(x, t)
+ 1− Λ = β(r(x, t),Λ) (25)

A.3 Defining the Continuous MSM (CMSM) in terms of densities for continuous-valued
interventions

The conditional distributions of the potential outcomes given the observed treatment assigned,

{P (Yt | T = t,X = x) : t ∈ T } ,
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are identifiable from observational data. However, the marginal distributions of the potential outcomes
over all possible treatments,

{
P (Yt | X = x) =∫

T
p(t′ | x)P (Yt | T = t′,X = x)dt′

: t ∈ T
}

(26)

are not. This is because the component distributions, P (Yt | T = t′,X = x), are not identifiable
when t′ ̸= t as Yt cannot be observed for units under treatment level T = t′. Under the ignorability
assumption, P (Yt | T = t,X = x) = P (Yt | T = t′,X = x) for all t′ ∈ T , and so P (Yt |,X =
x) and P (Yt | T = t,X = x) are identical. Therefore, any divergence between P (Yt |,X = x) and
P (Yt | T = t,X = x) will be indicative of hidden confounding.

Where in the binary setting the MSM postulates a relationship between the unidentifiable P (Yt |
T = 1 − t,X = x) and identifiable P (Yt | T = t,X = x), our CMSM postulates a relationship
between the unidentifiable P (Yt | X = x) and the identifiable P (Yt | T = t,X = x).

The Radon-Nikodym theorem involves a measurable space (X ,Σ) on which two
σ-finite measures are defined, µ and ν.”
– Wikipedia

In our setting, the measurable space is (R,Σ), and our σ-finite measures are, µ = P (Yt | T =
t,X = x) and ν = P (Yt | X = x): Yt ∈ Y ⊆ R.

If ν is absolutely continuous with respect to µ (written ν ≪ µ), then there exists
a Σ-measurable function f : X → [0,∞), such that ν(A) =

∫
A
fdµ for any

measurable set A ⊆ X.
– Wikipedia

We then need to assume that P (Yt | X = x)≪ P (Yt | T = t,X = x), that is P (A | T = t,X =
x) = 0 implies P (A | X = x) = 0 for any measurable set A.

This leads us to a proof for Proposition 1

Proof. Further, in our setting we have f = λ(yt;x, t), therefore

P (Yt | X = x) =

∫
Y
λ(yt;x, t)dP (Yt | T = t,X = x). (27)

Let the range of Yt be the measurable space (Y,A), and ν(A) denote the Lebesgue measure for any
measurable A ∈ A. Then,

λ(yt;x, t) =
dP (Yt | X = x)

dP (Yt | T = t,X = x)
(28a)

=
dP (Yt | X = x)

dν

dν

dP (Yt | T = t,X = x)
(28b)

=
dP (Yt | X = x)

dν

(
dP (Yt | T = t,X = x)

dν

)−1

(28c)

=
d

dν

∫
A

p(yt | X = x)dν

(
d

dν

∫
A

p(yt | T = t,X = x)dν

)−1

(28d)

=
p(yt | X = x)

p(yt | T = t,X = x)
(28e)

=
p(t | X = x)

p(t | Yt = yt,X = x)
(28f)
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Equation (28a) by the Radon-Nikodym derivative. Equation (28a)-Equation (28c) hold ν−almost
everywhere under the assumption P (Yt ∈ A | x) ≪ ν(A) ∼ P (Yt ∈ A | T = t,X = x).
Equation (28c)-Equation (28d) by the Radon-Nikodym theorem. Equation (28d)-Equation (28e) by
the fundamental theorem of calculus under the assumption that p(yt | x) and p(yt | T = t,X = x)
be continuous for yt ∈ Y . Equation (28e)-Equation (28f) by Bayes’s Rule.

The sensitivity analysis parameter Λ then bounds the ratio, which leads to our bounds for the inverse
complete propensity density:

1

Λ
≤ p(t | x)
p(t | yt,x)

≤ Λ,

1

Λp(t | x)
≤ 1

p(t | yt,x)
≤ Λ

p(t | x)

α(p(t | x),Λ) ≤ 1

p(t | yt,x)
≤ β(p(t | x),Λ)

(29)

A.3.1 KL Divergence

The bounds on the density ratio can also be expressed as bounds on the Kullback–Leibler divergence
between P (Yt | T = t,X = x) and P (Yt | X = x).

Λ−1 ≤ p(t | x)
p(t | yt,x)

≤ Λ, (30)

log
(
Λ−1

)
≤ log

(
p(t | x)

p(t | yt,x)

)
≤ log (Λ) (31)

E
p(y|t,x)

log
(
Λ−1

)
≤ E

p(y|t,x)
log

(
p(t | x)

p(t | yt,x)

)
≤ E

p(y|t,x)
log (Λ) (32)

log
(
Λ−1

)
≤ E

p(y|t,x)
log

(
p(t | x)

p(t | yt,x)

)
≤ log (Λ) (33)

log
(
Λ−1

)
≤

∫
Y
log

(
dP (Yt | X = x)

dP (Yt | T = t,X = x)

)
dP (Yt | T = t,X = x) ≤ log (Λ) (34)

log
(
Λ−1

)
≤ −DKL (P (Yt | T = t,X = x)||P (Yt | X = x)) ≤ log (Λ) (35)

| log (Λ)| ≥ DKL (P (Yt | T = t,X = x)||P (Yt | X = x)) (36)

B Derivation of Equation (7)

Lemma 1.

µ(x, t) = µ̃(x, t) +

∫
Y w(y,x)(y − µ̃(x, t))p(y | t,x)dy

(Λ2 − 1)−1 +
∫
Y w(y,x)p(y | t,x)dy

(37)
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Proof. Recall that the conditional average potential outcome, µ(x, t) = E[Yt | X = x], is unidentifi-
able without further assumptions. Following [KMZ19], we start from,

µ(x, t) = E [Yt | X = x] ,

=

∫
Y ytp(yt | x)dyt∫
Y p(yt | x)dyt

,

=

∫
Y yt

p(t,yt|x)
p(t|yt,x)

dyt∫
Y

p(t,yt|x)
p(t|yt,x)

dyt
,

=

∫
Y yt

p(yt|t,x)p(t|x)
p(t|yt,x)

dyt∫
Y

p(yt|t,x)p(t|x)
p(t|yt,x)

dyt
,

=

∫
Y yt

p(yt|t,x)
p(t|yt,x)

dyt∫
Y

p(yt|t,x)
p(t|yt,x)

dyt
,

which is convenient as it decomposes µ(x, t) into it’s identifiable, p(yt | t,x), and unidentifiable,
p(t | yt,x), parts.

Now, following [JMGS21], we add and subtract the empirical conditional outcome µ̃(x, t) = E[Y |
T = t,X = x] from the right-hand-side above:

µ(x, t) =

∫
Y yt

p(yt|t,x)
p(t|yt,x)

dyt∫
Y

p(yt|t,x)
p(t|yt,x)

dyt
, (39a)

= µ̃(x, t) +

∫
Y yt

p(yt|t,x)
p(t|yt,x)

dyt∫
Y

p(yt|t,x)
p(t|yt,x)

dyt
− µ̃(x, t), (39b)

= µ̃(x, t) +

∫
Y yt

p(yt|t,x)
p(t|yt,x)

dyt∫
Y

p(yt|t,x)
p(t|yt,x)

dyt
− µ̃(x, t)

∫
Y

p(yt|t,x)
p(t|yt,x)

dyt∫
Y

p(yt|t,x)
p(t|yt,x)

dyt
, (39c)

= µ̃(x, t) +

∫
Y yt

p(yt|t,x)
p(t|yt,x)

dyt∫
Y

p(yt|t,x)
p(t|yt,x)

dyt
−

∫
Y µ̃(x, t)p(yt|t,x)

p(t|yt,x)
dyt∫

Y
p(yt|t,x)
p(t|yt,x)

dyt
, (39d)

= µ̃(x, t) +

∫
Y(y − µ̃(x, t))p(yt|t,x)

p(t|yt,x)
dyt∫

Y
p(yt|t,x)
p(t|yt,x)

dyt
. (39e)

Following [KMZ19] again, we reparameterize the inverse complete propensity density as, 1
p(t|yt,x)

=

α(x; t,Λ) + w(y,x)(β(x; t,Λ) − α(x; t,Λ)) with w : Y × X → [0, 1]. We will shorten this
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expression to 1
p(t|yt,x)

= α+ w(y,x)(β − α) below. This gives,

µ(x, t) = µ̃(x, t) +

∫
Y(y − µ̃(x, t))p(yt|t,x)

p(t|yt,x)
dyt∫

Y
p(yt|t,x)
p(t|yt,x)

dyt
, (40a)

= µ̃(x, t) +

∫
Y(α+ w(y,x)(β − α))(y − µ̃(x, t))p(yt | t,x)dyt∫

Y(α+ w(y,x)(β − α))p(yt | t,x)dyt
, (40b)

= µ̃(x, t) +
α
∫
Y(y − µ̃(x, t))p(yt | t,x)dyt + (β − α)

∫
Y(y − µ̃(x, t))w(y,x)p(yt | t,x)dyt

α
∫
Y p(yt | t,x)dyt + (β − α)

∫
Y w(y,x)p(yt | t,x)dyt

,

(40c)

= µ̃(x, t) +
α
∫
Y(y − µ̃(x, t))p(yt | t,x)dyt + (β − α)

∫
Y(y − µ̃(x, t))w(y,x)p(yt | t,x)dyt

α+ (β − α)
∫
Y w(y,x)p(yt | t,x)dyt

,

(40d)

= µ̃(x, t) +
(β − α)

∫
Y(y − µ̃(x, t))w(y,x)p(yt | t,x)dyt

α+ (β − α)
∫
Y w(y,x)p(yt | t,x)dyt

, (40e)

= µ̃(x, t) +

∫
Y(y − µ̃(x, t))w(y,x)p(yt | t,x)dyt

α
β−α +

∫
Y w(y,x)p(yt | t,x)dyt

, (40f)

= µ̃(x, t) +

∫
Y(y − µ̃(x, t))w(y,x)p(yt | t,x)dyt

1/(Λp(t|x))
Λ/p(t|x)−1/(Λp(t|x)) +

∫
Y w(y,x)p(yt | t,x)dyt

, (40g)

= µ̃(x, t) +

∫
Y(y − µ̃(x, t))w(y,x)p(yt | t,x)dyt

1
Λ2−1 +

∫
Y w(y,x)p(yt | t,x)dyt

, (40h)

which concludes the proof.

C Approximating integrals using Gauss-Hermite quadrature

Gauss-Hermite quadrature is a numerical method to approximate indefinite integrals of the following
form:

∫∞
−∞ exp (−y2)f(y)dy. In this case,∫ ∞

−∞
exp (−y2)f(y)dy ≈

m∑
i=1

gif(y),

where m is the number of samples drawn. The yi are the roots of the physicists Hermite polynomial
H∗

m(y)(i = 1, 2, . . . ,m) and the weights are given by

gi =
2m−1m!

√
π

m2[H∗
m−1(yk)]

2

This method can be used to calculate the expectation of a function, h(y), with respect to a Gaussian
distributed outcome p(y) = N (y | µ, σ2) through a change of variables, such that,

E
p(y)

[h(y)] =

∫ ∞

−∞

1√
π
exp

(
−y2

)
h
(√

2σy + µ
)
dy

≈ 1√
π

m∑
i=1

gih
(√

2σy + µ
)
.

(41)

Definition 2. Gauss-Hermite quadrature integral estimator when p(y|t,x,θ) is a parametric Gaussian
density estimator, N (y | µ̃(x, t;θ), σ̃2(x, t;θ)):

IG(h(y)) :=
1√
π

m∑
i=1

gih
(√

2σ̃2(x, t;θ)y + µ̃(x, t;θ)
)
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Alternatively, when the density of the outcome is modelled using a ny component Gaussian mixture,
p(y) =

∑ny

j=1 πjN (y | µj , σ
2
j )

E
p(y)

[h(y)] =
1√
π

ny∑
j=1

πj

∫ ∞

−∞
exp

(
−y2

)
h
(√

2σjy + µj

)
dy,

≈ 1√
π

ny∑
j=1

πj

m∑
i=1

gih
(√

2σjy + µj

)
.

Definition 3. Gauss-Hermite quadrature integral estimator for expectations when p(y|t,x,θ) is a
parametric Gaussian Mixture Density,

∑ny

j=1 π̃j(x, t;θ)N
(
y | µ̃j(x, t;θ), σ̃

2
j (x, t;θ)

)
:

IGM (h(y)) :=
1√
π

nt∑
j=1

π̃j(x, t;θ)

m∑
i=1

gih
(√

2σ̃j(x, t;θ)y + µ̃j(x, t;θ)
)

D Optimization over step functions

Lemma 2. The sensitivity bounds given in Equations (8) and (9) have the following equivalent
expressions:

µ(x, t; Λ) = sup
w(y)∈WH

nd

µ̃(x, t) +

∫
Y w(y)(y − µ̃(x, t))p(y | t,x)dy

(Λ2 − 1)−1 +
∫
Y w(y)p(y | t,x)dy

,

µ(x, t; Λ) = inf
w(y)∈WH

ni

µ̃(x, t) +

∫
Y w(y)(y − µ̃(x, t))p(y | t,x)dy

(Λ2 − 1)−1 +
∫
Y w(y)p(y | t,x)dy

,

where µ̃(x, t) = E[Y | X = x,T = t], WH
nd = {w : H(y − yH)}yH∈Y , WH

ni =

{w : H(yH − y)}yH∈Y , and

H(z) :=

{
1, z ≥ 0

0, z < 0
,

Proof. We follow the argument of [KMZ19] and show that our alternative formulations of
α(·,Λ) and β(·,Λ) do not change the conclusions of their linear program solution. Starting

from µ(x, t) =

∫
Y yt

p(t,yt|x)
p(t|yt,x)

dyt∫
Y

p(t,yt|x)
p(t|yt,x)

dyt

, and applying a one-to-one change of variables, 1
p(t|yt,x)

=

α(x; t,Λ) + w(y)(β(x; t,Λ) − α(x; t,Λ)) with w : Y → [0, 1], α(x; t,Λ) = 1/Λp(t | x),
β(x; t,Λ) = Λ/p(t | x), we arrive at:

µ(x, t; Λ) = sup
w:Y→[0,1]

∫
Y yp(y | t,x)dy + (λ2 − 1)

∫
Y yw(y)p(y | t,x)dy

1 + (λ2 − 1)
∫
Y w(y)p(y | t,x)dy

, (42)

and

µ(x, t; Λ) = inf
w:Y→[0,1]

∫
Y yp(y | t,x)dy + (λ2 − 1)

∫
Y yw(y)p(y | t,x)dy

1 + (λ2 − 1)
∫
Y w(y)p(y | t,x)dy

, (43)

after some cancellations. Duality can be used to prove that the w∗(y) which achieves the supremum
in Equation (42) belongs to the set of step functionsWH

nd . An analogous proof for Equation (43)
would show that the w∗(y) which achieves the infimum in Equation (43) belongs to the set of step
functionsWH

ni .

The optimization problem in Equation (42) can be rewritten as a linear-fractional program:

maximize
a⟨y, w(y)⟩p(y|t,x) + c

b⟨1, w(y)⟩p(y|t,x) + d
(44a)

subject to 0 ≤ w(y) ≤ 1 : ∀y ∈ Y, (44b)

where ⟨·, ·⟩p(y|t,x) is the inner product with respect to p(y | t,x), a = b = λ2 − 1, c =
∫
Y yp(y |

t,x)dy, and d =
∫
Y p(y | t,x)dy.
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The linear-fractional program of Equation (44) is equivalent to the following linear program:
maximize a⟨y, w̃(y)⟩p(y|t,x) + cṽ(x) (45a)

subject to w̃(y) ≤ ṽ(x) : ∀y ∈ Y (45b)
− w̃(y) ≤ 0 : ∀y ∈ Y (45c)
b⟨1, w̃(y)⟩p(y|t,x) + dṽ(x) = 1 (45d)

ṽ(x) ≥ 0, (45e)
where

w̃(y) =
w(y)

b⟨1, w(y)⟩p(y|t,x) + d
and ṽ(x) =

1

b⟨1, w(y)⟩p(y|t,x) + d

by the Charnes-Cooper transformation.

Let the dual function ρ(y) be associated with the primal constraint eq. (45b), the dual function η(y)
be associated with the primal constraint eq. (45c), and γ be the dual variable associated with the
primal constraint eq. (45d). The dual program is then:

minimize γ (46a)
subject to ρ(y)− η(y) + γbp(y | t,x) = ayp(y | t,x) : ∀y ∈ Y (46b)

− ⟨1, ρ(y)⟩+ γd ≥ c (46c)
ρ(y) ∈ R+, η(y) ∈ R+, γ ∈ R (46d)

At most one of ρ(y) or η(y) is non-zero by complementary slackness; therefore, condition eq. (46b)
implies that

ρ(y) = (λ2 − 1)p(y | t,x)max{y − γ, 0} when η = 0,

η(y) = (λ2 − 1)p(y | t,x)max{γ − y, 0} when ρ = 0.
[KMZ19] argue that constraint eq. (46c) ought to be tight (an equivalence) at optimality, otherwise
there would exist a smaller, feasible γ that satisfies the linear program. Therefore,

−⟨1, ρ(y)⟩+ γd = c,

−
∫
Y
(λ2 − 1)p(y | t,x)max{y − γ, 0}dy + γ

∫
Y
p(y | t,x)dy =

∫
Y
yp(y | t,x)dy,

(λ2 − 1)

∫
Y
max{y − γ, 0}p(y | t,x)dy =

∫
Y
(γ − y)p(y | t,x)dy.

(47)

Letting CY > 0 such that |Y| ≤ CY, it is impossible that either γ > CY (the r.h.s. would be 0 and
the l.h.s. would be > 0) or γ < −CY (the r.h.s. would be > 0 and the l.h.s. would be < 0). Thus,
∃y∗ ∈ [−CY, CY] such that when y < y∗, η > 0 so w = 0 and when y ≥ y∗, ρ > 0 so w = 1.
Therefore, the optimal w∗(y) that achieves the supremum in Equation (42) is inWH

nd .

This result holds under

µ(x, t) =

∫
Y yp(y | t,x)dy + (λ2 − 1)

∫
Y yw(y)p(y | t,x)dy

1 + (λ2 − 1)
∫
Y w(y)p(y | t,x)dy

, (48a)

=

∫
Y yt

p(t,yt|x)
p(t|yt,x)

dyt∫
Y

p(t,yt|x)
p(t|yt,x)

dyt
, (48b)

= µ̃(x, t) +

∫
Y w(y)(y − µ̃(x, t))p(y | t,x)dy

(Λ2 − 1)−1 +
∫
Y w(y)p(y | t,x)dy

, (48c)

thus concluding the proof (eq. (48b)-eq. (48c) by Lemma 1).

D.0.1 Discrete search approaches

Let Ŷ = {yi ∈ Y}ki=1 be a set of k values of y, then

µH
θ
(x, t) = min

y∗

{
κ̂θ(x, t; Λ, H(y∗ − y)) : y∗ ∈ Ŷ

}
,

µH
θ (x, t) = max

y∗

{
κ̂θ(x, t; Λ, H(y − y∗)) : y∗ ∈ Ŷ

}
.
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H(y) :=

{
1, y > 0

0, y ≤ 0

Algorithm 2 Line Search Interval Optimizer

Require: x∗ is an instance of X, t∗ is a treatment level to evaluate, Λ is a belief in the amount of
hidden confounding, θ are optimized model parameters, Ŷ is a set of unique values y ∈ Y sorted
in ascending order.

1: function LINESEARCH(x∗, t∗, Λ, θ, Ŷ)
2: µ← −∞, κ←∞
3: µ←∞, κ← −∞
4: δ ← True, δ ← True
5: while δ do
6: y∗ ← POP(Ŷc) ▷ Ŷc a copy of Ŷ
7: κ← κ̂θ(x, t; Λ, H(y∗ − y))
8: if κ < µ then
9: µ← κ

10: else
11: δ ← False
12: while δ do
13: y∗ ← POP(Ŷc) ▷ Ŷc a copy of Ŷ
14: κ← κ̂θ(x, t; Λ, H(y − y∗))
15: if κ > µ then
16: µ← κ
17: else
18: δ ← False
19: return µ, µ

E Theorem 1

Assume that

1. m→∞,

2. n→∞,

3. (X = x,T = t) ∈ Dn,

4. p(y | t,x,θ) converges in measure to p(y | t,x),
5. µ̃(x, t;θ) is a consistent estimator of µ̃(x, t),

6. p(t | yt,x) > 0,∀yt ∈ Y .

Then, µ(x, t; Λ,θ)
p→ µ(x, t; Λ) and µ(x, t; Λ,θ)

p→ µ(x, t; Λ).

Proof. We prove that µ(x, t; Λ,θ)
p→ µ(x, t; Λ), from which µ(x, t; Λ,θ)

p→ µ(x, t; Λ) can be

proved analogously. Note that
p→ denotes “convergence in probability”. We need to show that

limn P (|µ(x, t; Λ,θn) − µ(x, t; Λ)| ≥ ϵ) = 0, for all ϵ > 0. Where θn are the model parameters
corresponding to a dataset Dn of n observations. Recall that,

µ(x, t; Λ) := µ̃(x, t) + inf
w∈WH

ni

∫
Y w(y)(y − µ̃(x, t))p(y | t,x)dy

(Λ2 − 1)−1 +
∫
Y w(y)p(y | t,x)dy

,

and

µ(x, t; Λ,θn) := µ̃(x, t;θn) + inf
w∈WH

ni

Im (w(y)(y − µ̃(x, t;θn)))

(Λ2 − 1)−1 + Im (w(y))
,
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where

Im (w(y)(y − µ̃(x, t;θn))) =
1

m

m∑
i=1

w(yi)(yi − µ̃(x, t;θn)),

and

Im (w(y)) =
1

m

m∑
i=1

w(yi),

with yi ∼ p(y | t,x,θn).
First, by Item 1 and the law of large numbers, both

lim
m→∞

Im (w(y)(y − µ̃(x, t;θn))) =

∫
Y
w(y)(y − µ̃(x, t;θn))p(y | t,x;θn)dy,

and

lim
m→∞

Im (w(y)) =

∫
Y
w(y)p(y | t,x;θn)dy.

Therefore,

lim
m→∞

µ(x, t; Λ,θn) = µ̃(x, t;θn) + inf
w∈WH

ni

∫
Y w(y)(y − µ̃(x, t;θn))p(y | t,x;θn)dy
(Λ2 − 1)−1 +

∫
Y w(y)p(y | t,x;θn)dy

.

Note that this step was missed by [JMGS21].

From here, the proof for Theorem 1 from [JMGS21] can be followed, substituting in (Λ2 − 1)−1

where they write α‘
ω and α‘.

F Optimization over continuous functions

Second, we need a functional estimator for w(y,x). We use a neural network, w(y,x;ω), param-
eterized by ω with sigmoid non-linearity on the output layer to satisfy the w : Y × X → [0, 1]
constraint.

For each (Λ, t) pair, we then need to solve the following optimization problems:

ω = argmin
ω

1

n

n∑
i=1

µ(w(y, ·;ω);xi, t,Λ,θ), xi ∈ D,

and

ω = argmin
ω

1

n

n∑
i=1

−µ(w(y, ·;ω);xi, t,Λ,θ), xi ∈ D,

where

µ(w(y, ·;ω);x, t,Λ,θ)

:= µ̃(x, t;θ) +
I (w(y,x;ω)(y − µ̃(x, t;θ)))

(Λ2 − 1)−1 + I(w(y,x;ω))
.

Each of these problems can then be optimized using stochastic gradient descent [Rud16] and error
back-propogation [RHW86]. Since the optimization over ω is non-convex, guarantees on this strategy
finding the optimal solution have yet to be established. As an alternative, the line-search algorithm
presented in [JMGS21] can also be used with small modifications. Under the assumptions of Theorem
1 in [JMGS21], with the additional assumption that T is a bounded random variable, we inherit their
guarantees on the bound of the conditional average potential outcome.

The upper and lower bounds for the CAPO function under treatment T = t and sensitivity parameter
Λ can be estimated for any observed covariate value, X = x, as

µ(x, t; Λ,θ) = µ(w(y, ·;ω);x, t,Λ,θ),
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and
µ(x, t; Λ,θ) = µ(w(y, ·;ω);x, t,Λ,θ).

The upper and lower bounds for the APO (dose-response) function under treatment T = t and
sensitivity parameter Λ can be estimated over any set of observed covariates Dx = {xi}ni=1, as

µ(t; Λ,θ) =
1

n

n∑
i=1

µ(xi, t; Λ,θ), xi ∈ Dx,

µ(t; Λ,θ) =
1

n

n∑
i=1

µ(xi, t; Λ,θ), xi ∈ Dx.

G Datasets

G.1 Synthetic

u := Nu,

x := Nx,

t := Nt,

yt := t + x exp(−tx)− γy(u− 0.5) ∗ (0.5 ∗ x + 1) +Ny,

(49)

where, Nu ∼ p(u) := Bern(u | 0.5), Nx ∼ p(x) := Unif[x | 0.1, 2.0], Nt ∼ p(t | x,u) :=
Beta-Binomial(t | n = 100, α = x + γtu, β = 1), and Ny ∼ N (0, 0.04). For the results in this
paper γt = 0.3 and γy = 0.5.

The ground truth ratio, λ = p(t|x)
p(t|x,u) , is then given by,

λ∗(t, x,u) =
Ep(u)[p(t | x,u)]

p(t | x,u)

=

∑1
u′=0 0.5 ∗ Beta-Binomial(t | n = 100, α = x + γtu

′, β = 1)

Beta-Binomial(t | n = 100, α = x + γtu, β = 1)

(50)

(a) Observed Outcome (b) Observed Treatment (c) CAPO function (d) APO function

Figure 5: Synthetic data with hidden confounding

G.2 Observations of clouds and aerosol

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua satellite
observes the Earth twice daily at ∼1 km x 1 km resolution native resolution (Level 1) [BP06].
We used the daily mean, 1◦ x 1◦ gridded version (Level 2) in order to somewhat homogenize our
observations of clouds and the atmosphere confined to a region off the coast of South America in the
Pacific basin. MODIS observations are fed into the Modern-Era Retrospective analysis for Research
and Applications version 2 (MERRA-2) real-time model in order to emulate the atmosphere and
it’s components, such as aerosol [GMS+17]. Aerosol optical depth at 550nm from MERRA-2 is
derived from MODIS observations of aerosol from multiple satellites (Terra, Aqua, Suomi-NPP),
with corrections for sun glint and near-cloud optical effects [BAC+15]. We collocated all gridded
observations of clouds and reanalysis aerosol with our meteorological proxies of the environment
(EIS, SST, w500, RH700, RH850), then normalized our features before feeding them into the model.
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Figure 6: Workflow of observed clouds from satellite to ingestion by model.

Table 1: Sources of satellite observations.

Product name Description

Cloud optical depth τ MODIS
(1.6, 2.1, 3.7 µm)

Precipitation NOAA CMORPH
Sea Surface Temperature NOAA WHOI
Vertical Motion MERRA-2
Estimated Inversion Strength MERRA-2
Relative Humidity MERRA-2
Aerosol Optical Depth MERRA-2

H Implementation Details

Experiments were run using a single NVIDIA GeForce GTX 1080 ti, an Intel(R) Core(TM) i7-8700K,
on a desktop computer with 16GB of RAM. Code is written in python. Packages used include PyTorch
[PGM+19], scikit-learn [PVG+11], Ray [MNW+18], NumPy, SciPy, and Matplotlib. We use ray
tune [LLN+18] with HyperBand Bayesian Optimization [FKH17] search algorithm to optimize our
network hyper-parameters. The hyper-parameters we consider are accounted for in Table 2. The
final hyper-parameters used are given in Table 3. The hyper-parameter optimization objective is the
batch-wise Pearson correlation averaged across all outcomes of the validation data for a single dataset
realization with random seed 1331. All experiments reported can be completed in 30 hours using this
setup.

Hyper-parameter Search Space

hidden units tune.qlograndint(32, 512, 32)
network depth tune.randint(2, 5)
gmm components tune.randint(1, 32)
attention heads tune.randint(1, 8)
negative slope tune.quniform(0.0, 0.5, 0.01)
dropout rate tune.quniform(0.0, 0.5, 0.01)
layer norm tune.choice([True, False])
batch size tune.qlograndint(32, 256, 32)
learning rate tune.quniform(1e-4, 1e-3, 1e-4)

Table 2: Hyper-parameter search space

H.1 Model Architecture

The general model architecture is shown in Figure 7. The models are neural-network architectures
with two basic components: a feature extractor, ϕ(x;θ) (ϕ, for short), and a conditional outcome
prediction block f(ϕ, t;θ), or density estimator. The covariates x (represented in blue) are given as
input to the feature extractor, whose output is concatenated with the treatment t (represented in purple)
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Hyper-parameter Synthetic ACCE NN ACCE Transformer

hidden units 96 256 256
network depth 4 3 3
gmm components 24 24 24
attention heads NA NA 4
negative slope 0.05 0.04 0.01
dropout rate 0.04 0.2 0.5
layer norm False False False
batch size 32 2048 32
learning rate 0.0015 1e-4 2e-4

Table 3: Final hyper-parameters for each dataset/model

and given as input to the density estimator which outputs a Gaussian mixture density p(y | t,x,θ)
from which we can sample to obtain samples of the outcomes (represented in red). Models are
optimized by maximizing the log-likelihood, log p(y | t,x,θ), using mini-batch stochastic gradient
descent.

DenseLinear LinearResNet
(depth-1)

Gaussian
Mixture Model

DenseFeatureExtractor

EncoderBlock

LinearMAB
depth

InputEmbedding
DenseLinear DropOut

PositionEmbedding
DenseLinear DropOut

b. Transformer Feature Extractor

DenseFeatureExtractor

DenseLinear LinearResNet
(depth-1)

a. Feed-Forward Neural Network Feature Extractor

Overcast
Feature Extractor 

 
(a. or b.)

Density Estimator

covariates

treatment
 

outcomes

Density Estimator

Figure 7: Overcast model architecture. The inputs are represented by circles, in blue the covariates,
and in purple the treatment. In the red circle is the output of the model, the outcomes distribution.
The model has different feature extractors (in green) for the feed-forward neural network and the
transformer. It has a single density estimator (in orange).

H.1.1 Feature extractor

The feature extractor design is problem and data specific. In our case, we look at using both a
simple feed-forward neural network and also a transformer. The transformer has the advantage of
allowing us to model the spatio-temporal correlations between the covariates on a given day using
the geographical coordinates of the observations as positional encoding. This is interesting when
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Linear SoftMax

Linear

Linear SoftPlus

Linear

Gaussian Mixture Model

Figure 8: Overcast Gaussian mixture model. The mixing coefficients π are estimated with a linear
layer and a SoftMax layer, to obtain π̃, represented in blue in the figure. The vector of means of the
Gaussian kernels µ̃ is obtained by ny linear layers (in green in the diagram), whilst the vector of
variances σ̃ is obtained by ny blocks of linear layers and SoftPlus layers (in orange in the diagram).

studying ACI because confounding may be latent in the relationships between neighboring variables.
Typically, environmental processes (which is one source of confounding) are dependent upon the
spatial distribution of clouds, humidity and aerosol, and this feature extractor may capture these
confounding effects better.

H.2 Density Estimator

The conditional outcome prediction block, relies on a ny component Gaussian mixture density
represented in Figure 8. It outputs:

p(y | t,x,θ) =
ny∑
j=1

π̃j(ϕ, t;θ)N
(
y | µ̃j(ϕ, t;θ), σ̃

2
j (ϕ, t;θ)

)
,

and

µ̃(x, t;θ) =

ny∑
j=1

π̃j(ϕ, t;θ)µ̃j(ϕ, t;θ),

where N (· | µ, σ2) denotes a normal distribution with mean µ and variance σ2.

I Additional Results

I.1 Synthetic

(a) APO Functions (b) CAPO Functions

Figure 9: Investigating statistical uncertainty using unconfounded synthetic data.
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Figure 10: Interpreting Λ as a proportion (ρ) of the unexplained range of Yt attributed to unobserved
confounding variables.

I.2 Aerosol-Cloud-Climate Effects

In Figure 10 we show how Λ can be interpreted as the proportion, ρ, of the unexplained range of Yt

attributed to unobserved confounding variables. In the left figure, we plot the corresponding bounds
for increasing values of Λ of the predicted AOD-τ dose-response curves. In the right figure we plot
the ρ value for each Λ at each value of t. For the curves reported in Section 5.2: we find that Λ = 1.1
leads to ρ ≈ 0.04, Λ = 1.2 leads to ρ ≈ 0.07, and Λ = 1.6 leads to ρ ≈ 0.15. This shows that when
we let just a small amount of the unexplained range of Yt be attributed to unobserved confounding,
the range of the predicted APO curves become quite wide. If we were to completely relax the
no-hidden-confounding assumption, the entire range seen in Figure 10 Left would be plausible for the
APO function. This range dwarfs the predicted APO curve. These results highlight the importance of
reporting such sensitivity analyses.

In Figure 11 we show additional dose response curves for cloud optical thickness (τ ), water droplet
effective radius (re), and liquid water path (LWP).

(a) (b) (c)

Figure 11: Average dose-response curves for other cloud properties. a) Cloud optical depth. b) Water
droplet effective radius. c) Liquid water path.

In Figure 12 we show additional scatter plots comparing the neural network and transformer models
for cloud optical thickness (τ ), water droplet effective radius (re), and liquid water path (LWP).
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(a) (b) (c)

Figure 12: Comparing transformer to feed-forward feature extractor at predicting cloud properties
given covariates and AOD. a) Cloud optical depth. b) Water droplet effective radius. c) Liquid water
path. We see a significant improvement in pearson correlation (R2) in each case.

I.3 ω500 experiment

The Overcast models make use of expert knowledge about ACI to select the covariates. Ideally, they
would include pressure profiles, temperature profiles and supersaturation since these are directly
involved in cloud processes and impact the quality of AOD measurements as a proxy for aerosol
concentration. Unfortunately, they are impossible to retrieve from satellite data, so we rely on
meteorological proxies like relative humidity, sea surface temperature, inversion strengths, and
vertical motion. Relying on these proxies however results in ignorability violations, which must be
accounted for in the parameter Λ in order to derive appropriate plausible ranges of outcomes.

In the experiment that follows, we are removing a confounding variable from the model, therefore
inducing hidden confounding. The covariate we remove is vertical motion at 500 mb, denoted by
ω500. This experiment helps us gain some intuition about the influence of the parameter Λ and how
it relates to the inclusion of confounding variables in the model.

In Figure 13 we compare the same region with different covariates to identify an appropriate Λ. We
fit one model on data from the Pacific (blue) and one model from the Pacific omitting ω500 from the
covariates (orange). The shaded bounds in blue are the ignorance region for Λ→ 1 for the Pacific.
We then find the Λ that results in an ignorance interval around the Pacific omitting ω500 that covers
the Pacific model prediction. From this, we can infer how the parameter Λ relates to the inclusion of
covariates in the model. We show that we need to set Λ = 1.01 to account for the fact that we are
omitting ω500 from our list of covariates. We also note that the slopes of the dose-response curves
are slightly different, with worse predictions when omitting ω500 from the covariates, as expected.

This work attempts to set a new methodology for setting Λ which can be summarised as followed.
Working with two datasets, which vary in only aspect, we train two different models: (i), the control
model, and (ii), the experimental model. After training both models, we plot the dose-response curves
for (i) and (ii) on the same plot. We can compare the shape and slope of these curves as well as their
uncertainty bounds under the unconfoundedness assumption by plotting the ignorance region for
Λ→ 1 for both models. Then, we are interested in setting Λ for model (ii) such that the uncertainty
bounds cover the entire ignorance region of model (i) under the unconfoundedness assumption. For
this, we are interested in comparing the slopes and thus min-max scale both curves.
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Figure 13: Dose-response curves with or without vertical motion at 500 mb (ω500) as a covariate.
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