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Abstract

We study policy optimization for Markov decision processes (MDPs) with multiple
reward value functions, which are to be jointly optimized according to given crite-
ria such as proportional fairness (smooth concave scalarization), hard constraints
(constrained MDP), and max-min trade-off. We propose an Anchor-changing
Regularized Natural Policy Gradient (ARNPG) framework, which can systemati-
cally incorporate ideas from well-performing first-order methods into the design of
policy optimization algorithms for multi-objective MDP problems. Theoretically,
the designed algorithms based on the ARNPG framework achieve Õ(1/T ) global
convergence with exact gradients. Empirically, the ARNPG-guided algorithms also
demonstrate superior performance compared to some existing policy gradient-based
approaches in both exact gradients and sample-based scenarios.

1 Introduction

In many sequential decision-making scenarios, agents usually face multiple objectives simultaneously.
This motivates the study of reinforcement learning (RL) with multiple reward values V π

1:m(ρ). 2

Given the achievable region V = {V π
1:m(ρ)}π∈Π consisting of value vectors achieved by policies in

policy class Π, the agent employs certain criteria to reflect the system requirement. For example,

1. Proportional fairness [13]: Given a1:m > 0, find v ∈ V that
∑m

i=1 ai
v′
i−vi
vi
≤ 0, ∀v′ ∈ V .

2. Hard constraints [4]: Given b2:m, maximizev∈V v1, subject to vi ≥ bi,∀i = 2, . . . ,m.
3. Max-min trade-off [8]: Given c1:m > 0, maximizev∈V mini∈[m] (vi/ci).

We study policy gradient-based approaches that optimize over parameterized policies Π = {πθ :
θ ∈ Θ} through policy gradient. In general, the optimization problems above may not be convex in
terms of θ, not even for single-objective MDPs with direct parameterization by θs,a = πθ(a|s) [2].
Due to the non-convexity, O(1/T ) global convergence of policy gradient-based methods was only
established very recently for single-objective MDPs with exact gradients [2, 20]. These breakthrough
results have motivated the study of policy optimization for multi-objective MDPs, e.g., smooth
concave scalarization [5], constrained MDPs (CMDPs) [11, 31].

However, under the exact gradients scenario, the previous approaches for multi-objective MDPs,
either suffer from slow provable O(1/

√
T ) global convergence [11], or require extra assumptions

∗The first two authors contributed equally.
2The notations are formally defined in Section 2.
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[37, 33, 18]. The compactness of Θ is assumed in [37], but this assumption forbids a very common
softmax parameterization, where Θ = R|S||A|. The NPG-based methods have been analyzed in
[33, 18] under an ergodicity assumption, but such an assumption is not required for NPG in single-
objective MDPs [2], and therefore appears artificial.

The above criteria for multi-objective MDPs could be viewed as convex optimization problems w.r.t.
a value vector v ∈ V , for which there are a wide array of well-performing first-order methods for
convex optimization problems in general. It is desirable to take full advantage of such efficient
first-order methods in a unified and flexible manner when designing policy gradient-based algorithms
for multi-objective MDPs.

Main contributions

1. We propose an anchor-changing regularized natural policy gradient (ARNPG) framework in
Section 3 that can exploit and integrate first-order methods for the design of policy gradient-based
algorithms for multi-objective MDPs.

2. We demonstrate the strength of the ARNPG framework by designing algorithms for three
general criteria: smooth concave scalarization (Section 4.1), constrained MDPs (Section 4.2),
and max-min trade-off (Section 4.3).

3. Under softmax parameterization with exact gradients, the proposed algorithms inherit the
advantages of the integrated first-order methods, and are guaranteed to have Õ(1/T ) global
convergence without further assumptions on the underlying MDP.

4. In addition to the theoretical advantages, we provide the results of extensive experimentation
in Section 5 and Appendices A and B which demonstrate that the ARNPG-guided algorithms
provide superior performance in exact gradient and sample-based tabular scenarios, as well as
actor-critic deep RL scenarios, compared to several existing policy gradient-based approaches.

1.1 Related works

Policy gradient (PG)-based methods have drawn much attention recently [1, 20, 10, 14] due to their
simplicity as well as the potential to generalize to large scale problems. Despite their non-convex
nature, PG-based methods have been shown to converge globally for single-objective MDPs [1, 20].
Their convergence may be further accelerated with appropriate regularization [10, 17], e.g., entropy
regularization, but the algorithms only converge to the optimum of the regularized problem instead of
the desired (unregularized) problem.

This paper considers single-policy multi-objective MDPs, including CMDPs where constraints are
specified on some objectives. Global convergence of PG-based approaches in the multi-objective
MDPs has been previously studied. For smooth concave scalarization, Bai et al. [5] showed an
O(1/ϵ4) sample complexity (to achieve ϵ-optimal in expectation) of the policy-gradient method
under sample-based scenarios. However, with exact gradients, we are unaware of works with fast
Õ(1/T ) convergence. For CMDPs, Ding et al. [11] have studied a primal-dual NPG algorithm
achieving O(1/

√
T ) global convergence for both the optimality gap and the constraint violation. Xu

et al. [31] have proposed a primal approach that reduces constraint violations with a higher priority
than optimizing objective, and enjoys the same O(1/

√
T ) global convergence. In work conducted

concurrently with ours, [33] and [18] have proposed algorithms that achieve Õ(1/T ) convergence
but with extra ergodicity assumptions.

A general setting of optimizing a concave function of the state-action visitation distribution has been
considered in [37]. Though the problem is more general, its gradient estimation is more complicated
than the canonical policy gradient estimate. Zhang et al. [37] showed that the gradient ascent
achieves O(1/T ) global convergence for smooth scalarization with exact gradients, under several
assumptions such as convexity and compactness of the parameter set Θ. Directly viewing the state-
action visitation as the decision variables and imposing equality constraints for their feasibility, a
smooth concave scalarization has been studied in [36] and later generalized to the constrained setting
in [6]. These two works focus on sample-based scenarios, but due to their primal-dual approach with
equality constraints, the convergence rate is only O(1/

√
T ) even with exact gradients. Moreover, the

state-action visitation parameterization is difficult to generalize to larger scale deep RL scenarios.

A more thorough discussion on related works is given in Appendix F.
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2 Preliminaries

System model A Markov decision process (MDP) is represented by a tuple (S,A, P, ρ, γ, r), where
S is the state space, A the action space, P : S × A → ∆(S) the transition kernel, ρ ∈ ∆(S) the
initial state distribution, γ ∈ (0, 1) the discount factor, and r : S ×A → [0, 1] the reward function.
Given any policy π : S → ∆(A) and any reward function r : S × A → [0, 1], we define the state
value function V π

r : S → [0, 1
1−γ ], and the state-action value function Qπ

r : S ×A → [0, 1
1−γ ], as

V π
r (s) := E[

∞∑
t=0

γtr(st, at) | s0 = s, π], Qπ
r (s, a) := E[

∞∑
t=0

γtr(st, at) | s0 = s, a0 = a, π],

where expectation E is taken over the random trajectory of the Markov chain induced by the policy
π and the transition kernel P . With a slight abuse of notation, we denote V π

r (ρ) := Es∼ρ[V
π
r (s)].

Define the discounted state-action visitation distribution (state-action visitation for short) of policy
π with initial state distribution ρ by dπρ (s, a) := (1− γ)Es0∼ρ[

∑∞
t=0 γ

tP(st = s, at = a|s0, π)]. It
then follows that V π

r (ρ) = 1
1−γ ⟨d

π
ρ , r⟩ by viewing dπρ and r as |S||A|-dimensional vectors indexed

by (s, a) ∈ S ×A. When it is clear from the context, we denote the state visitation distribution by
dπρ (s) := Es0∼ρ [(1− γ)

∑∞
t=0 γ

tP(st = s|s0)], which is the marginal distribution of the state-action
visitation dπρ (s, a), i.e., dπρ (s) =

∑
a∈A dπρ (s, a).

We study an MDP with m objectives represented by (S,A, P, ρ, γ, r1:m), where ri : S × A →
[0, 1] is the i-th reward function for each i ∈ [m]. For simplicity, denote V π

i (·) := V π
ri (·) and

V π
1:m(·) := (V π

1 (·), . . . , V π
m(·)). We consider parameterized policies in Π = {πθ : θ ∈ Θ}, where

Θ ⊂ Rn is the parameter space. For example, the softmax policy is πθ(a|s) = exp(θs,a)∑
a′ exp(θs,a′ )

with

Θ = R|S||A|; and neural softmax policy is πθ(a|s) = exp(NNθ(s,a))∑
a′ exp(NNθ(s,a′)) , where NNθ is some neural

network parameterized θ. Define V := {V πθ
1:m(ρ) : θ ∈ Θ} as the achievable region of value vectors.

The agent wishes to optimize the policy in Π for a given specific multi-objective criterion on value
vectors in V .

Mirror ascent As one of the most well-known iterative optimization methods, mirror descent
(actually ascent in the context of our formulation as a maximization problem) [21, 7] is a general
class that encompasses many first-order methods in convex optimization. Given a variable x in a
compact convex set X ⊂ Rn and an ascent direction g ∈ Rn, the variational representation of the
mirror ascent update is

x′ ∈ argmax
y∈X
{⟨g, y⟩ − αBh(y||x)}, (1)

where Bh(x||y) := h(x) − h(y) − ⟨∇h(y), x − y⟩ is some Bregman divergence generated by a
differentiable convex function h : X → R. When analyzing the convergence of first-order methods,
certain fundamental inequalities are usually established to facilitate the proof. One such inequality is

⟨g, x′⟩ − αBh(x
′||x) ≥ ⟨g, y⟩ − αBh(y||x) + αBh(y||x′), ∀y ∈ X , (2)

which is a critical step in many previous works, e.g., [22, 27, 16].

It is desirable to construct a similar fundamental inequality for multi-objective MDPs that can
facilitate the analysis of convergence. As we will show in the next section, such an inequality can
indeed be established in a new framework, which we refer to as the Anchor-Changing Regularized
Natural Policy Gradient (ARNPG).

Notations Denote KL-divergence between two n-dimensional probability vectors x, y by D(x||y) :=∑n
i=1 xi log(xi/yi), which is a widely-used Bregman divergence. For any policies π, π′ and state

visitation distribution d, define Dd(π||π′) :=
∑

s∈S d(s)D(π(·|s)||π′(·|s)). A uniform policy is one
which chooses actions uniformly at random.

3 Anchor-changing regularized natural policy gradient

Let us consider a hypothetical mirror ascent update on decision value vector vk ∈ V according to (1).
Given an ascent direction G̃k along which to improve vk, the updated value vector is

v′ ∈ argmax
v∈V
{⟨G̃k, v⟩ − αBh(v||vk)}. (3)
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Suppose the value vector vk is achieved by a policy πθk , i.e., vk = V
πθk
1:m (ρ). Denote the reward

function in the ascent direction as r̃k(s, a) = ⟨G̃k, r1:m(s, a)⟩. It follows that ⟨G̃k, vk⟩ = V
πθk

r̃k
(ρ).

Note that Bh(v||vk) in (3) serves the role of a soft constraint on v by keeping v within a vicinity of

vk. Replacing B(v||vk) by
D

d
πθ
ρ

(πθ||πθk
)

1−γ will induce a similar soft constraint that prefers the vicinity
of the “anchor" policy πθk . Therefore we consider replacing the variational update in (3) by

θ′ ∈ argmax
θ∈Θ

{
Ṽ πθ

k,α(ρ)
}
, where Ṽ πθ

k,α(ρ) := V πθ

r̃k
(ρ)− α

Dd
πθ
ρ
(πθ||πθk)

1− γ
. (4)

ARNPG Motivated by the intuition above, we propose the Anchor-Changing Regularized Natural
Policy Gradient (ARNPG) framework. At (macro) step k, the ARNPG framework determines
the reward function in the ascent direction r̃k and the anchor policy πθk , which can exploit well-
performed first-order methods in convex optimization literature utilizing the features of the specific
criteria in use. With r̃k and πθk , we wish to solve for (4) to improve the value vector. However the
optimal solution θ′ of (4) is generally not determinable explicitly. ARNPG therefore approaches
the optimal solution via a subroutine that executes a natural policy gradient (NPG) algorithm w.r.t.
the KL-regularized value function Ṽ πθ

k,α(ρ). We refer to this subroutine, given in Algorithm 1, as

InnerLoop(r̃k, πθk , α, η, tk). It iteratively updates the parameter θ(t)k for tk (micro) steps according to
the NPG update rule as in (5), where Fρ(θ)

† is the Moore-Penrose inverse of the Fisher information

matrix Fρ(θ) := E(s,a)∼d
πθ
ρ

[
∇θ log πθ(a|s) (∇θ log πθ(a|s))⊤

]
.

Algorithm 1: InnerLoop(r̃k, πθk , α, η, tk)

Initialize θ
(0)
k = θk

for t = 0, 1, . . . tk − 1 do
θ
(t+1)
k ← θ

(t)
k + ηFρ(θ

(t)
k )†∇θṼ

π
(t)
k

k,α (ρ) (5)
Return θ

(tk)
k

The choice of the number of iterations in InnerLoop (i.e., tk) involves a trade-off between the
variational update precision and the overall efficiency. On the one hand, a larger tk leads to a more
accurate approximation of the optimal solution θ′ to (4), but it may cause the algorithm to spend
unnecessary computational resources on the regularized objective Ṽ πθ

k,α(ρ), instead of on the true
optimization problem. On the other hand, a smaller tk saves inner loop iterations but the update
follows less closely to the underlying mirror-ascent update in improving the value vector. In our
experiments, we choose tk within 10 to strike a balance and empirically observe tk > 1 has better
performance.

We note that when tk = 1, the gradient ∇θṼ
πθk

k,α (ρ) = ∇θV
πθk

r̃k
(ρ), since Dd

πθ
ρ
(πθ||πθk) has zero

gradient at θ = θk. The update in (5) reduces to an NPG update on the unregularized value function
Ṽ πθ

r̃k
(ρ). For single-objective MDPs, it reduces to the canonical NPG method.

3.1 Theoretical guarantee of ARNPG

We now present the main theoretical tool for the analysis of the ARNPG framework. Recall the
discussion of the fundamental inequality after (2). Proposition 1 establishes such a fundamental
inequality with controllable approximation error under the softmax policy parameterization, i.e.,
πθ(a|s) = exp(θs,a)∑

a′ exp(θs,a′ )
. In the rest of the paper, we omit θ in πθ when it is clear from the context,

but it should be noted that all updates of policies are performed on the parameters.

Proposition 1. Under the softmax parameterization, given ϵk > 0, for any r̃k, tk ≥
1

1−γ log( 5∥r̃k∥∞
(1−γ)2ϵk

) + 1, α > 0 and η = 1−γ
α , the update πk+1 ← InnerLoop(πk, r̃k, α, η, tk)

satisfies

V
πk+1

r̃k
(ρ)− α

D
d
πk+1
ρ

(πk+1||πk)

1− γ
≥ V π

r̃k
(ρ)− α

Ddπ
ρ
(π||πk)−Ddπ

ρ
(π||πk+1)

1− γ
− ϵk, ∀π. (6)
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The inequality (6) is critical to the convergence proof. Its right hand side allows telescoping, which
by summing over k can iteratively cancel the terms Ddπ

ρ
(π||πk). Since tk = Θ(log(1/ϵk)) it suffices

to use very few iterations in InnerLoop for maintaining precision.

Remark. It has been shown that for the entropy-regularized MDP, i.e., KL-regularized with the uniform
policy as the anchor policy, NPG converges linearly (i.e., geometrically fast) to the regularized optimal
policy [10]. It is natural to anticipate that for the KL-regularized MDP Ṽ π

k,α(ρ) with anchor πk, NPG

would similarly converge linearly (i.e., Ṽ πk

k,α ≥ Ṽ
π∗
k

k,α − ϵ for tk = Θ(log(1/ϵ))) to a corresponding
optimal policy, denoted as π∗

k. In contrast, the right hand side of inequality (6) has a positive drift

α
Ddπρ

(π||πk+1)

1−γ for any policy π, which is considerably stronger.

Proof sketch of Proposition 1. We can show that InnerLoop approximately solves the variational
update in (4) with linear convergence as anticipated. However to establish (6), the difficulty lies in the
introduction of positive drift, since V πθ

r̃k
(ρ) is not concave w.r.t. θ and Dd

πθ
ρ
(πθ||πθk) may not be a

Bregman divergence. We tackle this difficulty by showing that optimizing πθ in InnerLoop implicitly
performs a mirror ascent update for state action visitation dπθ

ρ .

As demonstrated in the next section, Proposition 1 ensures that the convergence rate of the algorithms
derived from the ARNPG framework is of the same rate as the underlying first-order methods with
only extra logarithmic factors.

4 Theoretical applications

In this section, we apply the ARNPG framework to several important multi-objective MDP scenarios
and obtain new policy optimization algorithms by integrating first-order methods in convex opti-
mization. All the theoretical results presented in this section are under the softmax parameterization
with exact gradients. However, the obtained algorithms can be implemented in more general settings
such as neural softmax and sample-based scenarios, as in the next section. We theoretically establish
Õ(1/T ) convergence of these algorithms by leveraging the fundamental inequality in Proposition 1.

4.1 Smooth concave scalarization function

We start by considering the following optimization problem
max

θ
F (V πθ

1:m(ρ)), (7)

where F is a concave function, and β-smooth w.r.t. ∥ · ∥∞ norm, i.e., ∥∇F (v) − ∇F (v′)∥1 ≤
β∥v−v′∥∞. Since the set of achievable values V ⊆

[
0, 1

1−γ

]m
, it can be verified that ∥∇F (v)∥1 ≤ L

for some factor L > 0.

The proportional fair criterion discussed in Section 1 can be approximated by F (v) :=∑m
i=1 ai log(δ + vi), where δ > 0 is some constant introduced to circumvent the pathological

case vi = 0 for some i ∈ [m]. Under this criterion, β =
∑m

i=1 ai/δ
2 and L =

∑m
i=1 ai/δ.

When v is viewed as the decision variable, at macro step k with value vector V πk
1:m(ρ), the ascent

direction in a typical gradient ascent step is the gradient G̃k = ∇vF (V πk
1:m(ρ)). This naturally

determines the reward in the ascent direction as r̃k(s, a) = ⟨G̃k, r1:m(s, a)⟩. Adapting the ARNPG
framework to this specific context, we present the algorithm for solving the program (7) in Algorithm
2. We refer to it as “implicit mirror descent" because the algorithm implicitly employs mirror descent.

Algorithm 2: ARNPG Implicit Mirror Descent (ARNPG-IMD)
Input π0, α, η, t0:K−1,K
for k = 0, 1, . . . ,K − 1 do

Update πk+1 ←InnerLoop(πk, r̃k, α, η, tk)
Return the policy in {πk}Kk=1 with the largest F (V πk

1:m(ρ))

Let π∗ be the optimal policy for (7). Based on Proposition 1, we present the following theorem which
guarantees the convergence of ARNPG-IMD with appropriately selected parameters π0, α, η, tk.
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Theorem 1. For any K ≥ 1, take uniform policy π0, α ≥ β
(1−γ)3 , η = 1−γ

α , and tk =

⌈ 1
1−γ log( 5LK

β log(|A|) ) + 1⌉. The optimality gap of ARNPG-IMD (Algorithm 2) satisfies

F (V π∗

1:m(ρ))− max
k∈[1:K]

F (V πk
1:m(ρ)) ≤F (V π∗

1:m(ρ))− 1

K

K∑
k=1

F (V πk
1:m(ρ)) ≤ 2α log(|A|)

(1− γ)K
. (8)

There are a total of K macro steps, and the total number of iterations is T =
∑K−1

k=0 tk =

Θ( K
1−γ log(K)). The following corollary provides the convergence rate in terms of T .

Corollary 1. Under the same conditions as in Theorem 1, the ARNPG-IMD algorithm satisfies
F (V π∗

1:m(ρ))− 1
K

∑K
k=1 F (V πk

1:m(ρ)) = O
(

β log(T )
(1−γ)5T

)
.

Remark. In the absence of knowledge of K, we can select time-varying numbers of InnerLoop
iterations, such as tk = Θ(log(k)), and ARNPG-IMD will still have the same Õ(1/T ) convergence.

4.2 Constrained Markov decision process

Another way of trading off the objectives is to optimize one while setting hard constraints on the
others. This can be formulated as the following constrained MDP (CMDP) problem:

max
θ

V πθ
1 (ρ), s.t. V πθ

i (ρ) ≥ bi, ∀i ∈ [2 : m], (9)

where b2:m ∈ [0, 1
1−γ ]

m−1. Let π∗ = πθ∗ be the optimal policy of the CMDP problem in (9).

Define the Lagrangian of the CMDP problem as L(πθ, λ) = V πθ
1 (ρ) +

∑m
i=2 λi(V

πθ
i (ρ) − bi),

where λi is the Lagrange multiplier (dual variable) corresponding to the constraint V πθ
i ≥ bi, for

each i ∈ [2 : m]. The Lagrange dual function maxπ L(π, ·) is a convex function of dual variables
λ ≥ 0. Denote by λ∗ the optimal dual variables that minimize the Lagrange dual function. We
assume λ∗ is finite, which is guaranteed by Slater’s condition, i.e., there is some πθ and ξ > 0 with
V πθ
i (ρ)− bi ≥ ξ for any i ∈ [2 : m]. Note (π∗, λ∗) is a saddle point of the Lagrangian L(π, λ). This

motivates the primal-dual approach, which iteratively performs gradient ascent for πθ and gradient
descent for λ. This is suitable for the CMDP setting, since for any fixed λ, the Lagrangian L(π, λ)
corresponds to an MDP for which policy gradient can be employed.

The canonical primal-dual gradient ascent-descent method for constrained convex optimization can
only guarantee O(1/

√
T ) convergence, and consequently the primal-dual policy gradient-based

approach for CMDPs [11] has the same convergence. Recently, Yu et al. [35] have proposed a primal-
dual-based method with O(1/T ) convergence under the Euclidean setting, i.e., Bh(x||y) = 1

2∥x−y∥
2
2.

Adopting ideas from [35], we next propose the ARNPG with Extra Primal-Dual (ARNPG-EPD)
algorithm (Algorithm 3). To the best of our knowledge, this new primal-dual update appears in the
CMDP-related literature for the first time.

Note that bi − V π
i (ρ) is the amount of constraint violation. There are two key ideas we adopt from

[35]. The first is the design of the reward in the ascent direction
r̃k(s, a) := r1(s, a) +

∑m
i=2(λk,i + η′(bi − V πk

i (ρ)))ri(s, a),
where an extra constraint violation term is added to the dual variables. The second idea is that the
update of dual variables should not fall below the negative constraint violation (the first term in (10)),
and it can alleviate the overshooting of dual variables. The extra constraint violation terms in r̃k and
the dual update work jointly to ensure the Õ(1/T ) convergence.

Theorem 2. For any K ≥ 1 and η′ ∈ (0, 1], take uniform policy π0, α ≥ 2η′m
(1−γ)3 , η = 1−γ

α ,

and choose tk = ⌈ 1
1−γ log( 5LkK

2η′m log(|A|) ) + 1⌉ with Lk = 1 + η′(m−1)
1−γ +

∑m
i=2 λk,i. The average

optimality gap and the average constraint violation of ARNPG-EPD (Algorithm 3) satisfy

V π∗

1 (ρ)− 1

K

K∑
k=1

V πk
1 (ρ) ≤ 3α log(|A|)

(1− γ)K
, (11)

bi −
1

K

K∑
k=1

V πk
i (ρ) ≤ 1

K

(
2∥λ∗∥2

η′
+ 3

√
α log(|A|)
(1− γ)η′

)
∀i ∈ [2 : m]. (12)
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Algorithm 3: ARNPG with Extra Primal Dual (ARNPG-EPD)
Input π0, η

′, α, η, t0:K−1,K
Initialize λ0,i = max{η′(V π0

i (ρ)− bi), 0}, ∀i ∈ [2 : m]
for k = 0, 1, . . . ,K − 1 do

Update πk+1 ←InnerLoop(πk, r̃k, α, η, tk)
Update λk+1,i = max

{
η′(V

πk+1

i (ρ)− bi), λk,i + η′(bi − V
πk+1

i (ρ))
}
, ∀i ∈ [2 : m] (10)

Return: a policy randomly chosen from {πk}Kk=1

Note that the number of micro steps tk is chosen according to the dual variables λk in the previous
theorem. Denote by T :=

∑K−1
k=0 tk the total number of iterations.

Corollary 2. Under the same conditions as in Theorem 2, the ARNPG-EPD algorithm satisfies
V π∗

1 (ρ)− 1
K

∑K
k=1 V

πk
1 (ρ) = O(m log(T )

(1−γ)5T ), and bi − 1
K

∑K
k=1 V

πk
i (ρ) = O(

√
m log(T )

(1−γ)2.5T ).

The theorem and corollary establish convergence of the average optimality gap and the average
constraint violation, in the same manner as many previous works [11, 31, 12, 19] on CMDPs.
However, a guarantee on the last iterate is more preferable. This drawback is inherited from the
primal-dual algorithm for convex optimization, where the primal-dual algorithm with sublinear
convergence can only be guaranteed on the average solution, as of our knowledge. Last iterate
convergence is still an on-going open research topic.

4.3 Max-min trade-off criteria

Finally, we consider the max-min trade-off criterion defined as

max
θ

min
λ∈Λ

Φ(V πθ
1:m(ρ), λ), (13)

where Λ is a subset of the m-dimensional probability simplex ∆([m]). We assume Φ(·, λ) is concave
and Φ(v, ·) is convex. We also assume Φ is β-smooth w.r.t. the norm Ψ(v, λ) = ∥v∥∞ + ∥λ∥1.

The max-min criterion mentioned in Section 1 can be represented by Φ(v, λ) =
∑m

i=1 viλi/ci and
Λ = ∆([m]). Φ satisfies the concave-convex assumption and is β-smooth w.r.t. the norm Ψ with
β = O(m).

Denote F (v) := minλ∈Λ Φ(v, λ), which is concave but not necessarily smooth. Thus we cannot
apply the ARNPG-IMD algorithm (Algorithm 2) due to the non-smoothness of F , and the subgradient-
based method can only guarantee O(1/

√
T ) convergence.

We next integrate the optimistic mirror descent ascent (OMDA) method [27] for solving minimax
optimization in the ARNPG framework. Denote the gradients G̃λ

k = ∇λΦ(V
π̃k
1:m(ρ), λ̃k) and G̃v

k =

∇vΦ(V
π̃k
1:m(ρ), λ̃k). It can be verified that ∥G̃v

k∥1 ≤ L for some L due to the smoothness of Φ.
OMDA performs gradient ascent along the direction G̃v

k w.r.t. the value vector, and therefore we
construct the reward in the ascent direction as r̃k(s, a) = ⟨G̃v

k, r1:m(s, a)⟩. OMDA performs mirror
descent along direction G̃λ

k w.r.t. the dual vector λ. A key ingredient of OMDA is that it updates
twice in each macro step. ARNPG-OMD adopts this idea and update (π, λ) from the same anchor
points (πk, λk), first with ascent direction (r̃k,−G̃λ

k) ∈ R2m and then a further step with direction
(r̃k+1,−G̃λ

k+1) ∈ R2m.

We present ARNPG-OMDA in Algorithm 4, and establish the following performance guarantees:

Theorem 3. For any K ≥ 1, take uniform policy π0, η′ ≤ 1
6β , α ≥ 6β

(1−γ)3 , η = 1−γ
α , and

tk = ⌈ 1
1−γ log( 5LK

6β log(|A|) ) + 1⌉. The ARNPG-OMDA algorithm (Algorithm 4) satisfies

F (V π∗

1:m(ρ))− F

(
1

K

K∑
k=1

V π̃k
1:m(ρ)

)
≤ 3α log(|A|)

(1− γ)K
+

log(m)

η′K
. (14)
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Algorithm 4: ARNPG with Optimistic Mirror Descent Ascent (ARNPG-OMDA)
Input π0, λ0, η

′, α, η, t0:K−1,K

Initialize π̃0 = π0 and λ0, λ̃0 as uniform distribution on [m]
for k = 0, 1, . . . ,K − 1 do

Update π̃k+1 ←InnerLoop(πk, r̃k, α, η, tk), λ̃k+1 ← argminλ∈Λ{⟨G̃λ
k , λ⟩+

D(λ||λk)
η′ }

Update πk+1 ←InnerLoop(πk, r̃k+1, α, η, tk), λk+1 ← argminλ∈Λ{⟨G̃λ
k+1, λ⟩+

D(λ||λk)
η′ }

Return: a policy randomly chosen from {π̃k}Kk=1

Similar to the discussion after Corollary 2, Theorem 3 provides a performance guarantee on the
average value vector F ( 1

K

∑K
k=1 V

π̃k
1:m(ρ)), which is inherited from the OMDA methods. Denote the

total number of iterations by T :=
∑K−1

k=0 2tk.

Corollary 3. Under the same conditions as in Theorem 3, ARNPG-OMDA satisfies F
(
V π∗

1:m(ρ)
)
−

F
(

1
K

∑K
k=1 V

πk
1:m(ρ)

)
= O

(
β log(T )
(1−γ)5T

)
.

5 Empirical evaluation and application

In this section, we present the experimental results on CMDP. We compare the performance of the
proposed ARNPG-EPD algorithm (Algorithm 3) with two benchmarks: NPG-PD [11] and CRPO
[31]. Experimental details on CMDP are postponed to Appendix A and further experiments on
smooth concave scalarization and max-min trade-off are presented in Appendix B. We provide code
at https://github.com/tliu1997/ARNPG-MORL.

5.1 Tabular CMDP with exact gradients

Recall that under softmax policy with exact gradients, Corollary 2 (Theorem 2) guarantees Õ(1/T )
convergence of both performance measures: average optimality gap and average constraint violation.
We compare the proposed ARNPG-EPD with the benchmarks NPG-PD and CRPO under both
performance measures on a randomly generated CMDP with a single constraint, which are illustrated
in Figure 1. The horizontal axis is the total number of iterations, i.e., including the micro steps in
InnerLoop of ARNPG-EPD.

(a) (b) (c) (d)

Figure 1: The average optimality gap and the average constraint violation versus the total number of
iterations, for ARNPG-EPD, NPG-PD, and CRPO on a randomly generated CMDP.

Figures 1(a) and 1(b) show that both the average optimality gap and the average constraint violation
of the ARNPG-EPD algorithm converge faster than those of NPG-PD. Since the CRPO focuses on
the violated constraint, the policy becomes feasible quickly, though at the cost of an initially slower
convergence for the optimality gap. As illustrated in Figures 1(c) and 1(d), the slopes of both the
optimality gap and the constraint violation of the ARNPG-EPD algorithm in the log-log plots are
approximately between -0.9 and -1, indicating a converge rate of Õ(1/T ).

5.2 Sample-based tabular CMDP

We next consider the same tabular CMDP described in Section 5.1 without exact policy gradients.
Instead, policy gradients are estimated by samples from a generative model that can generate

8

https://github.com/tliu1997/ARNPG-MORL


(a) (b) (c) (d)

Figure 2: The reward values and the constraint violation with respect to the total number of iterations,
for sample-based ARNPG-EPD, NPG-PD, and CRPO on a randomly generated CMDP.

independent trajectories starting from any state and action pair. The assumption of such a generative
model is common [17, 11, 31].

The performances of CRPO, NPG-PD, and ARNPG-EPD in the sample-based scenario are shown in
Figure 2. Figures 2(a) and 2(b) display the averaged performance, while Figures 2(c) and 2(d) display
the performance of the current iterate (a.k.a. last-iterate in optimization literature). It shows that in
this sample-based scenario, ARNPG-EPD achieves higher reward values with faster convergence,
while all three algorithms satisfy the constraint after a few iterations.

5.3 Acrobot-v1

To demonstrate the efficacy of ARNPG-EPD on complex tasks, we have conducted experiments
on the Acrobot-v1 environment from OpenAI Gym [9]. We follow the same experiment setup in
[31], where there is a reward value to maximize, and two cost values to be constrained below some
thresholds. The superior performance of ARNPG-EPD is shown in Figure 3.

(a) (b) (c)

Figure 3: Last-iterate performance for sample-based ARNPG-EPD, NPG-PD, CRPO averaged over
10 random seeds. The black dashed lines in (b) and (c) represent given thresholds.

Figure 3(a) shows that ARNPG-EPD achieves a higher reward value compared to NPG-PD and
CRPO, while Figures 3(b) and 3(c) demonstrate that the cost values of all three algorithms are below
the thresholds after a few initial iterations. We believe the superiority is due to the new primal-dual
design inspired by [34] (discussed in Section 4.2) and the flexibility of choosing tk in the InnerLoop
in the framework. More experiments with different tk are presented in Appendix A.

6 Conclusion and future works

We propose an ARNPG framework to systematically integrate well-performing first-order methods
into the design of policy gradient-based algorithms for multi-objective MDPs. The designed algo-
rithms achieve a global Õ(1/T ) convergence rate under the softmax parameterization with exact
gradients, and empirically have satisfactory performance beyond tabular and exact gradient settings.
We believe that ARNPG has potential applications in other scenarios, since the general and flexible
framework allows integration with more advanced first-order methods, currently and in the future.

A natural future direction is to extend the theoretical results to more general settings such as function
approximation and sample-based scenarios. Viewing ARNPG as a heuristic, the anchor-changing
ideas can also be applied to policy optimization for multi-agent RL and meta RL.
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A Experimental settings and additional results for CMDP

A.1 Tabular CMDP

The tabular CMDP, for both exact-gradient scenario (Section 5.1) and sample-based scenario (Section
5.2), follows the same experimental setting as in [11].

The MDP with m = 2 objectives represented by (S,A, P, ρ, γ, r1:2) (as the system model in Section
2) is randomly generated, where |S| = 20, |A| = 10, ρ is uniform distribution, and γ = 0.8. For each
(s, a) ∈ S×A, P (·|s, a) ∈ ∆(S) is generated by normalizing a random vector∼ Unif([0, 1]S), and
independent rewards r1(s, a), r2(s, a) ∼ Unif([0, 1]). Choosing the constraint coefficient b2 = 3,
the experiments are performed on the CMDP

max
θ∈Θ

V πθ
r1 (ρ) s.t. V πθ

r2 (ρ) ≥ b2, (15)

with the softmax policy class.

For both the exact-gradient scenario (Section 5.1) and the sample-based scenario (Section 5.2), we
choose η = 1 and η′ = 1 for ARNPG-EPD and NPG-PD (following the same hyperparameter
selection as in [11]), since both rely on a primal-dual framework. Additionally, we fix tk = 1,∀k =
0, 1, . . . ,K − 1 and select α = 1−γ

η = 0.2 for ARNPG-EPD. As for CRPO with exact gradients,
we first fix the tolerance parameter as 0.01 and then choose the best learning rate 0.4 from the set
{0.1, 0.2, . . . , 0.9, 1.0}, which enjoys the smallest average optimality gap after 300 iterations. For
sample-based CRPO, we select the best learning rate 1.0 from the set {0.1, 0.5, 1, 2, 5}, which leads
to the largest reward value after 300 iterations.

A.2 Acrobot-v1

To demonstrate the performance of the ARNPG-EPD algorithm on more complex tasks with a large
state space and multiple constraints, we conduct experiments on the Acrobot-v1 from OpenAI Gym
[9]. The acrobot is a planar two-link robotic arm with two joints and two links, where the joint
between the links is actuated.

We follow the same experimental setup as in [31], where the task is to swing the end of the lower link
to a given height, and there are two costs (objectives) corresponding to (i) the upper link swinging in
a prohibited direction; (ii) the lower link swinging in a prohibited direction w.r.t. the upper link. The
upper bound constraints on the cost values are (50, 50). An actor-critic framework is adopted, where
the actor is defined by a neural softmax policy with two hidden layers of widths (128, 128), and there
are 3 critics (one for each of the value functions) also parameterized by neural networks with two
hidden layers of widths (128, 128).

Figure 3 provides the performances of the last-iterates generated by the algorithms, averaged
over 10 random seeds, where the step size of the dual update (i.e., 0.0005) is tuned from the
set {0.00001, 0.0005, 0.001, 0.005, 0.01, 0.05}, and the tolerance parameter 0.5 of CRPO follows
from [31]. For ARNPG-EPD in Figure 3, we choose tk = 2,∀k = 0, 1, . . . ,K − 1 and α = 1. To
provide more information about variance, Figure 4 includes shaded error bars (± standard deviation).

Figure 4: Last-iterate performance for sample-based ARNPG-EPD, NPG-PD, CRPO averaged over
10 random seeds with shaded error bars. The black dashed lines represent given thresholds.

To illustrate the impact of the number of InnerLoop iterations, we fix α = 1 and take tk = 1, 2, 5, 10
respectively, as shown in Figure 5. We omit the shaded error bars as in Figure 4 for better visualization
and comparison of the mean performance of ARNPG-EPD algorithms under different tks. Figure 5
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demonstrates the trade-off induced by the selection of the hyperparameter tk. When tk is small, e.g.,
tk = 1, ARNPG-EPD cannot follow the underlying EPD algorithm (for convex optimization) closely.
The curve is not as stable as the others, but is more adaptive (becomes feasible first) because it does
not spend too much time on the KL-regularized MDP with reward r̃k in InnerLoop. When tk is large,
e.g., tk = 5 or tk = 10, the curves are more stable. However, the convergence of the algorithms is
relatively slow (become feasible slowly), since larger tk may waste computation on the regularized
objective Ṽ πθ

k,α(ρ) instead of focusing on the true optimization program.

In Acrobot-v1, we find tk = 2 to be the best choice empirically. Note that at iteration 300, returns of
ARNPG-EPD algorithms are all feasible, and even the lowest mean reward value of 181.8 (ARNPG-
EPD with tk = 1), is higher than the mean reward values of NPG-PD and TRPO in Figure 3.

Figure 5: Last-iterate performance for sample-based ARNPG-EPD with different inner loops (tk =
1, 2, 5, 10) averaged over 10 random seeds versus the total number of iterations.

A.3 Hopper-v3

We now demonstrate the performance of our approach on Hopper-v3, a more complex robotics control
task, with a constraint of moving speed 82.748 [38]. Hopper-v3 is implemented via the OpenAI Gym
based on the MuJoCo physical simulators [25], where both the state space and the action space are
continuous. We choose the current SOTA of this task, namely the FOCOPS (First Order Constrained
Optimization in Policy Space) algorithm [38], for a comparison with our approach. Since the policy
update of the FOCOPS algorithm is based on the PPO (Proximal Policy Optimization) algorithm, for
a fair comparison, we also revise our algorithm to a corresponding version called “ARPPO-EPD",
where the NPG update is replaced by PPO. It is also an illustration that the anchor-changing idea
is readily to be combined with other policy gradient methods. We compare performance with other
baselines NPG-PD [11] and CRPO [31].

Figure 6 reports performance averaged over 5 random seeds and illustrates that our ARPPO-EPD
algorithms achieve higher reward values compared with other methods, while achieving similar
constraint values. (Note that 1, 2, 5 in parentheses of ARPPO-EPD represent the number of inner
loops tk = 1, 2, 5.)

Figure 6: Last-iterate performance for sample-based ARPPO-EPD with different inner loops (tk =
1, 2, 5), FOCOPS, NPG-PD, and CRPO on Hopper-v3 with a constraint on the moving speed 82.748.
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B Experimental results for multi-objective MDP with scalarization

In this section, we numerically study the performance of the ARNPG-guided algorithms under the
smooth concave scalarization and max-min trade-off, respectively. We first consider the tabular
setting for exact-gradient and sample-based scenarios with softmax policy parameterization, and then
study the Acrobot-v1 scenario with neural softmax policy parameterization.

B.1 Tabular multi-objective MDP with exact gradients

For the tabular setting, we follow the same MDP construction with m = 2 objectives as in Section
A.1. The goal of considering exact gradients is to empirically study the theoretically established
O(1/K) convergences of the proposed ARNPG-IMD and ARNPG-OMDA algorithms suggested
by Theorems 1 and 3. We will show that the proposed algorithms maintain O(1/K) convergence in
terms of the macro steps K, for different numbers of micro steps tk.

B.1.1 Smooth concave scalarization

An example of interest is the sum-logarithmic function, which for two objectives is

F (V π
r1(ρ), V

π
r2(ρ)) = log(V π

r1(ρ) + δ) + log(V π
r2(ρ) + δ), (16)

where δ > 0 is a small constant. This can be viewed as an approximate formulation of the proportional
fairness criteria. If V is convex and with v∗ denoting the optimal value vector achieving the largest
F (v), it can be verified by the first-order optimality condition that v1−v∗

1

v∗
1+δ +

v2−v∗
2

v∗
2+δ ≤ 0, ∀v1:2 ∈ V .

As mentioned in Section 3, when tk = 1, the update in (5) reduces to an NPG update on the
unregularized value function V πθ

r̃k
(ρ). In other words, when tk = 1, α has no impact on the ARNPG-

IMD algorithm.

Theorem 1 suggests a lower bound on the number of micro steps tk. As with many existing
algorithms in the optimization literature, the theoretically chosen hyperparameters are usually too
conservative, and the convergence rate is maintained over a wider range of hyperparameters. We
set up the experiments as follows. We first fix tk = 1 and conduct experiments with learning rates
η ∈ {0.5, 1.0, . . . , 9.5, 10}. The hyperparameter achieving the smallest average optimality gap is
η = 4.5. We then fix the learning rate η = 4.5, choose the regularization parameter α = 0.01, and
show the convergence of ARNPG-IMD with tk ∈ {1, 2, 5, 10} in Figure 7. Though the learning rate
η = 4.5 and the regularization parameter α are not chosen to favor tk > 1, it can still be observed
that larger tk leads to faster convergence in terms of the number of macro steps (K).

(a) (b)

Figure 7: The average optimality gap versus the number of macro steps, for ARNPG-IMD with
different number of inner loop iterations (tk = 1, 2, 5, 10) on a randomly generated sum-logarithmic
two-objective MDP.

Figure 7(a) illustrates that all ARNPG-IMD algorithms with different tks enjoy fast convergence
rates and small optimality gaps. Additionally, the log-log plot in Figure 7(b) indicates a slope of
approximately -1, which confirms the O(1/K) convergence of ARNPG-IMD.
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B.1.2 Max-min trade-off

Another multi-objective MDP of interest is max-min fairness, corresponding to a robust scalarization
function, which for the case of two objectives is

F (V π
1 (ρ), V π

2 (ρ)) = min
i

V π
i (ρ) = min

λ∈∆([2])
⟨V π

1:2(ρ), λ⟩. (17)

The function F is concave but not always differentiable. We can employ a subgradient ascent-based
NPG algorithm, which calculates the subgradient of F and performs one-step of NPG for the induced
reward function. We call such an algorithm multi-objective NPG (MO-NPG).

(a) (b)

Figure 8: The average optimality gap with respect to the number of macro steps, for MO-NPG and
ARNPG-OMDA with different number of inner loop iterations (tk = 1, 2, 5, 10) on a randomly
generated max-min two-objective MDP (17).

We conduct the experiments under learning rates {0.8, 0.81, . . . , 1.18, 1.19} for MO-NPG and choose
the best hyperparameter, 0.93. Similarly, we do a grid-search for ARNPG-OMDA (tk = 1) over
α ∈ {1, 2, 5}, η ∈ {0.06, 0.08, 1.0}, η′ ∈ {0.5, 1.0, 1.5, 2.0} and select the best hyperparameters,
α = 1, η = 0.08, and η′ = 2. Then, we fix α, η, η′ to explore the impact of tk > 1. Figure 8 shows
that the ARNPG-OMDA algorithms converge faster than MO-NPG due to the better underlying
optimization algorithm OMDA compared to the subgradient ascent. Moreover, larger tk gives faster
convergence in terms of macro steps K, even though the parameters are not specifically chosen to
favor tk > 1.

Recall that under softmax policy with exact gradients, Theorem 3 guarantees O(1/K) convergence of
the average optimality gap. Due to the underlining subgradient ascent of MO-NPG, the convergence
rate can only be guaranteed by O(1/

√
K). Figure 8(a) shows that the optimality gap of the ARNPG-

OMDA algorithms converges faster than that of the MO-NPG algorithm. The corresponding log-log
plots in Figure 8(b) shows that the slopes are around −1 for the ARNPG-OMDA algorithms, which
demonstrates that the optimality gap of ARNPG-OMDA converges at an O(1/K) rate.

B.2 Sample-based tabular multi-objective MDP

We next consider the same tabular MDP with m = 2 objectives, but with the gradients estimated by
samples from a generative model that can generate independent trajectories starting from any state
and action pair.

B.2.1 Smooth concave scalarization

We conduct the experiments with learning rates {0.5, 1.0, . . . , 4.0, 4.5} for sample-based ARNPG-
IMD with tk = 1 and choose its best hyperparameter 1.5. To discover the impact of the number
of micro steps tk, we fix the learning rate η = 1.5 and the regularization parameter α = 0.005.
Figure 9(a) demonstrates that tk > 1 is helpful to achieve a faster convergence (i.e., during the first
50 iterations, larger tk leads to a higher scalarized objective), though after 250 iterations they all
converge to the same optimal value.
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(a) (b)

Figure 9: The last-iterate objective value versus the total number of iterations, for sample-based
ARNPG-IMD, ARNPG-OMDA, MO-NPG on a randomly generated two-objective MOMDP with (a)
sum-logarithmic (16) and (b) max-min trade-off (17).

B.2.2 Max-min trade-off

We conduct the experiments with learning rates {0.1, 0.2, . . . , 1.0} for sample-based MO-NPG
and choose the best hyperparameter 0.5. We also conduct a grid-search over α ∈ {0.05, 0.1, 0.2},
η ∈ {0.1, 0.2, 0.5}, and η′ ∈ {0.1, 0.2, 0.5} for sample-based ARNPG-OMDA with tk = 1 and
select the best hyperparameter α = 0.1, η = 0.5, and η′ = 0.2. Fixing such α, η, η′, we explore the
impact of tk > 1.

Figure 9(b) shows that compared to the MO-NPG algorithm, ARNPG-OMDA algorithms converge
faster (i.e., achieve larger scalarized objectives during the first 200 iterations), and that all algorithms
approximately find the optimal value after 250 iterations.

B.3 Acrobot-v1

We examine two reward value functions for MOMDP scenarios where the agent is rewarded 1 when it
swings the end of the lower link to the given height ranges, i.e., greater than 0.5 and 0-0.1, respectively.
The goal is to maximize the objective according to the given criteria. (In this section, we focus on
sum-logarithmic scalarization.) To show the impact of tk in the ARNPG framework, we fix α = 1
and choose InnerLoop iterations tk = 1, 2, 5, 10 respectively.

Figure 10: Last-iterate performance for sample-based ARNPG-IMD with different inner loops
(tk = 1, 2, 5, 10) averaged over 10 random seeds.

It can be seen from Figure 10 that the scalarized objectives are indistinguishable because the gradient
of logarithmic functions is small when the input values become large. With respect to the two reward
objectives (reward values I and reward values II), we can observe some trade-offs in that tk = 5
converges faster than other tks.

C Supporting lemmas

Before delving into detailed proofs for the proposition and theorems, we introduce some supporting
lemmas.
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Recall that the Bregman divergence generated by a convex differentiable function h(·) is

Bh(x, y) := h(x)− h(y)− ⟨∇h(y), x− y⟩.

The fundamental inequality (2) associated with mirror ascent is formally presented in the following
lemma.
Lemma 1. Let Bh : X × X → R be a Bregman divergence function, X ⊂ Rn be a compact convex
set, and g ∈ Rn. Suppose x′ = argmaxy∈X {⟨g, y⟩ − αBh(y||x)} for a fixed x ∈ X and α > 0.
Then for any y ∈ X ,

⟨g, x′⟩ − αBh(x
′||x) ≥ ⟨g, y⟩ − αBh(y||x) + αBh(y||x′).

Inequalities of the same form have appeared in many previous works, e.g., Lemma 3.4 in [16] and a
case of X being a probability simplex (Lemma 2.1 in [28]). For completeness, we provide a proof of
Lemma 1.

Proof of Lemma 1. Since h is proper and convex, x′ := argmaxy∈X {⟨g, y⟩ − αBh(y||x)} exists
and satisfies the first order condition

⟨g − α∇h(x′) + α∇h(x), x′ − y⟩ = ⟨g − α∇x′Bh(x
′||x), x′ − y⟩ ≥ 0, ∀y ∈ X ,

which implies ⟨g, x′ − y⟩ ≥ α⟨∇h(x′)−∇h(x), x′ − y⟩. It can be verified that

⟨∇h(x′)−∇h(x), x′ − y⟩ = Bh(x
′||x)−Bh(y||x) +Bh(y||x′).

We can conclude the proof by substituting the equation into the previous inequality.

The following lemma draws a connection between the ℓ1 difference of state-action visitation distribu-
tions and averaged KL-divergence.

Lemma 2. Let dπ
′

ρ , dπρ be two discounted state-action visitation distributions corresponding to
policies π′ and π. Then

∥dπ
′

ρ − dπρ∥1 ≤
γ
√
2

1− γ

√
min

(
Ddπ′

ρ
(π′||π), Ddπ′

ρ
(π||π′), Ddπ

ρ
(π′||π), Ddπ

ρ
(π||π′)

)
.

Proof. Let dπρ,h(·, ·) be the state-action visitation distribution at step h, which implies 1
1−γ d

π
ρ (·, ·) =∑

h≥0 γ
hdπρ,h(·, ·). Denote π̃h as the policy that implements policy π for the first h steps and

then commits to policy π′ thereafter. Denote its corresponding discounted state-action visitation
distribution by dπ̃h

ρ . It follows that

1

1− γ
∥dπ

′

ρ − dπρ∥1
(a)
=

1

1− γ

∥∥∥∥∥
∞∑
h=0

(dπ̃h
ρ − dπ̃h+1

ρ )

∥∥∥∥∥
1

(b)

≤ 1

1− γ

∞∑
h=0

∥dπ̃h
ρ − dπ̃h+1

ρ ∥1

=

∞∑
h=0

∥∥∥∥∥
∞∑
t=0

γt(dπ̃h
ρ,t − d

π̃h+1

ρ,t )

∥∥∥∥∥
1

=

∞∑
h=0

∥∥∥∥∥
∞∑

t=h+1

γt(dπ̃h
ρ,t − d

π̃h+1

ρ,t )

∥∥∥∥∥
1

(c)

≤
∞∑
h=0

∞∑
t=h+1

γt∥dπ̃h
ρ,t − d

π̃h+1

ρ,t ∥1
(d)

≤
∞∑
h=0

∞∑
t=h+1

γt∥dπ̃h

ρ,h − d
π̃h+1

ρ,h ∥1

=
γ

1− γ

∞∑
h=0

γhEs∼dπ
ρ,h
∥π(·|s)− π′(·|s)∥1

(e)

≤ γ

1− γ

√√√√( ∞∑
h=0

γh

)( ∞∑
h=0

γhEs∼dπ
ρ,h
∥π(·|s)− π′(·|s)∥21

)

=
γ

(1− γ)2

√
Es∼dπ

ρ
∥π(·|s)− π′(·|s)∥21 .

Above, (a) holds by telescoping, (b) and (c) hold due to the triangle inequality of ℓ1-norm and the
definition of π̃h, (d) hold owing to the data processing inequality for f -divergence ∥ · ∥1, and (e)
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holds due to the Cauchy-Schwarz inequality. Due to the symmetry between π and π′, it can be
similarly derived

∥dπ
′

ρ − dπρ∥1 ≤
γ

1− γ

√
Es∼dπ′

ρ
∥π(·|s)− π′(·|s)∥21 .

We can conclude the proof by further applying Pinsker’s inequality.

An application of Lemma 2 gives an upper bound on the difference between value function vectors as
follows.

Lemma 3. For any k = 0, 1, . . . ,K − 1,

1

2
∥V πk

1:m(ρ)− V
πk+1

1:m (ρ)∥2∞ ≤
γ2

(1− γ)4
D

d
πk+1
ρ

(πk+1||πk).

Proof. For any i = 1, 2, . . . ,m, we have

∣∣V πk
i (ρ)− V

πk+1

i (ρ)
∣∣ = 1

1− γ

∣∣∣∣∣∣
∑

(s,a)∈S×A

ri(s, a)(d
πk
ρ (s, a)− dπk+1

ρ (s, a))

∣∣∣∣∣∣
≤ 1

1− γ
∥dπk

ρ − dπk+1
ρ ∥1 ≤

γ
√
2

(1− γ)2

√
D

d
πk+1
ρ

(πk+1||πk),

where the last inequality is due to Lemma 2.

D Proof in Section 3

This section presents the formal proof of Proposition 1. We begin by presenting some properties of
InnerLoop. We shall omit θ in πθ, since the policies are under softmax parameterization.

D.1 Linear convergence of InnerLoop

InnerLoop(r̃k, πk, α, η, tk) approximately solves the following KL-regularized MDP via natural
policy gradient. Note that

Ṽ π
k,α(s) = E

∑
t≥0

γt (r̃k(st, at) + α log πk(at|st)− α log π(at|st)) |s0 = s, π

 , (18)

which can be viewed as an entropy regularized value with reward function r̃k(s, a) + α log πk(a|s).
The entropy-regularized state-action value function is then defined as [10]

Q̃π
k,α(s, a) = r̃k(s, a) + α log πk(a|s) + γEs′∼P (·|s,a)[Ṽ

π
k,α(s

′)]. (19)

The convergence of NPG in entropy-regularized MDP has been well-studied in [10], with the key
results summarized in the following lemma.

Lemma 4 (Linear convergence of entropy-regularized NPG, Theorem 1 in [10]). For any learning
rate 0 < η ≤ (1− γ)/α and any k = 0, 1, . . . ,K − 1, the entropy-regularized NPG updates satisfy∥∥∥∥Q̃π∗

k

k,α − Q̃
π
(t+1)
k

k,α

∥∥∥∥
∞
≤ Ckγ(1− ηα)t,∥∥∥log π∗

k − log π
(t+1)
k

∥∥∥
∞
≤ 2Ckα

−1(1− ηα)t,∥∥∥∥Ṽ π∗
k

k,α − Ṽ
π
(t+1)
k

k,α

∥∥∥∥
∞
≤ 3Ck(1− ηα)t,

for all t ≥ 0, where Ck satisfies Ck ≥
∥∥∥∥Q̃π∗

k

k,α − Q̃
π
(0)
k

k,α

∥∥∥∥
∞

+ 2α
(
1− ηα

1−γ

)∥∥∥log π∗
k − log π

(0)
k

∥∥∥
∞

.

20



Remark. There is a typographical mistake in the inequality “ ∥Ṽ π∗
k

k,α− Ṽ
π
(t+1)
k

k,α ∥∞ ≤ 3γCk(1− ηα)t ”
in [10], and it has been corrected here. It is not hard to verify that the proofs of the inequalities in
Lemma 4 [10] hold without the assumption that 0 ≤ r(s, a) ≤ 1.

Denote Ṽ π
k (s) := V π

r̃k
(s). For the regularized MDP, its optimal policy is uniformly optimal, i.e., for

any state s ∈ S,

1

1− γ
∥r̃k∥∞ ≥ Ṽ

π∗
k

k (s) ≥ Ṽ
π∗
k

k (s)− α

1− γ
D

d
π∗
k

s

(π∗
k||πk) = Ṽ

π∗
k

k,α(s) ≥ Ṽ πk

k,α(s) = Ṽ πk

k (s). (20)

It follows that ∀(s, a) ∈ S ×A,∣∣∣Q̃π∗
k

k,α(s, a)− Q̃πk

k,α(s, a)
∣∣∣ = γ

∑
s′∈S

P (s′|s, a)
∣∣∣Ṽ π∗

k

k,α(s
′)− Ṽ πk

k,α(s
′)
∣∣∣ (a)≤ γ∥r̃k∥∞

1− γ
,

where (a) holds due to the relation in (20). It implies ∥Q̃π∗
k

k,α−Q̃
πk

k,α∥∞ ≤
γ∥r̃k∥∞
1−γ . Since 1− ηα

1−γ = 0

when η = 1−γ
α , we can apply results in Lemma 4 with Ck = γ∥r̃k∥∞

1−γ , which gives

−Ṽ πk+1

k (ρ) +
α

1− γ
D

d
πk+1
ρ

(πk+1||πk) ≤ −Ṽ
π∗
k

k (ρ) +
α

1− γ
D

d
π∗
k

ρ

(π∗
k||πk) + 3Ck(1− ηα)tk .

(21)

D.2 Hidden convexity in state-action visitation distribution

Noting that the class of softmax policies is almost complete in the sense that its closure contains all
stationary policies, we will omit the parameter θ in πθ. The set of achievable state-action visitations is
D = {d ∈ ∆(S × A) : γ

∑
s′,a′ P (s|s′, a′)d(s′, a′) + (1− γ)ρ(s) =

∑
a d(s, a), ∀s ∈ S}, which

is a convex compact set.

For any policies π, π′, define a pseudo KL-divergence between dπρ , d
π′

ρ ∈ Dρ by

D̃(dπρ ||dπ
′

ρ ) :=
∑

(s,a)∈S×A

dπρ (s, a) log
dπρ (s, a)/d

π
ρ (s)

dπ′
ρ (s, a)/dπ′

ρ (s)
. (22)

It is not hard to verify that

Ddπ
ρ
(π||π′) =

∑
s∈S

dπρ (s)
∑
a∈A

π(a|s) log π(a|s)
π′(a|s)

=
∑
s∈S

dπρ (s)
∑
a∈A

dπρ (s, a)

dπρ (s)
log

dπρ (s, a)/d
π
ρ (s)

dπ′
ρ (s, a)/dπ′

ρ (s)

=
∑

(s,a)∈S×A

dπρ (s, a) log
dπρ (s, a)/d

π
ρ (s)

dπ′
ρ (s, a)/dπ′

ρ (s)
= D̃(dπρ ||dπ

′

ρ ). (23)

This equation bridges the state-action visitation space and the policy space. The following lemma
shows that the pseudo KL-divergence defined in (22) is actually a Bregman divergence between
state-action visitation distributions.

Lemma 5. The pseudo KL-divergence D̃(dπρ ||dπ
′

ρ ) defined in (22) is a Bregman divergence
Bh(d

π
ρ ||dπ

′

ρ ) generated by the convex function

h(dπρ ) =
∑

(s,a)∈S×A

dπρ (s, a) log d
π
ρ (s, a)−

∑
s∈S

dπρ (s) log d
π
ρ (s).

Proof of Lemma 5. It can be verified by elementary algebera that

D̃(dπρ ||dπ
′

ρ ) = h(dπρ )− h(dπ
′

ρ )− ⟨∇h(dπ
′

ρ ), dπρ − dπ
′

ρ ⟩,

where ∇(s,a)h(d
π′

ρ ) = log dπ
′

ρ (s, a) − log dπ
′

ρ (s). Hence we only need to show that h(dπρ ) is
convex. The Hessian matrix of function h(dπρ ) can be calculated as diag

(
H1, H2, . . . ,H|S|

)
, where
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Hs =
1

dπ
ρ (s)

(
diag(dπρ (s)/d

π
ρ (s, ·))− 11T

)
is an |A| × |A| matrix corresponding to state s. For each

Hs, we know for any x1:|A| ∈ R|A|,

xTHsx =
1

dπρ (s)

∑
a∈A

dπρ (s)

dπρ (s, a)
x2
a −

(∑
a∈A

xa

)2


=
1

dπρ (s)

(∑
a∈A

dπρ (s, a)

dπρ (s)

)(∑
a∈A

dπρ (s)

dπρ (s, a)
x2
a

)
−

(∑
a∈A

xa

)2


(a)

≥ 1

dπρ (s)

(∑
a∈A
|xa|

)2

−

(∑
a∈A

xa

)2
 ≥ 0,

where (a) is due to the Cauchy-Schwarz inequality. Thus the Hessian matrix of h(dπρ ) is positive
semi-definite, which implies that h(dπρ ) is convex.

InnerLoop of the ARNPG framework is solving a KL-regularized MDP with value as in (4),

Ṽ πθ

k,α(ρ) = V πθ

r̃k
(ρ)− α

Dd
πθ
ρ
(πθ||πθk)

1− γ
.

This optimization can be equivalently represented by viewing state-action visitation as the decision
variables:

max
π

V π
r̃k
(ρ)− α

Ddπ
ρ
(π||πk)

1− γ
⇔ max

d∈D
⟨r̃k, d⟩ − αD̃(d||dπk

ρ ). (24)

Here ⇔ means that they are equivalent in the sense that the optimal policy solution π∗
k for the

former optimization and the optimal visitation solution d∗k for the latter satisfy d∗k = d
π∗
k

ρ . Note that
Ṽ π
r̃k
(ρ) = 1

1−γ ⟨r̃k, d
π
ρ ⟩ is a linear function of dπρ , D̃(·||·) is a Bregman divergence, and D is compact.

We can apply Lemma 1 on the latter optimization and have

⟨r̃k, d∗k⟩ − αD̃(d∗k||dπk
ρ ) ≥ ⟨r̃k, d⟩ − αD̃(d||dπk

ρ ) + αD̃(d||d∗k), ∀d ∈ D. (25)

Since the policy class and the state-action visitation class are both complete, the inequality above
implies that

V
π∗
k

r̃k
(ρ)− α

D
d
π∗
k

ρ

(π∗
k||πk)

1− γ
≥ V π

r̃k
(ρ)− α

Ddπ
ρ
(π||πk)−Ddπ

ρ
(π||π∗

k)

1− γ
, ∀π. (26)

InnerLoop does not seek to find the precise solution π∗
k but approximates it with πk+1 = π

(tk)
k via tk

micro-step iterations. Proposition 1 provides a quantitative bound regarding the approximation error
of πk+1.

D.3 Proof of Proposition 1

Proof of Proposition 1. Combining (21) and (26) gives

−Ṽ πk+1

k (ρ) + α
D

d
πk+1
ρ

(πk+1||πk)

1− γ
≤ −Ṽ π

k (ρ) + α
Ddπ

ρ
(π||πk)−Ddπ

ρ
(π||πk+1)

1− γ

+ 3Ck(1− ηα)tk + α
Ddπ

ρ
(π||πk+1)−Ddπ

ρ
(π||π∗

k)

1− γ
.

Note that

Ddπ
ρ
(π||πk+1)−Ddπ

ρ
(π||π∗

k) =

〈
dπρ (·, ·), log

π∗
k(·, ·)

πk+1(·, ·)

〉
≤∥dπρ∥1∥ log π∗

k − log πk+1∥∞ = ∥ log π∗
k − log πk+1∥∞ ≤ 2Ckα

−1(1− ηα)tk ,
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where the first inequality follows from Cauchy-Schwartz, and the last inequality is due to Lemma 4.
We thus have

−Ṽ πk+1

k (ρ) + α
D

d
πk+1
ρ

(πk+1||πk)

1− γ
≤ −Ṽ π

k (ρ) + α
Ddπ

ρ
(π||πk)−Ddπ

ρ
(π||πk+1)

1− γ
+

5Ck(1− ηα)tk

1− γ
.

We then conclude the proposition, since 5Ck(1−ηα)t

1−γ ≤ ϵk can be guaranteed by tk ≥
1

1−γ log( 5γ∥r̃k∥∞
(1−γ)2ϵk

).

E Proof in Section 4

E.1 ARNPG-IMD for smooth scalarization

Proof of Theorem 1. By |r̃k(s, a)| = |⟨G̃k, r1:m(s, a)⟩| ≤ ∥G̃k∥1∥r1:m(s, a)∥∞ ≤ L, we know
∥r̃k∥∞ ≤ L. Recall α ≥ β

(1−γ)3 . Taking ϵk = α log(|A|)
(1−γ)K , we choose tk = ⌈ 1

1−γ log( 5LK
β log(|A|) ) + 1⌉.

Thus by Proposition 1, for any policy π, we have the fundamental inequality

V
πk+1

r̃k
(ρ)− α

D
d
πk+1
ρ

(πk+1||πk)

1− γ
≥ V π

r̃k
(ρ)− α

Ddπ
ρ
(π||πk)−Ddπ

ρ
(π||πk+1)

1− γ
− ϵk. (27)

For the RHS of (27), by the concavity of F , we have

V π
r̃k
(ρ)− V πk

r̃k
(ρ) = ⟨G̃k, V

π
1:m(ρ)− V πk

1:m(ρ)⟩ ≥ F (V π
1:m(ρ))− F (V πk

1:m(ρ)).

For the LHS of (27), by the fact that F is β-smooth, we know

V
πk+1

r̃k
(ρ)− V πk

r̃k
(ρ) = ⟨G̃k, V

πk+1

1:m (ρ)− V πk
1:m(ρ)⟩

≤ F (V
πk+1

1:m (ρ))− F (V πk
1:m(ρ)) +

β

2

∥∥V πk
1:m(ρ)− V

πk+1

1:m (ρ)
∥∥2
∞ .

From Lemma 3 and recalling α ≥ β
(1−γ)3 ,

β

2
∥V πk

1:m(ρ)− V
πk+1

1:m (ρ)∥2∞ ≤
γ2β

(1− γ)4
D

d
πk+1
ρ

(πk+1||πk) ≤ α
D

d
πk+1
ρ

(πk+1||πk)

1− γ
.

Substituting these three inequalities into the fundamental inequality (27), telescoping from k = 0 to
K − 1, and selecting π = π∗, we can conclude that

1

K

K∑
k=1

F (V πk
1:m(ρ)) ≥ F (V π∗

1:m(ρ))−
αDdπ∗

ρ
(π∗||π0)

(1− γ)K
− 1

K

K−1∑
k=0

ϵk ≥ F (V π∗

1:m(ρ))− 2α log(|A|)
(1− γ)K

.

Proof of Corollary 1. Note that T =
∑K−1

k=0 tk = Θ( K
1−γ log(K)). It implies K

1−γ = Θ(T/ log(T )).
Substituting this into Theorem 1 concludes Corollary 1.

E.2 ARNPG-EPD for CMDP

We first introduce the properties of the Lagrange multiplier updates (10) in the following lemma.
Lemma 6 (Properties of Lagrange multiplier updates). Based on the update of the Lagrange multipli-
ers λk, for any i ∈ [2 : m] we have:

1. At any macro step k, λk,i ≥ 0.

2. At any macro step k, λk,i + η′(bi − V πk
i (ρ)) ≥ 0.

3. At macro step 0, |λ0,i| ≤ η′|V π0
i (ρ)−bi|; at any macro step k > 0, |λk,i| ≥ η′|V πk

i (ρ)−bi|.

Remark. The first property guarantees the feasibility of the Lagrange multipliers; the second property
ensures that the Lagrangian in the inner loop can indeed maximize the constraint rewards; and the
third property is a key supporting step for the analysis of the constraint violation.
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Proof of Lemma 6. Taking any i ∈ [2 : m], we prove each property respectively.

1. Note that λ0,i = max{0, η′(V π0
i (ρ) − bi)} ≥ 0 by initialization. Suppose λk,i ≥ 0. The

update is λk+1,i = max
{
η′(V

πk+1

i (ρ)− bi), λk,i + η′(bi − V
πk+1

i (ρ))
}

.
If bi − V

πk+1

i (ρ) < 0, then λk+1,i ≥ 0 by the first component in the max{·, ·}.
If bi − V

πk+1

i (ρ) ≥ 0, then λk+1,i ≥ 0 by the second component in the max{·, ·}.
Thus, λk+1,i ≥ 0, and property can be proved by induction.

2. For k = 0, λ0,i + η′(bi − V π0
i (ρ)) = max{η′(bi − V π0

i (ρ)), 0} ≥ 0.
The update is λk+1,i = max

{
η′(V

πk+1

i (ρ)− bi), λk,i + η′(bi − V
πk+1

i (ρ))
}

. Thus for
k ≥ 0, λk+1,i + η′(bi − V

πk+1

i (ρ)) = max
{
0, λk,i + 2η′(bi − V

πk+1

i (ρ))
}
≥ 0.

3. For k = 0, the initialization is λ0,i = max{0, η′(V π0
i (ρ)− bi)}.

If V π0
i (ρ)− bi ≤ 0, then λ0,i = 0 and |λ0,i| ≤ η′|V π0

i (ρ)− bi|.
If V π0

i (ρ)− bi > 0, then λ0,i = η′(V π0
i (ρ)− bi) and |λ0,i| = η′|V π0

i (ρ)− bi|.
For k ≥ 0, the update is λk+1,i = max

{
η′(V

πk+1

i (ρ)− bi), λk,i + η′(bi − V
πk+1

i (ρ))
}

.
If V πk+1

i (ρ) − bi ≤ 0, then λk+1,i = λk,i + η′(bi − V
πk+1

i (ρ)), and |λk+1,i| = λk,i +
η′|V πk+1

i (ρ)− bi| ≥ η′|V πk+1

i (ρ)− bi| by the first property that λk,i ≥ 0.

If V
πk+1

i (ρ) − bi > 0, then λk+1,i ≥ η′(V
πk+1

i (ρ) − bi) > 0. Thus |λk+1,i| ≥
η′|V πk+1

i (ρ)− bi|.

We now analyze the optimality gap and constraint violation separately.

E.2.1 Optimality gap of ARNPG-EPD

Recall the definition of the reward in the ascent direction

r̃k(s, a) = r1(s, a) +

m∑
i=2

[λk,i + η′(bi − V πk
i (ρ))]ri(s, a). (28)

Since ri(s, a) ≤ 1, we can verify that |r̃k(s, a)| ≤ 1 + η′(m−1)
1−γ +

∑m
i=2 λk,i =: Lk, which implies

∥r̃k∥∞ ≤ Lk. Taking ϵk = α log(|A|)
(1−γ)K , we choose tk = ⌈ 1

1−γ log( 5LkK
2η′m log(|A|) ) + 1⌉.

Since λk,i + η′(bi − V πk
i (ρ)) ≥ 0 by the second property in Lemma 6, and V π∗

i (ρ) ≥ bi for any
i ∈ [2 : m], taking π = π∗ in Proposition 1 gives

V
πk+1

1 (ρ) +

m∑
i=2

[λk,i + η′(bi − V πk
i (ρ))] · [V πk+1

i (ρ)− bi]− α
D

d
πk+1
ρ

(πk+1||πk)

1− γ

≥V π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||πk)−Ddπ∗

ρ
(π∗||πk+1)

1− γ
− ϵk.

(29)

Denote δk,i := bi − V πk
i (ρ) as the constraint violation for the i-th constraint at macro step k. We

thus have

[λk,i + η′(bi − V πk
i (ρ))] · (V πk+1

i (ρ)− bi) = −λk,iδk+1,i − η′δk,iδk+1,i.

We can then bound this two terms respectively.

• λk,iδk+1,i: Note that λk+1,i = max{−η′δk+1,i, λk,i + η′δk+1,i}.
If λk+1,i = −η′δk+1,i, then

1

2
λ2
k+1,i −

1

2
λ2
k,i − η′2δ2k+1,i = −

1

2
λ2
k,i −

η′2

2
δ2k+1,i ≤ η′λk,iδk+1,i,

which implies −λk,iδk+1,i ≤
λ2
k,i−λ2

k+1,i

2η′ + η′δ2k+1,i.
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If λk+1,i = λk,i + η′δk+1,i, then

η′λk,iδk+1,i =
1

2
(λk,i + η′δk+1,i)

2 − 1

2
λ2
k,i −

η′2

2
δ2k+1,i ≥

1

2
λ2
k+1,i −

1

2
λ2
k,i − η′2δ2k+1,i,

which also implies −λk,iδk+1,i ≤
λ2
k,i−λ2

k+1,i

2η′ + η′δ2k+1,i.

• η′δk,iδk+1,i: Note that η′δk,iδk+1,i =
η′

2 δ
2
k,i+

η′

2 δ
2
k+1,i−

η′

2 (δk,i− δk+1,i)
2, and η′

2 (δk,i−
δk+1,i)

2 ≤ γ2η′

(1−γ)4Dd
πk+1
ρ

(πk+1||πk). We thus have −η′δk,iδk+1,i ≤ −η′

2 (δ
2
k,i + δ2k+1,i) +

γ2η′

(1−γ)4Dd
πk+1
ρ

(πk+1||πk).

Substituting the above upper bounds into (29) leads to

V
πk+1

1 (ρ) +
∥λk∥22 − ∥λk+1∥22

2η′
+ η′
∥δk+1∥22 − ∥δk∥22

2
+

(
η′γ2m

(1− γ)4
− α

1− γ

)
D

d
πk+1
ρ

(πk+1||πk)

≥V π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||πk)−Ddπ∗

ρ
(π∗||πk+1)

1− γ
− ϵk.

Recall α ≥ 2η′m
(1−γ)3 , it then follows from telescoping that

K∑
k=1

V πk
1 (ρ) ≥ KV π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||π0)−Ddπ∗

ρ
(π∗||πK)

1− γ
−

K−1∑
k=0

ϵk

+ η′
∥δ0∥22 − ∥δK∥22

2
+
∥λK∥22 − ∥λ0∥22

2η′
(30)

= KV π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||π0)−Ddπ∗

ρ
(π∗||πK)

1− γ
−

K−1∑
k=0

ϵk

+

(
∥λK∥22
2η′

− η′
∥δK∥22

2

)
+ η′
∥δ0∥22 − ∥λ0∥22

2
− 1/η′ − η′

2
∥λ0∥22 (31)

(a)

≥ KV π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||π0)−Ddπ∗

ρ
(π∗||πK)

1− γ
−

K−1∑
k=0

ϵk −
1/η′ − η′

2
∥λ0∥22

(b)

≥ KV π∗

1 (ρ)− 3α log(|A|)
1− γ

. (32)

(a) holds due to the third property of Lemma 6, and (b) holds since π0 is the uniformly distributed pol-
icy. Thus Ddπ∗

ρ
(π∗||π0) =

∑
s∈S dπ

∗

ρ (s)
∑

a∈A π∗(a|s) log(|A|π∗(a|s)) ≤ log(|A|),
∑K−1

k=0 ϵk =

α log(|A|)
1−γ , and λ2

0,i = η′2[δ0,i]
2
+ implying 1/η′−η′

2 ∥λ0∥2 ≤ (η′−η′3)∥δ0∥2

2 ≤ η′

2(1−γ)2 ≤
α log(|A|)

1−γ .
We now obtain the bound (11), after dividing by K on both sides.

E.2.2 Violation gap of ARNPG-EPD

Recall that δk,i := bi − V πk
i (ρ) is the constraint violation for the i-th constraint at macro step k. We

aim to provide an upper bound on
∑K

k=1 δk,i to control the constraint violation.

For any i ∈ [2 : m], since λk,i = max{−η′δk,i, λk−1,i + η′δk,i} ≥ λk−1,i + η′δk,i, we have

K∑
k=1

δk,i ≤
λK,i − λ0,i

η′
≤ λK,i

η′
≤ ∥λK∥2

η′
≤ ∥λ

∗∥2 + ∥λK − λ∗∥2
η′

. (33)

To upper bound the constraint violation, it therefore suffices to bound the dual variables.
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Consider the Lagrangian with optimal dual variable L(π, λ∗) = V π
1 (ρ) +

∑m
i=2 λ

∗
i (V

π
i (ρ) − bi),

whose maximum value V π∗

1 (ρ) is achieved by the optimal policy π∗. We know

KV π∗

1 (ρ)
(a)
= KL(π∗, λ∗) ≥

K∑
k=1

L(πk, λ
∗) =

K∑
k=1

V πk
1 (ρ) +

m∑
i=2

λ∗
i

K∑
k=1

(V πk
i (ρ)− bi)

=

K∑
k=1

V πk
1 (ρ)−

m∑
i=2

λ∗
i

K∑
k=1

δk,i
(b)

≥
K∑

k=1

V πk
1 (ρ)− 1

η′

m∑
i=2

λ∗
i λK,i

(c)

≥KV π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||π0)−Ddπ∗

ρ
(π∗||πK)

1− γ
+
∥λK∥2

2η′
− η′∥δK∥2

2
−

λ∗
i

∑m
i=2 λK,i

η′
−∆K

≥KV π∗

1 (ρ)− α log(|A|)
1− γ

+
αDdπ∗

ρ
(π∗||πK)

1− γ
+
∥λK∥22
2η′

− η′∥δK∥22
2

−
λ∗
i

∑m
i=2 λK,i

η′
−∆K ,

where ∆K := 2α log(|A|)
1−γ ≥

∑K−1
k=0 ϵk + 1/η′−η′

2 ∥λ0∥22. Then (a) holds due to complementary
slackness λ∗

i (V
π∗

i (ρ) − bi) = 0, (b) follows from (33), and (c) follows from (31) and the third
property of Lemma 6. It then follows that

∥λK∥22
2η′

−
λ∗
i

∑m
i=2 λK,i

η′
≤ α log(|A|)

1− γ
−

αDdπ∗
ρ
(π∗||πK)

1− γ
+

η′∥δK∥22
2

+ ∆K . (34)

Denoting δ∗i := bi − V π∗

i (ρ) ≤ 0, according to Lemma 3, we have

αDdπ∗
ρ
(π∗||πK)

1− γ
≥ (1− γ)3α

2γ2
∥δK − δ∗∥2∞ ≥

(1− γ)3α

2γ2m
∥δK − δ∗∥22. (35)

We can also obtain

− (1− γ)3α

2γ2m
∥δK − δ∗∥22 +

η′

2
∥δK∥22 =

(
η′

2
− γ2mη′2

2[γ2mη′ − (1− γ)3α]

)
∥δ∗∥2 (36)

+
γ2mη′ − (1− γ)3α

2γ2m

∥∥∥∥δK − δ∗ +
γ2mη′

γ2mη′ − (1− γ)3α
δ∗
∥∥∥∥2 ,

by substituting a = (1−γ)3α
2γ2m , b = η′

2 , x = δK − δ∗, y = δ∗ into the binomial equation

−a∥x∥22 + b∥x+ y∥22 = (b− b2

b− a
)∥y∥22 + (b− a)∥x+

b

b− a
y∥22.

Recalling α ≥ 2η′m
(1−γ)3 , we can verify that γ2mη′−(1−γ)3α

2γ2m ≤ 0 and η′

2 −
γ2mη′2

2[γ2mη′−(1−γ)3α] ≤ η′. It
follows that

− (1− γ)3α

2γ2m
∥δK − δ∗∥22 +

η′

2
∥δK∥22 ≤ η′∥δ∗∥22. (37)

Substituting (35) and (37) into (34) gives

1

2η′
∥λK − λ∗∥22 =

1

2η′
∥λ∗∥2 + 1

2η′
∥λK∥2 −

1

η′

m∑
i=1

λ∗
i λK,i

≤ 1

2η′
∥λ∗∥22 +

α log(|A|)
1− γ

+∆K + η′∥δ∗∥2

≤ 1

2η′
∥λ∗∥22 +

3α log(|A|)
1− γ

+
η′(m− 1)

(1− γ)2

≤ 1

2η′
∥λ∗∥22 +

4α log(|A|)
1− γ

, (38)
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where the last inequality follows from η′(m−1)
(1−γ)2 ≤

α log(|A|)
1−γ . Using the above bound in (33), we get

K∑
k=1

δk,i ≤
∥λ∗∥2
η′

+
∥λK − λ∗∥2

η′
≤ ∥λ

∗∥2
η′

+

√
∥λ∗∥22
η′2

+
8α log(|A|)
(1− γ)η′

≤ 2
∥λ∗∥2
η′

+ 3

√
α log(|A|)
(1− γ)η′

, (39)

from which we the constraint violation upper bound given in (12) follows.

Proof of Theorem 2. We can conclude Theorem 2 from the above discussion on the optimality gap
and the constraint violation.

Proof of Corollary 2. Note that the number of iterations in the inner loop depends on the value of
dual variables, i.e., tk = ⌈ 1

1−γ log( 5LkK
2η′m log(|A|) ) + 1⌉ with Lk = 1 + η′(m−1)

1−γ +
∑m

i=2 λk,i. It is
easy to verify that

1

2η′
∥λk − λ∗∥22 ≤

1

2η′
∥λ∗∥22 +

4α log(|A|)
1− γ

in the same manner as the proof of inequality (38). It then follows that
m∑
i=2

λk,i = ∥λk∥1 ≤
√
m∥λk∥2 ≤

√
m(∥λk − λ∗∥+ ∥λ∗∥)

≤

√
2m∥λ∗∥22 +

8η′mα log(|A|)
1− γ

= O

(√
m∥λ∗∥2 +

m log(|A|)
(1− γ)2

)
.

We then have tk = Θ
(

1
1−γ log(K)

)
, and T =

∑K−1
k=0 tk = Θ

(
K

1−γ log(K)
)

. We conclude the

proof by K
1−γ = Θ(T/ log(T )).

E.3 ARNPG-OMDA for max-min trade-off

E.3.1 Smoothness property

Define X := Vρ ×∆([m]) ⊂ R2m. Define a norm Ψ on R2m by Ψ(v, λ) = ∥v∥∞ + ∥λ∥1. Its dual
norm is Ψ∗(v, λ) = ∥v∥1 + ∥λ∥∞.

Define Gv,−λ(X) := (∇vΦ(X),−∇λΦ(X)) for X ∈ X . Assume the function Φ is β-smooth
w.r.t. the Ψ-norm over its domain X , i.e.,

Ψ∗(Gv,−λ(X)−Gv,−λ(X ′)) ≤ βΨ(X −X ′), ∀X,X ′ ∈ X . (40)

Define Ek, which will be an auxiliary term for the convergence analysis, as follows:

Ek :=⟨G̃v
k − G̃v

k+1, V
πk+1

1:m (ρ)− V
π̃k+1

1:m (ρ)⟩+ α
D

d
π̃k+1
ρ

(π̃k+1||πk) +Ddπ
ρ
(πk+1||π̃k+1)

1− γ

+ ⟨G̃λ
k − G̃λ

k+1, λ̃k+1 − λk+1⟩+
D(λk+1||λ̃k+1) +D(λ̃k+1||λk)

η′
. (41)

Lemma 7 (Technical lemma for smoothness). When α ≥ 6β
(1−γ)4 and η′ ≤ 1

6β ,
∑K−1

k=0 Ek ≥ 0.

Proof of Lemma 7. Recall the definition of Ek (41). Let Xk := (V πk
1:m(ρ), λk) ∈ X and X̃k :=

(V π̃k
1:m(ρ), λ̃k) ∈ X ; Gv,−λ

k := Gv,−λ(Xk) and G̃v,−λ
k := Gv,−λ(X̃k). We can then rewrite Ek as

Ek =⟨G̃v,−λ
k − G̃v,−λ

k+1 , Xk+1 − X̃k+1⟩+ α
D

d
π̃k+1
ρ

(π̃k+1||πk) +Ddπ
ρ
(πk+1||π̃k+1)

1− γ

+
D(λk+1||λ̃k+1) +D(λ̃k+1||λk)

η′
.
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We can obtain

⟨G̃v,−λ
k+1 − G̃v,−λ

k , Xk+1 − X̃k+1⟩
(a)

≤ Ψ∗(G̃v,−λ
k+1 − G̃v,−λ

k )Ψ(Xk+1 − X̃k+1)

(b)

≤Ψ∗(G̃v,−λ
k+1 −Gv,−λ

k )Ψ(Xk+1 − X̃k+1) + Ψ∗(Gv,−λ
k − G̃v,−λ

k )Ψ(Xk+1 − X̃k+1)

(c)

≤βΨ(X̃k+1 −Xk)Ψ(Xk+1 − X̃k+1) + βΨ(Xk − X̃k)Ψ(Xk+1 − X̃k+1)

(d)

≤ β√
8− 2

Ψ(X̃k+1 −Xk)
2 +

(
β√
8 + 2

+
β

2

)
Ψ(Xk+1 − X̃k+1)

2 +
β

2
Ψ(Xk − X̃k)

2.

Inequality (a) follows from the Cauchy-Schwarz inequality for the Ψ-norm; (b) from the triangle
inequality; (c) from the smoothness of function Φ defined in (40); and (d) from ac+ bc ≤ a2

√
8−2

+

c2√
8+2

+ b2

2 + c2

2 .

Since X0 = X̃0, 1√
8+2

+ 1
2 + 1

2 = 1√
8−2

, and Ψ(v, λ)2 ≤ 2∥v∥2∞ + 2∥λ∥21, we have

K−1∑
k=0

⟨G̃v,−λ
k+1 − G̃v,−λ

k , Xk+1 − X̃k+1⟩

≤ β√
8− 2

K−1∑
k=0

Ψ(X̃k+1 −Xk)
2 +

β√
8− 2

K∑
k=1

Ψ(Xk − X̃k)
2

≤ 2β√
8− 2

K−1∑
k=0

(
∥V π̃k+1

1:m (ρ)− V πk
1:m(ρ)∥2∞ + ∥λ̃k+1 − λk∥21

+∥V π̃k+1

1:m (ρ)− V
πk+1

1:m (ρ)∥2∞ + ∥λ̃k+1 − λk+1∥21
)
.

Noting that 2β√
8−2
≤ 3β, by Lemma 3 we have

2β√
8− 2

∥V π̃k+1

1:m (ρ)− V πk
1:m(ρ)∥2∞ ≤

6γ2β

(1− γ)4
D

d
π̃k+1
ρ

(π̃k+1||πk).

By Pinsker’s inequality, we have
2β√
8− 2

∥λ̃k+1 − λk+1∥21 ≤ 6βD(λk+1||λ̃k+1).

Since α ≥ 6β
(1−γ)4 and η′ ≤ 1

6β , we conclude that
∑K−1

k=0 Ek ≥ 0.

E.3.2 Convergence of ARNPG-OMDA

Proof of Theorem 3. By |r̃k(s, a)| = |⟨G̃v
k, r1:m(s, a)⟩| ≤ ∥G̃v

k∥1∥r1:m(s, a)∥∞ ≤ L, we know
∥r̃k∥∞ ≤ L. Taking ϵk = α log(|A|)

(1−γ)K , we choose tk = ⌈ 1
1−γ log( 5LK

6β log(|A|) ) + 1⌉.

Then by Proposition 1, for any policy π, we have two fundamental inequalities for the updates π̃k+1

and πk+1 respectively:

V
π̃k+1

r̃k
(ρ)− α

D
d
π̃k+1
ρ

(π̃k+1||πk)

1− γ
≥ V π

r̃k
(ρ)− α

Ddπ
ρ
(π||πk)−Ddπ

ρ
(π||π̃k+1)

1− γ
− ϵk,

V
πk+1

r̃k+1
(ρ)− α

D
d
πk+1
ρ

(πk+1||πk)

1− γ
≥ V π

r̃k+1
(ρ)− α

Ddπ
ρ
(π||πk)−Ddπ

ρ
(π||πk+1)

1− γ
− ϵk.

Note that V π
r̃k
(ρ) = ⟨G̃v

k, V
π
1:m(ρ)⟩. Taking π = πk+1 in the first inequality, and summing two

inequalities gives

⟨G̃v
k+1, V

π̃k+1

1:m (ρ)− V π
1:m(ρ)⟩ ≥ α

Ddπ
ρ
(π||πk+1)−Ddπ

ρ
(π||πk)

1− γ
− 2ϵk (42)

+ ⟨G̃v
k − G̃v

k+1, V
πk+1

1:m (ρ)− V
π̃k+1

1:m (ρ)⟩+ α
D

d
π̃k+1
ρ

(π̃k+1||πk) +Ddπ
ρ
(πk+1||π̃k+1)

1− γ
.
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We can similarly get the inequality for λ that

⟨G̃λ
k , λ̃k+1⟩+

D(λ̃k+1||λk)

η′
≤ ⟨G̃λ

k , λ⟩+
D(λ||λk)−D(λ||λ̃k+1)

η′
, (43)

⟨G̃λ
k+1, λk+1⟩+

D(λk+1||λk)

η′
≤ ⟨G̃λ

k+1, λ⟩+
D(λ||λk)−D(λ||λk+1)

η′
. (44)

Taking λ = λk+1 in the first inequality and summing two inequalities gives

⟨G̃λ
k+1, λ− λ̃k+1⟩ ≥

D(λ||λk+1)−D(λ||λk)

η′

+ ⟨G̃λ
k − G̃λ

k+1, λ̃k+1 − λk+1⟩+
D(λk+1||λ̃k+1) +D(λ̃k+1||λk)

η′
. (45)

Recall the definition of Ek in (41) that

Ek =⟨G̃v
k − G̃v

k+1, V
πk+1

1:m (ρ)− V
π̃k+1

1:m (ρ)⟩+ α
D

d
π̃k+1
ρ

(π̃k+1||πk) +Ddπ
ρ
(πk+1||π̃k+1)

1− γ

+ ⟨G̃λ
k − G̃λ

k+1, λ̃k+1 − λk+1⟩+
D(λk+1||λ̃k+1) +D(λ̃k+1||λk)

η′
.

We then have

− Φ(V π
1:m(ρ), λ̃k+1) + Φ(V

π̃k+1

1:m (ρ), λ)

=Φ(V
π̃k+1

1:m (ρ), λ̃k+1)− Φ(V π
1:m(ρ), λ̃k+1) + Φ(V

π̃k+1

1:m (ρ), λ)− Φ(V
π̃k+1

1:m (ρ), λ̃k+1)

(a)

≥⟨G̃v
k+1, V

π̃k+1

1:m (ρ)− V π
1:m(ρ)⟩+ ⟨G̃λ

k+1, λ− λ̃k+1⟩
(b)

≥α
Ddπ

ρ
(π||πk+1)−Ddπ

ρ
(π||πk)

1− γ
+

D(λ||λk+1)−D(λ||λk)

η′
− 2ϵk + Ek.

Inequality (a) is by the concavity of Φ(·, λ̃k+1) and convexity of Φ(V π̃k+1

1:m (ρ), ·). Inequality (b) is
based on combining (42) and (45).

Taking π = π∗ and λ = argminλ′∈Λ Φ
(

1
K

∑K
k=1 V

π̃k
1:m(ρ), λ′

)
, we have

F

(
1

K

K∑
k=1

V π̃k
1:m(ρ)

)
= Φ

(
1

K

K∑
k=1

V π̃k
1:m(ρ), λ

)
≥ 1

K

K∑
k=1

Φ(V π̃k
1:m(ρ), λ)

≥ 1

K

K−1∑
k=0

Φ(V π∗

1:m(ρ), λ̃k+1) + α
Ddπ∗

ρ
(π∗||πK)−Ddπ∗

ρ
(π∗||π0)

(1− γ)K
+

D(λ||λK)−D(λ||λ0)

η′K

− 2

K

K−1∑
k=0

ϵk +
1

K

K−1∑
k=0

Ek

(a)

≥F (V π∗

1:m(ρ))− 3α log(|A|)
(1− γ)K

− log(m)

η′K
.

Inequality (a) is due to Ddπ∗
ρ
(π∗||π0) ≤ log(|A|) and Lemma 7.

Proof of Corollary 3. Note that T =
∑K−1

k=0 tk = Θ( K
1−γ log(K)). It implies K

1−γ = Θ(T/ log(T )).
Substituting this into Theorem 3 concludes Corollary 3.

F More related works

There are in general two scenarios when considering problems of multi-objective Markov decision
processes (cf. survey [23]): single-policy scenario and multi-policy scenario. This work focuses on
the single-policy scenario, which we will simply refer to as multi-objective MDP, and we relegate the
discussion of the multi-policy scenario to the end of this section.
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Multi-objective MDP In the single-policy scenario, the agent optimizes the reward objectives
according to the user’s criteria. The case of linear scalarization with known weights simply collapses
to a canonical MDP. Therefore, the focus of this line of research is on nonlinear scalarization. The
lexicographical ordering of objectives was considered by Wray et al. [29] and Saisubramanian et
al. [24]. Moffaert et al. [26] studied a Chebyshev scalarization i.e., weighted L∞ scalarization via a
Q-learning approach. Bai et al. [5] established an O(1/ϵ4) sample complexity for a policy-gradient
method under smooth concave scalarization. Besides optimization (pure exploration), the exploration-
exploitation trade-off has also been studied, where with concave scalarization, an O(

√
T ) regret was

established under the Lipschitz continuous assumption on F by [3, 30].

Constrained MDP The constrained MDP (CMDP) is viewed as a special case of a multi-objective
MDP in this paper. CMDPs have attracted much attention recently. Ding et al. [11] proposed
an NPG-PrimalDual algorithm that uses a primal-dual approach with NPG and showed that it can
achieve O(1/

√
T ) global convergence for both the optimality gap and the constraint violation. Xu et

al. [31] proposed a primal approach called constrained-rectified policy optimization (CRPO) that
updates the policy alternatively between optimizing objective and decreasing constraint violation,
and enjoys the same O(1/

√
T ) global convergence. Whether policy optimization for CMDP can

achieve global convergence with a rate faster than O(1/
√
T ) was stated as an open problem in [11].

There are two concurrent works [33, 18] tackling the problem with positive answers, with some
ergodic assumptions made to facilitate the proof of Õ(1/T ) global convergence. Ying et al. [33]
propose an NPG-aided dual approach, where the dual function is smoothed by entropy regularization
in the objective function. They show an Õ(1/T ) convergence rate to the optimal policy of the
entropy-regularized CMDP, but not to the true optimal policy, for which there is an established slow
O(1/

√
T ) convergence rate. They also make an additional strong assumption that the initial state

distribution covers the entire state space. While such an assumption was initially used in the analysis
of the global convergence of PG methods for MDPs [2, 20], it is not required when analyzing the
global convergence of NPG methods [2, 10]. Moreover, this assumption does not necessarily hold
for safe RL or CMDP, since the algorithm may need to avoid dangerous states even at initialization,
with the consequence that the optimal policy depends on the initial state distribution. Li et al. [18]
propose a primal-dual approach with an O(log2(T )/T ) convergence rate to the true optimal policy
by smoothing the Lagrangian with suitable regularization on both primal and dual variables. However,
they assume that the Markov chain induced by any stationary policy is ergodic in order to ensure the
smoothness of the dual function. This assumption, though weaker than the assumption made by [33],
will generally not hold in problems where one wishes to avoid unsafe states altogether.

Multi-policy scenario In the multi-policy scenario, the agent is to determine not one policy but a
set of policies, so that once a set of weights of a linear scalarization is subsequently provided, a policy
from the determined set can be deployed [23]. This approach essentially aims at determining the
convex coverage set (CCS) of the Pareto frontier. Yang et al. [32] proposed an envelope Q-learning
algorithm based on the multi-objective Bellman optimality operator to utilize the convex envelope of
the solution frontier. Zhou et al. [39] studied the sample complexity under a generative model setting.
Kyriakis et al. [15] utilized a policy gradient solver to search for a direction that is simultaneously an
ascent direction for all objectives, utilizing a new loss function called Pareto Policy Adaptation. Wu
et al. [30] considered preference-free exploration, where the agent collects samples in the exploration
phase and computes a near-optimal policy for any preference-weighted reward function during the
planning phase.
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