
A Approximation via Discretization (AD)

Recall the general functional form

F (z, x̂i) =

∑
j n(zj , x̂i)∑
j d(zj , x̂i)

and note that both the numerator and denominator are separable in the components of the decision
variables z. Let assume each variable zj can vary in the interval [Lj , Uj ], the idea here is to divide
each interval [Lj , Uj ] into K equal sub-intervals of size (Uj − Lj)/K and approximate zj by K
binary variables vjk ∈ {0, 1} as

zj = Lj
Uj − Lj
K

∑
k∈[K]

vjk,

where vjk ∈ {0, 1} satisfying vik ≥ vj,k+1 for k = 1, 2, . . . ,K − 1. We then approximate n(zj , x̂i)
and d(zj , x̂i) as

n(zj , x̂i) ≈ n̂(zj , x̂i) = n

(
Lj + bzjK/(Uj − Lj)c

Uj − Lj
K

, x̂i
)

= n(Lj , x̂i) +
Uj − Lj
K

∑
k∈[K]

γnijkvjk,

d(zj , x̂i) ≈ d̂(zj , x̂i) = d

(
Lj + bzjK/(Uj − Lj)c

Uj − Lj
K

, x̂i
)

= d(Lj , x̂i) +
Uj − Lj
K

∑
k∈[K]

γdijkvjk

where γnijk and γdijk are the slopes of the approximate linear functions in [Lj + (Uj − Lj)(k −
1)/K;Lj + (Uj − Lj)(k)/K], ∀k = 1, . . . ,K, computed as

γnij,k+1 =
K

Uj − Lj

(
n

(
Lj +

(Uj − Lj)(k + 1)

K
, x̂i
)
− n

(
Lj +

(Uj − Lj)(k)

K
, x̂i
))

, k = 0, . . . ,K − 1

γdij,k+1 =
K

Uj − Lj

(
d

(
Lj +

(Uj − Lj)(k + 1)

K
, x̂i
)
− d

(
Lj +

(Uj − Lj)(k)

K
, x̂i
))

, k = 0, . . . ,K − 1.

We can then approximate F (z, x̂i) as

F (z, x̂i) ≈
∑
j(n(Lj , x̂i) +

Uj−Lj
K

∑
k∈[K] γ

ni
jkvjk)∑

j(d(Lj , x̂i) +
Uj−Lj
K

∑
k∈[K] γ

di
jkvjk)

.

The transformed/approximated problem will have the following parameters and variables

• ai =

[
γnijk

∣∣∣ j ∈ [M ], k ∈ [K]

]
• a′i =

[
γdijk

∣∣∣ j ∈ [M ], k ∈ [K]

]
• bi =

∑
j∈[M ] n(Lj , x̂i)

• b′i =
∑
j∈[M ] d(Lj , x̂i)

• v ∈ V def
=

{
vjk

∣∣∣ vjk ∈ {0, 1}, vjk ≥ vj,k+1, j ∈ [M ], k ∈ [K]

}
.

B Proof of Theorem 1

Theorem. As described above, let x∗i = f∗(bi) for true function f∗ and let x̂i = f(bi) for the
learned empirical risk minimizer f . Suppose the optimal decision when solving DRO is z∗∗ using
x∗i ’s and ẑ∗∗ using x̂i’s. Also, let F be τ -Lipschitz in x, X be bounded, and a scaled L upper
bound || · ||2 (i.e., ||x− x′||2 ≤ max(kL(x, x′), ε) for constants k, ε) then, the following holds with
probability 1− 2δ − 2δ1: EP∗ [F (̂z∗∗, x)] ≥ EP∗ [F (z∗∗, x)]−C/

√
N − (1 + 2

√
ξ)τε− εN − εNT ,

where εK = C1RK(L ◦ F) + C2/
√
K andRK is the Rademacher complexity with K samples and

C,C1, C2 are constants dependent on δ, δ1, ξ, k, τ .
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Proof. We first list the mild assumptions: (1) ||x′ − x||2 ≤ max(kL(x′, x), ε) for some constant k
and a small constant ε and (2) space X (that contains x̂, x∗) is bounded with a diameter dX . The k
in the first assumption can be found since the space X is bounded, and for close x′, x, if needed, ε
provides an upper bound. With this, it is easy to check that

(1/N)
∑
i

||x∗i − x̂i||2 ≤ (1/N)
∑
i

max(kL(x∗i , x̂i), ε) ≤ ε+ (1/N)
∑
i

kL(x∗i , x̂i)).

We also have (1/N)
∑
i L(x̂i, x∗i ) ≤ E[Lf ] + εN , where εN is of the form C1RN (L ◦ F) + C2√

N
for

constants C1, C2 that depend on the probability term δ, E[Lf ] is the expected risk of function f ,RN
is the Rademacher complexity with N samples, and RN (L ◦ F) is well-defined for vector valued
output of functions in F using each component of the output (see Proposition 1 in Reeve and Kaban
[2020]). Next, the true risk of f∗ is assumed zero (text above the theorem in main paper): E[Lf∗ ] = 0.
Then, the ERM training using NT training data provides a high probability 1− δ guarantee which
can be stated as E[Lf ] ≤ εNT , where εNT is defined is same way as εN with NT replacing N .

With this, we further have with probability 1− 2δ

(1/N)
∑
i

||x∗i − x̂i||2 ≤ ε+ k(εN + εNT ).

Let z∗∗ and p∗∗1 , . . . , p
∗∗
N be the optimal solution found for x∗1, . . . , x∗N . Note that z∗∗ and p∗∗1 , . . . , p

∗∗
N

is also a feasible point for the optimization with x̂1, . . . , x̂N . We know that

|
∑
i

p∗∗i F (z∗∗, x̂i)−
∑
i

p∗∗i F (z∗∗, x∗i )| = |
∑
i

p∗∗i (F (z∗∗, x̂i)− F (z∗∗, x∗i ))|

= |
∑
i

(p∗∗i − 1/N)(F (z∗∗, x̂i)− F (z∗∗, x∗i )) +
∑
i

(1/N)(F (z∗∗, x̂i)− F (z∗∗, x∗i ))|

We know that for any feasible p, z

|
∑
i

piF (z, x̂i)−
∑
i

piF (z, x∗i )| = |
∑
i

pi(F (z, x̂i)− F (z, x∗i ))|

= |
∑
i

(pi − 1/N)(F (z, x̂i)− F (z, x∗i )) +
∑
i

(1/N)(F (z, x̂i)− F (z, x∗i ))|

Note that by Lispschitzness,

|
∑
i

(1/N)(F (z, x̂i)− F (z, x∗i ))| ≤
∑
i

(1/N)τ ||x̂i − x∗i ||2 ≤ τ(ε+ k(εN + εNT )). (12)

Also, |
∑
i(pi−1/N)(F (z, x̂i)−F (z, x∗i ))| ≤

∑
i |(pi−1/N)(F (z, x̂i)−F (z, x∗i ))| and by Holder’s

inequality with∞, 1 norm we get∑
i

|(pi − 1/N)(F (z, x̂i)− F (z, x∗i ))| ≤
(

max
i
|(pi − 1/N)|

)∑
i

|F (z, x̂i)− F (z, x∗i )|

Since, ||p− 1/N ||22 ≤ ξ/N2, thus, maxi |(pi − 1/N)| ≤
√
ξ/N . Hence, we get∑

i

|(pi−1/N)(F (z, x̂i)−F (z, x∗i ))| ≤
√
ξ(1/N)

∑
i

|F (z, x̂i)−F (z, x∗i )| ≤
√
ξτ(ε+k(εN+εNT ))

(13)
With this, overall we get for any feasible p, z

|
∑
i

piF (z, x̂i)−
∑
i

piF (z, x∗i )| ≤ (1 +
√
ξ)τ(ε+ k(εN + εNT )) = ψ (14)
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Note the following inequalities∑
i

p∗∗i F (z∗∗, x∗i ) ≤
∑
i

p̂∗∗i F (z∗∗, x∗i ) (15)

=
(∑

i

p̂∗∗i F (z∗∗, x∗i )−
∑
i

p̂∗∗i F (z∗∗, x̂∗i )
)

+
∑
i

p̂∗∗i F (z∗∗, x̂∗i ) (16)

≤ψ +
∑
i

p̂∗∗i F (z∗∗, x̂∗i ) (17)

≤ψ +
∑
i

p̂∗∗i F (ẑ∗∗, x̂∗i ) (18)

≤ψ +
∑
i

p∗∗i F (ẑ∗∗, x̂∗i ) (19)

=ψ +
(∑

i

p∗∗i F (ẑ∗∗, x̂∗i )−
∑
i

p∗∗i F (ẑ∗∗, x∗i )
)

+
∑
i

p∗∗i F (ẑ∗∗, x∗i ) (20)

≤2ψ +
∑
i

p∗∗i F (ẑ∗∗, x∗i ) (21)

where the first inequality is since p∗∗i is minimizer, Eq. 17 is from Eq. 14, Eq. 18 is since ẑ∗∗ is
maximizer, Eq. 19 is since p̂∗∗i is minimizer, and the last inequality is from Eq. 14.

Next, by writing p∗∗i as (p∗∗i − 1/N) + 1/N , we get from the above that

1/N
∑
i

(F (z∗∗, x∗i ) ≤ 2ψ +
∑
i

(p∗∗i − 1/N)(F (ẑ∗∗, x∗i )− F (z∗∗, x∗i )) + 1/N
∑
i

F (ẑ∗∗, x∗i )

By, Eq. 13 and that ψ = (1 +
√
ξ)τ(ε+ k(εN + εNT )), we get

1/N
∑
i

(F (z∗∗, x∗i ) ≤ (1 + 2
√
ξ)τ(ε+ k(εN + εNT )) + 1/N

∑
i

F (ẑ∗∗, x∗i )

Also we absorb all constants in (1 + 2
√
ξ)τε to call it just ε and likewise, (1 + 2

√
ξ)τk(εN + εNT )

is just εN + εNT . Further, a standard concentration inequality for τ -Lipschitz F (z, ·) and bounded
diameter dX of space X can be invoked with the two decisions to get

P

(
1

N

∑
i∈[N ]

F (z∗∗, x∗i ) ≥ Ex∼P∗ [F (z∗∗, x)]− t

)
≥ 1− exp

−2Nt2

τ2d2
X

P

(
1

N

∑
i∈[N ]

F (ẑ∗∗, x∗i ) ≤ t+ Ex∼P∗ [F (ẑ∗∗, x)]

)
≥ 1− exp

−2Nt2

τ2d2
X

Putting exp
−2Nt2

τ2d2
X as δ1, we get t of the form C/

√
N . Put all these together with a union bound

yields, with probability 1− 2δ − 2δ1:

Ex∼P∗ [F (z∗∗, x)]− C/
√
N − (1 + 2

√
ξ)τε− εN − εNT ≤ Ex∼P∗ [F (ẑ∗∗, x)]

C Proof of Theorem 2

Theorem. For F (z, x̂i) =
∑
j n(zj ,̂xi)∑
j d(zj ,̂xi) as stated above and approximated as aTi v+bi

a′Ti v+b′i
, an approxima-

tion via discretization of zj with K pieces yields |G(z∗)− G (̂z∗∗)| ≤ O(max{Cn, Cd}/K), where
G(z∗) and G (̂z∗∗) are the optimal objective values with approximation (MISOCP) and without the
approximation respectively.

Proof. The proof essentially follows by combining the results of the two lemmas below. We first
prove the following two lemmas.
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Lemma. If ∣∣∣F (z, x̂i)−
aTi v + bi
a′Ti v + b′i

∣∣∣ ≤ εi
for some εi that is independent of ẑ, then |L∗ − L̂∗| ≤ maxi{εi}, where L∗ and L̂∗ are the optimal
objective values with and without the approximation.

Proof. After the transformation, the decision variable z changes from a continuous domain to v in
a discrete domain. Thus the original function Fi(z) = F (z, x̂i) : z −→ R and the approximate
function F̂i(v) =

aTi v+bi
a′Ti v+b′i

: v −→ R. For ease of notation, given any z, let v = T (z) be the binary

transformation of the continuous variables z, and z = T̃ (v) be the backward transformation from the
binary variables v to z. From our assumption, we have |Fi(z)− F̂i(T (z))| ≤ εi for any z

Let us define (OPT) as the original optimization problem with continuous decision variable z and
(Approx-OPT) as the approximated problem with binary variable v. Let q∗, l∗, z∗ be an optimal
solution to (OPT) and q∗∗, l∗∗, v∗∗ be an optimal solution to (Approx-OPT). Denote ε = maxi{εi},
then we have |Fi(z)− F̂i(T (z))| ≤ ε, ∀i ∈ [N ], for any z, which leads to (i) Fi(z) ≤ F̂i(T (z)) + ε

and (ii) F̂i(T (z)) ≤ Fi(z) + ε, ∀i ∈ [N ]. We also have (iii) Fi(T̃ (v)) ≤ F̂i(v) + ε and (iv)
F̂i(v) ≤ Fi(T̃ (v)) + ε, ∀i ∈ [N ]. We consider the following two cases: L∗ ≥ L̂∗ or L∗ ≤ L̂∗ as
follows

• If L∗ ≥ L̂∗, we first see that
q∗ − l∗i − Fi(z∗) = 0; ∀i ∈ [N ]

From Inequalities (i) and (ii) above, we will have

(q∗ − ε)− l∗i − F̂i(T (z∗)) ≤ 0 ≤ (q∗ + ε)− l∗i − F̂i(T (z∗)).

Thus, there exists δ ∈ [−ε, ε] such that (q∗ + δ) − l∗i − F̂i(T (z∗)) = 0, implying that

q∗ + δ, l∗, T (z∗) is feasible to (Approx-OPT), leading to L̂∗ ≥ q∗ + δ −
√
ρ
∑
i (l∗)

2
i .

Thus,

|L∗ − L̂∗| ≤

∣∣∣∣∣∣L∗ −
q∗ + δ −

√
ρ
∑
i

(l∗)
2
i

∣∣∣∣∣∣
= |δ| ≤ ε. (22)

• If L∗ < L̂∗, in analogy to the first case, we also see that
q∗∗ − l∗∗i − Fi(v∗∗) = 0; ∀i ∈ [N ].

From the above inequalities (iii) and (iv), it can also be seen that there is δ ∈ [−ε, ε] such
that (q∗∗ + δ) − l∗∗i − F̂i(T̂ (v∗∗)) = 0, implying that q∗∗ + δ, l∗∗, T̂ (v∗∗) is feasible to

(OPT), leading to L∗ ≥ q∗∗ + δ −
√
ρ
∑
i (l∗∗)

2
i . We then have the following inequalities

|L̂∗ − L∗| ≤

∣∣∣∣∣∣L̂∗ −
q∗∗ + δ −

√
ρ
∑
i

(l∗∗)
2
i

∣∣∣∣∣∣
= |δ| ≤ ε. (23)

Putting the two cases together, we have |L∗ − L̂∗| ≤ ε, as desired.

Lemma. For F (z, x̂i) =
∑
j n(zj ,̂xi)∑
j d(zj ,̂xi) , an approximation via discretization with K pieces yields∣∣∣F (z, x̂i)−

aTi v + bi
a′Ti v + b′i

∣∣∣ ≤ C max{Cn, Cd}
K

with constant C independent of z.
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Proof. Let Cn, Cd be the Lipschitz constant of n(zj , x̂i) and d(zj , x̂i), respectively. We use the
Lipschitz continuity of these functions to get the following

|n(zj , x̂i)− n̂(zj , x̂i)| ≤
Uj − Lj
K

Cn

|d(zj , x̂i)− d̂(zj , x̂i)| ≤
Uj − Lj
K

Cd

Then, by the above we have∣∣∣∣∣∣
∑
j

n(zj , x̂i)−
∑
j

n̂(zj , x̂i)

∣∣∣∣∣∣ ≤
∑
j Uj −

∑
j Lj

K
Cn

def
= εn

∣∣∣∣∣∣
∑
j

d(zj , x̂i)−
∑
j

d̂(zj , x̂i)

∣∣∣∣∣∣ ≤
∑
j Uj −

∑
j Lj

K
Cd

def
= εd.

Now, we write

|F̂i(v)− Fi(z)| =

∣∣∣∣∣
∑
j n(zj , x̂i)∑
j d(zj , x̂i)

−
∑
j n̂(zj , x̂i)∑
j d̂(zj , x̂i)

∣∣∣∣∣
=

∣∣∣∣∣
∑
j n(zj , x̂i)

∑
j d̂(zj , x̂i)−

∑
j n̂(zj , x̂i)

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣ ,
We handle the absolute value by considering the following two cases

• If
∑
j n(zj , x̂i)

∑
j d̂(zj , x̂i) ≥

∑
j n̂(zj , x̂i)

∑
j d(zj , x̂i), then

|F̂i(v)− Fi(z)| ≤

∣∣∣∣∣
∑
j n(zj , x̂i)(

∑
j d(zj , x̂i) + εd)− (

∑
j n(zj , x̂i)− εn)

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
=

∣∣∣∣∣εd
∑
j n(zj , x̂i) + εn

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
≤ max{εn, εd}max

z

{∣∣∣∣∣
∑
j n(zj , x̂i) +

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
}

=

∑
j Uj −

∑
j Lj

K
max{Cn, Cd}max

z

{∣∣∣∣∣
∑
j n(zj , x̂i) +

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
}
.

• If
∑
j n(zj , x̂i)

∑
j d̂(zj , x̂i) ≤

∑
j n̂(zj , x̂i)

∑
j d(zj , x̂i), similarly we have

|F̂i(v)− Fi(z)| ≤

∣∣∣∣∣ (
∑
j n(zj , x̂i) + εn)

∑
j d(zj , x̂i)−

∑
j n(zj , x̂i)(

∑
j d(zj , x̂i)− εd)∑

j d(zj , x̂i)

∣∣∣∣∣
=

∣∣∣∣∣εd
∑
j n(zj , x̂i) + εn

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
≤
∑
j Uj −

∑
j Lj

K
max{Cn, Cd}max

z

{∣∣∣∣∣
∑
j n(zj , x̂i) +

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
}
.

Therefore, if we let

C =

∑
j

Uj −
∑
j

Lj

max
z

{∣∣∣∣∣
∑
j n(zj , x̂i) +

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
}
,

which is independent of z, then we obtain the desired inequality |F̂i(v) − Fi(z)| ≤
C max{Cn, Cd}/K.
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and

Taking G(z∗) as L∗, G(ẑ∗∗) as L̂∗, and εi as C max{Cn, Cd}/K we get the desired result for the
theorem.

D Proof of Lemma 1

Lemma. We have
∣∣∣M̂ean(F (z, x))− M̂ean

S
(F (z, x))

∣∣∣ ≤ τε and∣∣∣∣√ρV̂ar(F (z, x))−
√
ρV̂ar

S
(F (z, x))

∣∣∣∣ ≤ (ψ +
√

2τε)
√

2τεξ
N .

Proof. For the first result, By Lipschitzness,

|F (z, x̂i)− F (z, xs)| ≤ τε, ∀z,∀x̂i in cluster s

The result follows by summing over x̂i and averaging.

To get error bound for variance term, let Is be the set of indices that belong to cluster s, thus, {Is}s∈[S]

is a partition of [N ] and Cs = |Is|. Let use define

µ =
1

N

∑
i∈[N ]

F (z, x̂i)

µ̂ =
1

N

∑
s

CsF (z, x̂s) (24)

Let αi = µ − F (z, x̂i) (or F (z, x̂i) = µ + αi), thus,
∑
i αi = 0. As we know from Lipschitzness

assumption that

|F (z, x̂i)− F (z, x̂s)| ≤ τε, ∀z, i ∈ Is, (25)

we always can write F (z, x̂s) as F (z, x̂i) + βi = µ+ αi + βi for any x̂i in cluster s, where βi are
constants chosen such that

−τε ≤ βi ≤ τε, (26)
1

N

∑
i∈[N ]

βi = µ̂− µ. (27)

Then, we note that √√√√√∑
i∈[N ]

 1

N

∑
i∈[N ]

F (z, x̂i)− F (z, x̂i)

2

=

√∑
i∈[N ]

α2
i .

Also, we have√√√√∑
s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

=

√∑
i∈[N ]

(µ̂− µ− αi − βi)2,

as Cs is the number of points in cluster s and µ̂ = 1
N

∑
s CsF (z, x̂s) and F (z, x̂s) = µ + αi + βi

for all i ∈ IS . Now, let us assume that√√√√ρ
∑
s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

≥

√√√√ρ
∑
i

(
1

N

∑
i

F (z, x̂i)− F (z, x̂i)

)2

,

noting that the other case√√√√ρ
∑
s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

<

√√√√ρ
∑
i

(
1

N

∑
i

F (z, x̂i)− F (z, x̂i)

)2
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can be handled similarly by rewriting F (z, x̂i) as µ+ αi + βi and F (z, x̂s) as µ+ αi. We write√√√√∑
s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

=

√∑
i∈[N ]

(µ̂− µ− αi − βi)2

=

√∑
i∈[N ]

(αi + (βi + µ− µ̂))2

=

√∑
i∈[N ]

α2
i + 2

∑
i∈[N ]

αi(βi + µ− µ̂) +
∑
i∈[N ]

(βi + µ− µ̂)2

Using
∑
i αi = 0 and |µ− µ̂| ≤ τε, |βi| ≤ τε we get√√√√∑

s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

=

√∑
i∈[N ]

α2
i + 2

∑
i∈[N ]

αiβi +
∑
i∈[N ]

(βi + µ− µ̂)2

≤
√∑
i∈[N ]

α2
i + 2

∑
i∈[N ]

αiβi +N(2τε)2.

Using FU , FL are upper and lower limits of F and let ψ =
√

(FU − FL), we further expand the
inequalities√√√√∑

s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

≤
√∑

i

α2
i + 2N(FU − FL)τε+N(2τε)2

(a)

≤
√∑

i

α2
i +

√
2N(FU − FL)τε+N(2τε)2

≤
√∑

i

α2
i + (ψ +

√
2τε)
√

2Nτε

where (a) is due to the fact that
√
a+ b ≤

√
a+
√
b for any non-negative numbers a, b. Thus, after

plugging in ρ = ξ
N2 we get∣∣∣∣∣

√√√√ρ
∑
i∈[N ]

( 1

N

∑
i∈[N ]

F (z, x̂i)− F (z, x̂i)
)2

−

√√√√ρ
∑
s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2∣∣∣∣∣
≤ (ψ +

√
2τε)
√
ρ
√

2Nτε

= (ψ +
√

2τε)

√
2τεξ

N
,

as desired.

E Proof of Theorem 3

Theorem. Given the assumptions stated above, and ẑ an optimal solution for maxz Ĝ(z) and z∗
optimal for maxz G(z), the following holds:

|G (̂z)− G(z∗)| ≤ 2(τε+ ψ

√
2τεξ

N
+

2τεξ√
N

).

19



Proof. Let ẑ be an optimal solution to maxz Ĝ(z) and z∗ be optimal to maxz G(z), we have

|G(ẑ)− G(z∗)| ≤ |G(ẑ)− Ĝ(ẑ)|+ |Ĝ(ẑ)− G(z∗)|

The later can be further evaluated by considering two cases, Ĝ(ẑ) ≥ G(z∗) and Ĝ(ẑ) < G(z∗). If
Ĝ(ẑ) ≥ G(z∗), then |Ĝ(ẑ) − G(z∗)| = Ĝ(ẑ) − G(z∗) ≤ Ĝ(ẑ) − G(ẑ). The other case can be done
similarly to have

|G(ẑ)− G(z∗)| ≤ 2|G(ẑ)− Ĝ(ẑ)
∣∣∣ ≤ 2|M̂ean

S
(F (ẑ, x))− M̂ean(F (ẑ, x))

∣∣∣
+ 2
∣∣∣√ρV̂ar(F (ẑ, x))−

√
ρV̂ar

S
(F (ẑ, x))

∣∣∣
Then using the two results in Lemma 1, we get the required result.

F Proof of Lemma 2

Lemma 2. ∀z with probability ≥ 1− 2
∑
t exp

−2Ntε
2

τ2d2t ,
∣∣M̂ean(F (z, x))− M̂ean

T
(F (z, x))

∣∣ ≤ ε. In
other words,

P

∣∣∣∣∣∣ 1

N

∑
j∈[M ]

lF (z, x̂j)− 1

N

∑
j∈[N ]

[F (z, xj)]

∣∣∣∣∣∣ ≤ ε
 ≥∏

t

(
1− 2 exp

−2Ntε
2

τ2d2t

)

Proof. We utilize the concentration of Lipchitz functions. In particular, we have x̂1
, . . . , x̂Nt which

are sampled uniformly and independently from strata t and bounded (has diameter dt). Let Ut denote
the uniform probability distribution over the Ct points in strata t. Let It denote a set of indexes that
lie in the strata t. Then, for our function F (z, x) with Lipchitz constant τ we have :

P

(∣∣∣ 1

Nt

∑
j∈[Nt]

F (z, x̂j)− Ex∼Ut [F (z, x)]
∣∣∣ ≤ ε) ≥ 1− 2 exp

−2Ntε
2

τ2d2t ∀t, z.

Observe that by definition

Ex∼Ut [F (z, x)] =
1

Ct

∑
j∈It

[F (z, x̂j)].

Hence,

P

(∣∣∣ 1

Nt

∑
j∈[Nt]

F (z, x̂j)− 1

Ct

∑
j∈It

[F (z, x̂j)]
∣∣∣ ≥ ε) ≤ 2 exp

−2Ntε
2

τ2d2t

⇒ P

(∣∣∣ ∑
j∈[Nt]

ltF (z, x̂j)−
∑
j∈It

[F (z, xj)]
∣∣∣ ≥ Ctε) ≤ 2 exp

−2Ntε
2

τ2d2t .

Call the event in the probability above as Et. It is obvious that Et is independent over all different
strata t’s due to the independent sampling of points across strata. Hence ¬Et are also independent.
Next, using product of independent events over all strata we get

P
(
∩t ¬Et

)
≥
∏
t

(
1− 2 exp

−2Ntε
2

τ2d2t

)
.

Note that ∩t¬Et implies∑
t

∣∣∣ ∑
j∈[Nt]

ltF (z, x̂j)−
∑
j∈It

[F (z, xj)]
∣∣∣ ≤∑

t

Ctε.

Noting that |a+ b| ≤ |a|+ |b| and the fact that {It}t∈[T ] is a partition of [N ], the above implies that∣∣∣∑
t

lt
∑
j∈[Nt]

F (z, x̂j)−
∑
j∈[N ]

[F (z, xj)]
∣∣∣ ≤∑

t

Ctε
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This gives

P

(∣∣∣∑
t

lt
∑
j∈[Nt]

F (z, x̂j)−
∑
j∈[N ]

[F (z, xj)]
∣∣∣ ≤∑

t

Ctε

)
≥
∏
t

(
1− 2 exp

−2Ntε
2

τ2d2t

)
(Then, since N =

∑
t

Ct)

⇒ P

(∣∣∣ 1

N

∑
t

lt
∑
j∈[Nt]

F (z, x̂j)− 1

N

∑
j∈[N ]

[F (z, xj)]
∣∣∣ ≤ ε) ≥∏

t

(
1− 2 exp

−2Ntε
2

τ2d2t

)
(Then, since (1− a)(1− b) ≥ 1− a− b))

⇒ P

(∣∣∣ 1

N

∑
t

lt
∑
j∈[Nt]

F (z, x̂j)− 1

N

∑
j∈[N ]

[F (z, xj)]
∣∣∣ ≤ ε) ≥ 1− 2

∑
t

exp
−2Ntε

2

τ2d2t ,

which is the desired inequality.

G Proof of Lemma 3

Lemma 3. Define D = maxz,x |F (z, x)| for bounded function F . Then, ∀z with probability ≥

1− 4
∑
t exp

−2Ntε
2

4τ2d2tD
2 ,
∣∣∣∣√ρV̂ar(F (z, x))−

√
ρV̂ar

T
(F (z, x))

∣∣∣∣ ≤ 2
√
ξε√

V̂ ar(F (z,x))
.

Proof. Fix z. Recall It be the set of index that belong to strata t, thus, {It}t∈[T ] is a partition of
[N ] and Ct = |It|. For sake of simplicity, we use the shorthand for the sample/random variable
Y j = F (z, x̂j). Note that the samples are independent. We use the following notations :

µ =
1

N

∑
i∈[N ]

F (z, x̂i)

µ̂ =
1

N

∑
t

∑
j∈[Nt]

ltY
j

Note that
∑
t

∑
j∈[Nt]

lt = N .

The unnormalized weighted variance is

V̂ ar
T

=
∑
t

∑
j∈[Nt]

lt
(
µ̂− Y j

)2
=
∑
t

∑
j∈[Nt]

lt
(
µ̂2 − 2µ̂Y j + (Y j)2

)
= Nµ̂2 − 2µ̂

∑
t

∑
j∈[Nt]

ltY
j +

∑
t

∑
j∈[Nt]

lt(Y
j)2

= Nµ̂2 − 2Nµ̂2 +
∑
t

∑
j∈[Nt]

lt(Y
j)2

=
∑
t

∑
j∈[Nt]

lt(Y
j)2 −Nµ̂2

We wish to compare this to
V̂ ar =

∑
j∈[N ]

F (z, x̂j)2 −Nµ2

Towards this end, we have

|V̂ ar
T
− V̂ ar| ≤ |

∑
t

∑
j∈[Nt]

lt(Y
j)2 −

∑
j∈[N ]

F (z, x̂j)2|+N |µ̂2 − µ2| (28)
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We know from Lipschitzness assumption that

|F (z, x̂i)− F (z, x̂j)| ≤ τdt, ∀z, i, j ∈ Is (29)

Multiplying both sides by |F (z, x̂i) + F (z, x̂j)| (which is ≤ 2D), we get

|F (z, x̂i)2 − F (z, x̂j)2| ≤ 2τdtD, ∀z, i, j ∈ Is (30)

Let Ut denote the uniform probability distribution over the Ct points in strata t. Observe that by
definition

Ex∼Ut [(Y
j)2] =

1

Ct

∑
j∈It

[F (z, x̂j)2]

Then, by Hoeffding inequality and Equation 30

P

(∣∣∣ 1

Nt

∑
j∈[Nt]

(Y j)2 − Ex∼Ut [F (z, x)2]
∣∣∣ ≤ ε) ≥ 1− 2 exp

−2Ntε
2

4τ2d2tD
2 ∀t, z

Then, using the same sequence of steps as for Lemma 2, we get

P

(∣∣∣ 1

N

∑
t

lt
∑
j∈[Nt]

(Y j)2 − 1

N

∑
j∈[N ]

F (z, xj)2
∣∣∣ ≤ ε) ≥ 1− 2

∑
t

exp
−2Ntε

2

4τ2d2tD
2 ∀z (31)

Also, we know from Lemma 2 that

P

(∣∣∣µ̂− µ∣∣∣ ≤ ε) ≥ 1− 2
∑
t

exp
−2Ntε

2

τ2d2t ∀z

Multiplying both sides of the term inside the probability by |µ̂+ µ| (which is ≤ 2D), we get

P

(∣∣∣µ̂2 − µ2
∣∣∣ ≤ 2εD

)
≥ 1− 2

∑
t

exp
−2Ntε

2

τ2d2t ∀z

Replacing 2εD by ε (slight abuse of notation)

P

(∣∣∣µ̂2 − µ2
∣∣∣ ≤ ε) ≥ 1− 2

∑
t

exp
−2Ntε

2

4τ2d2tD
2 ∀z (32)

Denote the event in Equation 31 asA and Equation 32 asB, using union bound we get P (¬A∨¬B) ≤

4
∑
t exp

−2Ntε
2

4τ2d2tD
2 , or by taking negation P (A ∧ B) ≥ 1 − 4

∑
t exp

−2Ntε
2

4τ2d2tD
2 . A ∧ B together with

Equation 28 implies that with probability 1− 4
∑
t exp

−2Ntε
2

4τ2d2tD
2

|V̂ ar
T
− V̂ ar| ≤ 2Nε (33)

Then, note that∣∣∣√ρV̂ arT −√ρV̂ ar∣∣∣ =
√
ρ
|V̂ ar

T
− V̂ ar|√

V̂ ar
T

+
√
V̂ ar

≤
√
ξ

N

|V̂ ar
T
− V̂ ar|√
V̂ ar

Then, using Equation 33, we get with probability 1− 4
∑
t exp

−2Ntε
2

4τ2d2tD
2

∣∣∣√ρV̂ arT −√ρV̂ ar∣∣∣ ≤ 2
√
ξε√
V̂ ar
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H Proof of Theorem 4

We prove a more general result stated below

Theorem. Given the assumptions stated above, and ẑ an optimal solution for maxz Ĝ(z)
and z∗ optimal for maxz G(z), the following statement holds with probability ≥ 1 −

2
∑
t exp

−2Ntε
2

τ2d2t −4
∑
t exp

−2Ntε
2

4τ2d2tD
2 :

|G (̂z)− G(z∗)| ≤ 2ε

(
1 + 2

√
ξ

V̂ ar

)
.

For N∗ = mintNt, then the above can be written as with probability ≥ 1 −

2
∑
t exp

−2
√
N∗ε2

τ2d2t −4
∑
t exp

−2
√
N∗ε2

4τ2d2tD
2 :

|G (̂z)− G(z∗)| ≤ 2ε

(N∗)1/4

(
1 + 2

√
ξ

V̂ ar(F (z, x))

)
.

Proof. Following style of proof of Theorem 3 using union bound with lemmas 2 and 3 we get the first
claim above. For the second claim set ε′ =

√
N∗

1/4
ε and replace ε by ε′ (note that

√
Nt ≥

√
N∗).

I Data Generation Details

(Synthetic) SSG: Following standard terminology and set-up in SSG, for every target j, under a
type specified by parameters x, if the adversary attacks j and the target is protected then the defender
obtains reward rdx,j and the adversary obtains lax,j . Conversely, if the defender is not protecting target
j, then the defender obtains ldx,j (rdx,j > ldx,j) and the adversary gets rax,j (rax,j > lax,j). Given zj as the
marginal probability of defending target j, the expected utility of the defender and attacker of type x
for an attack on target j is formulated as follows: u(zj , θ

d
x ) = zjr

d
x,j + (1− zj)ldx,j and h(zj , θ

a
x ) =

λx(zj l
a
x,j + (1− zj)rax,j), where parameter λx ≥ 0 governs rationality. λx → 0 means least rational,

as the adversary chooses its attack uniformly at random and λx → ∞ means fully rational (i.e.,
attacks a target with highest utility). We compactly rewrite u(zj , θ

d
x ) = zja

d
x,j + ldx,j and h(zj , θ

d
x ) =

−zjcax,j+lax,j . We add two layers of randomness to our parameters {adx,j , ldx,j , cax,j , lax,j |∀j ∈ [M ],∀x}
by (1) generating i.i.d. samples from a mean shifted beta-distribution : low+(high− low)Beta(α, β),
and (2) then using these samples as means for the Gaussian distribution : N (., σ2) to i.i.d. generate
the final parameters. In our experiments we chose : low = 5, high=8, α = 3, β = 3, σ2 = 3.

(Synthetic) Regressor for SSG utilities: To validate Theorem 1, we first fix a linear regressor f∗ =

〈s∗
adj
, b∗
adj
, s∗
ldj
, b∗
ldj
, s∗caj , b

∗
caj
, s∗laj

, b∗laj
|∀j ∈ [M ]〉 and sample {V ∗,adx , V ∗,ldx , V ∗,cax , V ∗,lax |∀x ∈ [NT ]}

to generate {a∗,dx,j , l∗,dx,j , c∗,ax,j , l∗,ax,j |∀j ∈ [M ],∀x ∈ [NT ]} such that a∗,dx,j = s∗
adj
∗V ∗,adx +b∗

adj
,

l∗,dx,j = s∗
ldj
∗V ∗,ldx +b∗

ldj
, c∗,ax,j = s∗caj ∗V

∗,cax +b∗caj , l∗,ax,j = s∗laj
∗V ∗,lax +b∗laj

. Now a linear regressor

f̂ is learnt on the given dataset of NT samples by minimizing the L-2 loss between outputs of f̂ :
{âdx,j , l̂dx,j , ĉax,j , l̂ax,j |∀j ∈ [M ],∀x ∈ [NT ]} and actual utilities : {a∗,dx,j , l∗,dx,j , c∗,ax,j , l∗,ax,j |∀j ∈
[M ],∀x ∈ [NT ]}. DRO is performed on both true and learnt utilities to get decisions and then
evaluated on held out test set of true utilities.

(Semi-Synthetic) Maximum Capture Facility Cost Planning Problem (MC-FCP): The P&R
Aros-Vera et al. [2013] dataset provides fixed utilities for different facility locations which is useful
when considering MC-FCP, where the utilities of each facility is a function of the budget allocated to
it and our goal is to optimally distribute a limited budget across these facilities. Given the utilities of
client x : Vx,j∀j ∈ [M ], we solve for parameters {ax,j |j ∈ [M ]} governed by Vx,j = ax,j +bx, where
bx is chosen as minj Vx,j , so that all ax,j are non negative, and utilities increase on allocating more
budget. Once we have the parameters, we can write the utility function : h(zj , θx,j) = ax,jzj + bx.
Intuitively bx is the bias of the client x and ax,j ≥ 0 is the rate at which the client’s utility can be
raised by allocating more budget to the jth facility.
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Table 4: Objective values of the baselines as a % of the objective obtained by our approach across on
MC-FCP across various settings.

ξ
TTGA PGA

m=7 m=10 m=13 m=7 m=10 m=13
1E2 51.6 50.3 61.2 38.7 45.7 55.3
1E3 49.2 46.2 60.0 18.3 26.2 27.8
1E4 48.2 45.0 30.4 15.0 18.2 19.1

Table 5: Training time (seconds) using our MISOCP formulation across various settings.

ξ
MC-FCP MC-FLP

m=7 m=10 m=13 m=10 m=12 m=14
ERM 62.16 182.47 128.54 11.62 28.20 11.98
1E2 271.51 267.50 80.24 11.57 33.42 30.92
1E3 80.94 297.64 900.84 11.66 33.07 33.56
1E4 263.53 558.82 820.54 32.84 33.76 42.28

The MC-FLP problem directly uses the utilities of client x : Vx,j∀j ∈ [M ] from the P&R [Aros-Vera
et al., 2013] dataset, so MC-FLP is based completely on real data.

J Additional Results for Real Data

Baseline Performance on Real Data: Gradient based approaches failed to attain decent performance
on this dataset on MC-FCP as the choice probabilities Fi are near zero almost everywhere in the
space of decisions C, and since the derivative of the objective w.r.t. the decision, ie. ∂Fi∂z = Fi×gi(z),
the baselines run into a vanishing gradient problem and fail to move from the initial point. This also
demonstrates the advantage of an MISOCP solver which can locate good solutions despite the above
issue. Nonetheless we use gradient clipping (clipped away from zero) to train our baselines on the
dataset and the results are reported in Table 4.

Training time (in secs) for our approach: We present the times for convergence for our proposed
method as well as the baselines in Tables 5, 6, 7. As demonstrated in Table 5, even in the worst case
our algorithm takes only about 15 minutes thus reflecting its scalability.

Need for speed up and one time cost: The problem at hand scales exponentially both in memory
and time, so solving on real world datasets such as the Max Capture Facility dataset of 80,000
datapoints is simply infeasible on regular computers as the program does not even load on a machine
with 128GB RAM. It is known that for SSG decisions change monthly as new attack data is received
(Fang et.al) and the tool runs on resource constrained computers. Similarly, facility cost optimization
decisions can also change with changing profile of customers and/or change in type of services or
promotions offered (revealed in newly collected data). Thus, the DRO optimization can run repeatedly
at given frequencies and needs to be be efficient in practice.

K On Choosing Optimal Number of Pieces

We proved in Appendix C that approximation via discretization guarantees improve with increasing
K. To choose a suitable K for our experiments, we varied the number of pieces (K) from 2 to 20
in steps of 2, and report the relevant statistics in Figure 3. We note that across various settings, the
results have saturated by K = 10, and thus use K = 10 for all our experiments.

L Converting Weighted Objective to MISOCP

Let

µ̂ =
1

N

∑
t

∑
j∈[Nt]

ltF (z, xj).
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Table 6: Training time (seconds) using PGA formulation across various settings.

ξ
MC-FCP MC-FLP

m=7 m=10 m=13 m=10 m=12 m=14
ERM 82.16 142.47 228.54 71.62 158.27 211.48
1E2 91.24 147.56 280.44 81.37 143.44 230.92
1E3 90.11 197.63 250.54 73.16 153.17 233.56
1E4 83.45 178.12 320.56 82.84 167.66 242.28

Table 7: Training time (seconds) using TTGD formulation across various settings.

ξ
MC-FCP MC-FLP

m=7 m=10 m=13 m=10 m=12 m=14
ERM 44.17 50.31 62.13 40.11 45.64 60.63
1E2 45.12 52.12 60.01 42.34 43.11 63.18
1E3 50.11 43.17 64.32 45.77 46.23 63.66
1E4 43.43 55.82 62.54 42.14 47.76 60.28

Further, let Y j = F (z, x̂j). Consider the stratified sampling objective

µ̂−
√
ρ
∑
t

lt
∑
j∈[Nt]

(µ̂− Y j)2 (34)

It is enough to show the conversion for the above as the clustering is a special case with Nt = 1 for
all t. As before we substitute lt,j = 1

N

∑
t

∑
j∈[Nt]

ltY
j − Y j (notation l is abused, but the constant

lt subscript is t and the variable subscript is t, j) for all i ∈ [N ] and q = 1
N

∑
t

∑
j∈[Nt]

ltY
j . Note

that
∑
j∈Nt lt,j = Nt

N

∑
t lt
∑
j∈[Nt]

Y j −
∑
j∈[Nt]

Y j , and since lt = Ct
Nt

, we have
∑
j∈Nt lt,j =

1
N

∑
t Ct

∑
j∈[Nt]

Y j −
∑
j∈[Nt]

Y j . Also, since
∑
t Ct = N then

∑
t

Ct
∑
j∈[Nt]

lt,j =

∑
t Ct
N

∑
t

Ct
∑
j∈[Nt]

Y j −
∑
t

Ct
∑
j∈[Nt]

Y j = 0

Also, Y j = F (z, x̂j) = q − lt,j . The objective becomes q −
√
ρ
∑
t lt
∑
j∈[Nt]

l2t,j . Thus, like
the original (non-clustered) problem the objective is concave, and the only non-convexity is in the
constraint F (z, x̂j) = q − lt,j , which can be approximated as earlier.

Figure 3: Optimal objective value achieved by varying number of pieces as a % of the Best OPT
- achieved at K=20. Results are shown for varying no. of alternatives M and averaged over 10
generated SSG datasets with underlying parameters are N = 500,m = 1, ξ =1E6.
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For MISOCP, we move the part of the objective becomes the linear function q − s with an additional
constraint that √

ρ
∑
t

lt
∑
j∈[Nt]

l2t,j ≤ s (35)

(Recall r is the vector of all variables). The above is same as ||Ar||2 ≤ cT r for the constant matrix A
(with entries 0 or

√
ρlt at appropriate entries) and constant vector c (with 1 in the s component, rest

0’s) that picks the li’s and s respectively.

M Illustrative Examples for SSG and Facility Location

We first describe the quantal response or multinomial logit model that has been used in SSG and many
other applications. Briefly, given K choices with utility uk for choice k, the quantal response model
states that human choose choice j with probability ∝ exp(λuk), where λ is a rationality parameter.
λ = 0 means the choice is uniformly random and λ =∞ means the highest utility choice is chosen.

SSG: Next, consider a small example SSG where the attacker type denotes its rationality. Let there be
three targets to be protected, only one defender resource, and attacker types x is a scalar given by a real
number in [0, 10] (intuitively higher number type is more rational as explained next). Following typical
SSG style, each target has a reward or penalty for defender and adversary when that target is attacked
and is defended or undefended respectively. The defender has rdx,1 = 0.5, rdx,2 = 1, rdx,3 = 1.5 and
ldx,1 = −0.5, ldx,2 = −1, ldx,2 = −1.5. Similarly, the attacker has rdx,1 = 1, rdx,2 = 2, rdx,3 = 3 and
ldx,1 = −1, ldx,2 = −2, ldx,2 = −3 (for simplicity, these have been chosen independent of x). Given z
(vector of probability of defending each target), the expected utility of the defender for an attack on
target j by an attacker of type x is formulated as follows: u(zj , θ

d
x ) = zjr

d
x,j + (1− zj)ldx,j , similarly

for the attacker of type x its expected utility is ua(zj , θ
a
x ) = zj l

a
x,j + (1− zj)rax,j . Consider a quantal

responding adversary according to Yang et al. [2014] who attacks a target according to probability
proportional to e to the power a λ-scaled version of the utility. Hence h(zj , θ

a
x ) = λxu

a(zj , θ
a
x ), where

λx = x is the rationality parameter and it shows more rationality for higher type (recall h notation
from main paper). Then, the adversary of type x chooses target j with probability ∝ exp(h(zj , θ

a
x )).

The distribution over types is not known but multiple attacks by the same type of adversary can be
used to infer that type of attacker’s λx using maximum likelihood techniques from Yang et al. [2014].
This gives us the N observations of the types of attackers: x̂1, x̂2, . . . , x̂N . The DRO formulation
from this point on follows the same style as shown in Equation (SSG). Note that this can be made
general by considering a vector λx, but we stick with the simpler model as the quantal response and
the Bayesian version we describe aligns with the well-known discrete choice models.

Facility location: Consider a small example facility location problem where there are 5 locations on a
straight line possible to set-up 2 facilities. The competitors already runs two facilities at location 3 and
5. There are types of clients given by [0, 5] which roughly indicates their position on the straight line.
The number of clients of type x is sx = b100xc. The type x client has utility Vx,j = exp(−|x− j|)
of visiting location j, i.e., clients have more utility from visiting location nearer to their position x.
The user will have four total locations after the new facilities open (including two from competitor).
Then, using binary variable zj to denotes if location j is chosen for a facility, the rest of the problem
is set-up as described in the main paper.

In the cost version of the above problem, the variable zj is continuous between [0, 1]. The utility of
an user for a facility run by our firm can then be given as h(zj , x) = zj exp(−|x− j|). Here every
location has a facility (by this firm) but a very low zj can be treated as no facility. Then, again the
user has 7 facilities to choose from where the investment zj of the opponent for its facility at location
3 and 5 is known and fixed. The rest of the problem is set-up as described in the main paper.
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