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A Appendix

B Code

The code is submitted as a supplement along with the manuscript and will be released publicly upon
acceptance.

C Notations

Symbol Meaning
H Input image height in pixels
W Input image width in pixels
D Network Depth
C Number of convolutional channels (network width)
N Number of models used during traning
M Number of network features, proportional to C'
T Training set size
| B| Training batch size
|S] Support set/coreset size

Table 3: Notation for variables used throughout the paper. In some cases, C' also refers to number of
classes in the dataset (section 5), however it is clear from context.

D Implementation details

D.1 Preprocessing

For black/white datasets, i.e., MNIST and Fashion-MNIST, we use standard preprocessing, where we
subtract the mean and divide by the standard deviation.

For color dataset SVHN, CIFAR-10, CIFAR-100, we use regularized Zero Component Analysis
(ZCA) preprocessing with a regularization parameter of A = 0.1 for all datasets. A description of this
preprocessing method is available in the appendix of [40], or in [50]. For CIFAR-10 and CIFAR-100,
we did not include the unit normalization step in regularized ZCA as we found it reduced performance
by around 1-2%.

D.2 Architectures

For all architectures, we use the same ConvNet architecture used in [66, 64, 40] which consists of
three layers of 3 x 3 convolutions, 2 x 2 average pool, and ReLU activations, followed by a fully
connected layer. We do not use any normalization layers in any experiments unless otherwise stated.

For weight initialization, we use standard parameterization with Gaussian weight and bias initial-
izations with variances 02 = 2 and o7 = 0.1, following [40]. Note that by default, PyTorch uses
Kaiming uniform initializations, which means we had to write custom convolutional layers to have
Gaussian initializations. While we did not collect data on this, we found this difference in initializa-
tion to be negligible - for all intents and purposes, the default initialization works just as well but
corresponds to a slightly different NNGP process.

For RFAD training, we used neural networks with 256 convolutional channels per layer. Additionally,
we removed the final fully-connected layer and used the representations after the final ReLLU layer
to calculate the NNGP kernel instead. This can be done by noting that for fully-connected layers
K'=¢2 K71 + o2. This theoretically removes some variance associated with the final layer and
saves on some memory. In practice, we found this did not affect performance.
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D.3 Training

We used Adabelief optimizer [68] with a learning rate of 1e — 3 for all experiments and parameters,
and € = le — 16.

Additionally, we found it useful to split up the representation of X g into two pieces: one parameter
Xs with the same shape as Xg: RISIXCXHXW and another matrix 7' € R(CXHXW)x(CxHxW) Ror
example, for CIFAR-10, 7" would be a 3072 x 3072 matrix (3072 = 3 x 32 x 32). Then, we compute
Xgas Xg = reshape(Tﬂatten(X 5)- Note this is like ZCA preprocessing where the transformation
matrix is learned from 7'. In the code we refer to this as the transform_mat.

Note that this does not add any extra variables for the coreset, but in practice, we found that this trick
resulted in slightly faster convergence, particularly at initialization. The 7" matrix is initialized at the
identity and learned with a small learning rate (5e-5). While we do not have a theoretical justification
for why this speeds up optimization, we believe it may allow the optimizer to learn dependencies
between parameters, perhaps allowing it to behave more like a second-order optimizer.

The coreset is initialized with a class-balanced subset of the data. For the labels, we use one-hot
vectors with 1/C subtracted so that the vector is zero-mean. E.g. for 10 samples per class the label
would be [0.9,—0.1,-0.1,... — 0.1].

In experiments that use Platt scaling, we learn the logarithm of 7 with a learning rate of le-2.

For each gradient step/training iteration, we use 5120 training examples. We compute features for
these in 4 batches of 1280. We save memory in this step by calculating these features with the
torch.no_grad() flag, as we do not backpropagate through these values. For the matrix inversion,
we found it helpful to use double-precision since the process is sensitive to rounding errors.

Like with KIP, we used a adaptive kernel regularizer when computing the inverse in (Kgg + AI) L.
We parameterized this as A = \gtr(Ksg), where tr is the average value along the diagonal. We used
)\0 =5e — 3.

We performed early stopping with the patience of 1000 iterations. Every 40 epochs, the loss on a
validation set of size 1000 is measured. This validation set is a subset of the training set (we are
training on the validation set); however, we used a fixed set of 16 random neural networks when
calculating the validation loss.

For results in table 1, we ran the algorithm four separate times for each configuration.

D.4 Runtime experiments

The time taken was calculated by running RFAD on CIFAR-10 with images per class in
[1,2,5,10,20,30,40, 50,60, 70,80, 90, 100], averaging over 200 training iterations with N =
1,2,4,8. These experiments are run on a single RTX 3090. To make the results comparable to
a V100, we add a conservative 40% extra time taken.

D.5 Finite Network Transfer

We use finite networks with 1024 convolutional channels with the same weight and bias-variance
as we trained on, again with standard parameterization. We used SGD with a learning rate of either
le —1,1e — 2,1e — 3, 1e — 4, momentum 0.9, weight decay of either 0, 1e — 3 and label scaling
coefficients in 1, 2, 8, 16. When weight decay was used, we used the modified weight decay ||6 — 0] |3
given in [20], standard weight decay would not result in zero-output when centering is used. The best
hyperparameters were determined by the best validation set accuracy (taking from the training set) on
the first run of the algorithm. Unless otherwise stated, we use the centering trick. Batch sizes are up
to 500, meaning that we performed full-batch gradient descent for all experiments except CIFAR-100
with 10 images per class.

The results reported in table 2 are the average of 12 training runs: 3 finite network training runs for
each of the 4 repeat runs of RFAD.
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Table 4: Total runtime and iteration for all RFAD distilled datasets. All experiments converge in
under 10h on a single RTX 3090, with label learning usually taking longer.

Fixed Labels Learned Labels
Img/Cls  Number of iterations TOl.al elapsed A"?”“%? llm? Number of iterations TOl.al clapsed AV?”?? umé
time (h) per iteration (s) time (h) per iteration (s)
1 6650 £ 859 1.6+0.2 0.86 7390 £ 1907 1.7+0.5 0.85
MNIST 10 11070 + 3049 2.8+0.8 0.90 12770 + 2609 3.2+06 0.90
50 8330 £ 1225 2.7+£04 1.18 7420 £ 1047 24+0.3 1.19
1 9580 + 1740 23+04 0.85 9390 + 1924 22+£05 0.85
Fashion-MNIST 10 14780 + 2025 3.7+05 0.89 13010 + 2893 32+0.7 0.89
50 11190 + 2056 3.6+£0.7 1.17 12230 + 2206 3.9+0.7 1.15
1 7540 £ 1521 34+£0.7 1.60 5700 £+ 1267 2.5£0.6 1.59
SVHN 10 9060 + 2155 424+1.0 1.67 7330 £+ 1954 3.4+£09 1.66
50 8270 £+ 2717 48+ 1.5 2.10 10370 4+ 758 6.0£0.5 2.08
1 4610 £ 778 2.0+0.3 1.56 4300 £ 1457 1.9+0.6 1.60
CIFAR-10 10 8310 £ 2096 3.8+1.0 1.64 9210 £ 923 4.3+04 1.66
50 8370 + 2335 49+13 2.13 14140 4+ 4901 8.4+3.0 2.13
CIFAR-100 1 9820 + 2067 4.7+ 1.0 1.71 13650 + 4161 6.1+2.3 1.62
10 8410 + 2069 6.3+1.5 2.72 13610 + 1463 9.6 +£ 0.7 2.54

D.6 Privacy experiments

For CIFAR-10 corruption experiments, we use the same training protocol as in appendix D.3. Rather
than initializing the coreset with real images, we initialize with white noise in image space. The
corruption constraint is applied in pixel space rather than the ZCA space. Note that the corruption
mask (whether a pixel can be optimized) is done per-pixel and per-channel, meaning that a pixel can
have its red and green channels fixed but blue channel free.

We downsized the CelebA dataset to 64 x 64 images, applying standard preprocessing for this
experiment. We used a training batch size of 1280 for CelebA. The full dataset achieves an accuracy
of 97.6%.

For the privacy experiments, we ran only a single run for each corruption ratio. To calculate the
means and standard deviations, we took the best iteration, based on the early stopping condition, and
iterations at 400, 200 iterations before, and 200 and 400 after.

E Time taken additional results

As discussed in section 4.1 and appendix D.4, we added an extra 40% to iteration times to make
or times on a RTX 3090 comparable to a Tesla V100. In this section, we report the original times.
Additionally, we report the total number of training iterations and total runtimes for all our distillation
results. Note that because of the early stopping condition, the epochs used during evaluation are 1000
iterations before the iteration counts we report here.

Training time per iteration for RFAD vs KIP at varying coreset sizes on CIFAR-10

N
0

Time per iteration (s)
= =
o U
Log-time per iteration (s)

=
<

z33

S %
[SHe]
SN

o
=)

N
>
s
<
=
z
o

—————
e———————

,\/—/_/—
0 25 50 75 100 0 25 50 75 100
Coreset Size (Img/Cls)

o

&
o
<

Figure 9: Time per training iteration for CIFAR-10 with varying number of models used during and
and support sizes run on an RTX 3090 compared to KIP
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F Centering and label scaling for finite networks ablations

table 5 shows the full table finite network transfer results. We see that label scaling and centering
provide performance benefits, particularly for small support sets. We do not have a theoretical
explanation for why label scaling improves performance. [11] suggests that label scaling for values
a < 1 should result in the network staying in the lazy regime, but in our case, we found values of
o > 1 to improve performance.

Fixed labels  Fixed labels

Img/Cls . Fixed labels Learned labels
no label scale no centering
1 84.1+5.5 90.1+3.3 922421 94.44+1.5
MNIST 10 96.7+ 0.3 98.3 +0.2 98.4+0.2 98.5+£0.1
50 98.5+£0.2 98.8 £0.1 98.8+0.1 98.8 +0.1
Fashion- 1 51.0 +19.2 69.8 +3.4 76.7+ 1.7 78.6 £1.3
MNIST 10 84.54+0.9 85.0£0.7 87.0+£0.5 85.9+0.7
50 87.7£0.4 87.44+04  88.8+04 88.5+0.4
1 32.6 £3.0 402+29 431+24 52.2£2.2
SVHN 10 65.7+ 1.0 72.94+0.8 73.6 +1.0 749404
50 78.0£0.3 785+0.3 80.1+04 80.9£0.3
1 487+ 1.6 480+1.7 532412 53.6 £ 0.9
CIFAR-10 10 63.44+0.6 56.9+1.0 66.1+0.5 66.3 £0.5
50 69.5+£0.4 68.0 £ 0.6 71.1+04 70.3+0.5
1 19.6 £ 0.6 21.24+0.3 242404 26.3+1.1
CIFAR-100 10 30.5£0.3 18.5+ 0.6 30.3£0.3 33.0£0.3

Table 5: Finite network transfer performance of KIP distilled images. We additional report perfor-
mance if either label scaling or centering is not used. Label scaling and centering provide benefits
particularly for smaller support set sizes.

G Effect of InstanceNorm

In section 7 we discussed the observation that if we attempt to use instancenorm for finite network
training for KIP distilled images, we do not see good performance. Conversely, if we use random
networks with instancenorm in RFAD, these distilled datasets do not perform well on networks
without instancenorm, either in the KRR case or finite network case. table 6 shows the exact results.
For NNGP KRR with instancenorm, we used the empirical NNGP kernel, with 32 networks with
1024 channels, as there is no exact implementation of the instancenorm NNGP in the neural-tangents
PyTorch library [42].

H Interpretability additional examples

I Empirical NNGP at Inference additional results

This section contains additional plots showing the effectiveness of using the Empirical NTK at
inference for all of our RFAD distilled datasets. In all cases, we are able to achieve close to
the performance of the exact NNGP kernel for convolutional architectures with C' > 128. We
additionally show an experiment where we achieve 70% accuracy on CIFAR 10, using our 10 img/cls
fixed label distilled coreset using the empirical NNGP kernel from random neural networks with one
convolutional channel in fig. 12
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Without InstanceNorm With InstanceNorm
Img/Cls NNGP KRR Finite Network NNGP KRR*  Finite Network

Trained without 1 61.1 £0.7 53.2+1.2 35.3£0.9 374£1.1
InstanceNorm 10 73.1+£0.1 66.1 £0.5 459+1.8 45.1+1.1
50 76.1+£0.3 71.1+£04 59.1£04 50.3£0.8

Trained with 1 18.1 £ 3.7 40.6 £3.7 57.8 0.7 52.8£0.7
InstanceNorm 10 25.6 £5.3 36.3£1.5 71.1£0.2 63.5£0.5
50 52.5£0.5 55.0£ 0.6 74.4+£0.2 62.2+04

Table 6: Accuracy of RFAD distilled datasets run with or without networks with instancenorm during
training evaluated on NNGP KRR and finite networks with SGD with or without instancenorm. We
see that transferring from instancenorm to no instancenorm or vice versa incurs a large performance
penalty. * indicates thats the emperical NNGP kernel was used, as there is no exact implementation
of instancenorm in the neural-tangents library [42]
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Figure 10: Incorrectly predicted test images and the most relevant images in the coreset and training
set for CIFAR-10, 50 images/cls
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Figure 11: Correctly predicted test images and the most relevant images in the coreset and training
set for CIFAR-10, 50 images/cls

Empirical NNGP inference accuracy for CIFAR-10, 10 img/cls, fixed labels
with one convolutional channel
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Figure 12: Empirical NNGP performance at inference for CIFAR-10, 10 images per class, fixed
labels, using convolutional networks with one convolutional channels. We can achieve reasonable
performance, 70%, albeit requiring over 10° random models.
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Figure 13: Empirical NNGP inference accuracy for MNIST with fixed labels
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Figure 14: Empirical NNGP inference accuracy for Fashion-MNIST with fixed labels
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Empirical NNGP inference accuracy for SVHN, 1 img/cls, fixed labels
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Empirical NNGP inference accuracy for SVHN, 10 img/cls, fixed labels
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Empirical NNGP inference accuracy for SVHN, 50 img/cls, fixed labels
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Figure 15: Empirical NNGP inference accuracy for SVHN with fixed labels
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Figure 16: Empirical NNGP inference accuracy for CIFAR-10 with fixed labels
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Figure 18: Empirical NNGP inference accuracy for MNIST with learned labels
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Figure 19: Empirical NNGP inference accuracy for Fashion-MNIST with learned labels
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Figure 20: Empirical NNGP inference accuracy for SVHN with learned labels
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Figure 21: Empirical NNGP inference accuracy for CIFAR-10 with learned labels
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Figure 22: Emperical NNGP inference accuracy for CIFAR-100 with learned labels
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