
A Appendix

A.1 Visualization of patch-wise noise sensitivity

Original Image Initial Noise

= .

Patch-wise Noise 

Sensitivity

Figure 1: Illustrations of original images (left), initial random noises (middle), and corresponding
visualizations of patch-wise noise sensitivity (right).

Existing decision-based attack methods use random noises to initialize adversarial examples xinit
[1, 2, 3, 4]. For example, a common practice is to add Gaussian noise with mean of 0 and a gradually
increasing variance on the original image until the target model is misclassified:

xinit = Clipx,τ{x+ ξGau}, ξGau ∼ N (0, var2I), (1)

where ξGau refers to the random noise with the same dimension as the original image x and follows
the Gaussian distribution with mean of 0 and variance of var. I is an identity matrix of the same
dimension as x. The decision-based attack can only obtain the hard-label returned by the target model,
and the attacker does not have any prior knowledge about the target model. Therefore, the noise zinit
on the initial adversarial example is generally uniform at each pixel, as shown in the middle column
of Fig. 1. After adding random noises to the original image until misclassification, the decision-based
attacks use the initial adversarial example as the starting point of the noise compression process.

Fig. 2 compares the differences of patch-wise noise sensitivity between res-101 and r26-32. It can be
seen that only removing the noises on a few patches on the res-101 will affect the misclassification,
while the patch-wise noise sensitivity on r26-32 varies greatly. This reflects the reason why it is
difficult to attack ViTs using existing decision-based attacks.

A.2 Proof of Proposition 1

Proposition 1. Assume x′ is an initial adversarial example generated by Boundary Attack against ViT
F starting from original image x, F (x) 6= F (x′). For any 0 < r1, r2, h ≤ Height, 0 < c1, c2, w ≤
Width, if Sens(F, x, x′, r1, c1, h, w) < Sens(F, x, x′, r2, c2, h, w), and the new noise added by one
step by Boundary Attack is z′, then P (F (x′ + z′1) 6= F (x)|F (x′ + z′) = F (x)) < P (F (x′ + z′2) 6=
F (x)|F (x′ + z′) = F (x)), where for ι = 1, 2

z′ι,r,c =

{
0, if rι ≤ r < rι + h and cι ≤ c < cι + w,

z′r,c, else,
(2)

Proof. According to the attack process of Boundary Attack:

x∗new = x∗ + δ · η

‖η‖2
+ ε · x− x∗

‖x− x∗‖2
, η ∼ N (0, I), (3)

New noise z′ ∼ N (ε · x−x′
‖x−x′‖2 , δ

2). Noise compression ratio after one-step Boundary Attack

satisfies z′

x′−x ∼ N ( ε
‖x−x′‖2 ,

δ2

(x−x′)2 ). Since the initial noise x′ generated by Boundary Attack
follows Gaussian distribution with mean of 0 and equal variance on each pixel, the expectation of the
initial noise is equal. Therefore, the noise compression ratio after one-step Boundary Attack for each
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Figure 2: Comparison of patch-wise noise sensitivity between res-101 and r26-32 on ILSVRC-2012.

pixel is i.i.d. The possibility that the noise compression ratio on at least one pixel exceeds κ is the
same for any pixel:

P (∃ 0 < r∗ ≤ Height and 0 < c∗ ≤Width,
z′r∗,c∗

x′ − x
> κ), (4)

where 0 < r∗ ≤ Height, 0 < c∗ ≤Width, 0 < κ ≤ 1. For any 0 < κ1 ≤ κ2 ≤ 1:

P (
z′r∗,c∗

x′ − x
> κ1)− P (

z′r∗,c∗

x′ − x
> κ2) = P (κ2 ≥

z′r∗,c∗

x′ − x
≥ κ1) ≥ 0, (5)

P (
z′r∗,c∗

x′ − x
< κ2)− P (

z′r∗,c∗

x′ − x
< κ1) = P (κ2 ≥

z′r∗,c∗

x′ − x
≥ κ1) ≥ 0, (6)

The equality holds when κ1 = κ2. Since the probability that noise compression ratio on at least one
pixel exceeds the noise sensitivity Sens increases monotonically with respect to the noise sensitivity
on the whole patch, and Sens(F, x, x′, r1, c1, h, w) < Sens(F, x, x′, r2, c2, h, w), we have:

P (F (x′ + z′2) 6= F (x)|F (x′ + z′) = F (x))

=P (∃r2 ≤ r∗2 ≤ r2 + h and c2 ≤ c∗2 ≤ c2 + w,
z′r∗2 ,c∗2
x′ − x

< Sens(F, x, x′, r2, c2, h, w))

>P (∃r1 ≤ r∗1 ≤ r1 + h and c1 ≤ c∗1 ≤ c1 + w,
z′r∗1 ,c∗1
x′ − x

< Sens(F, x, x′, r1, c1, h, w))

=P (F (x′ + z′1) 6= F (x)|F (x′ + z′) = F (x)).

(7)
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Table 1: Median and average `2 distance of adversarial perturbations on ILSVRC-2012 against 4
ViTs.

Target ti_l16 r_ti_16 vit_s32 vit_b16
Methods Mid Avg Mid Avg Mid Avg Mid Avg

Initial 122.666 121.669 49.142 47.79 79.332 74.452 104.872 95.847
PAR 25.372 58.037 5.353 6.5 11.82 16.149 17.518 32.103
HSJA 79.806 91.875 28.195 30.339 57.971 51.718 76.448 73.613

PAR+HSJA 24.363 56.813 5.194 6.316 11.451 15.842 15.599 31.158
BBA 26.871 58.071 4.767 7.091 8.887 12.957 16.682 30.617

PAR+BBA 19.215 53.288 2.932 4.465 5.309 11.292 11.737 26.72
Evo 35.033 65.997 7.042 10.81 11.805 17.721 28.219 40.623

PAR+Evo 20.887 55.168 4.201 5.578 9.166 13.339 13.358 28.76
Boundary 39.43 66.223 9.116 12.512 18.191 20.409 26.333 38.064

PAR+Boundary 21.075 55.263 4.62 5.971 10.452 14.368 13.842 29.304
SurFree 30.971 61.017 5.69 9.325 11.024 15.758 17.341 33.533

PAR+SurFree 18.868 53.815 3.899 5.229 8.454 12.885 12.18 27.57
CAB 57.069 77.707 4.071 10.841 13.122 22.509 26.268 48.165

PAR+CAB 15.209 52.193 2.627 4.419 5.156 10.598 8.171 25.306
Sign-OPT 34.884 38.06 114.027 113.639 40.168 41.231 71.778 65.801

PAR+Sign-OPT 5.264 6.793 23.801 53.313 5.18 6.135 10.696 15.447

Table 2: Median and average `2 distance of adversarial perturbations on ILSVRC-2012 against ViTs.
Target vit_b32 r50_l32 ti_s16

Methods Mid Avg Mid Avg Mid Avg
Initial 97.8 89.433 70.962 79.394 41.607 42.921
PAR 15.897 26.216 13.083 26.662 5.449 7.772
HSJA 65.213 64.582 46.57 56.298 24.181 28.403

PAR+HSJA 15.376 25.845 11.106 25.49 4.897 7.538
BBA 11.835 24.534 14.954 24.47 4.182 5.99

PAR+BBA 10.196 22.026 9.775 22.162 2.787 4.772
Evo 17.234 30.62 19.952 28.534 6.616 8.872

PAR+Evo 12.179 23.134 10.159 22.639 4.39 6.182
Boundary 21.407 31.815 21.173 31.358 8.296 10.757

PAR+Boundary 13.786 24.294 10.506 24.255 4.818 6.705
SurFree 14.838 27.774 16.263 26.861 4.386 7.701

PAR+SurFree 11.684 22.92 9.381 22.719 3.701 5.76
CAB 19.376 38.092 19.226 33.201 4.559 10.665

PAR+CAB 8.949 21.314 7.894 22.077 2.158 4.594
Sign-OPT 95.78 88.212 88.657 81.727 34.884 38.06

PAR+Sign-OPT 16.477 31.713 15.212 25.67 5.264 6.793

Therefore, P (F (x′ + z′1) 6= F (x)|F (x′ + z′) = F (x)) < P (F (x′ + z′2) 6= F (x)|F (x′ + z′) =
F (x)). �

Although the sensitivity evaluation of PAR slightly resembles that of `0 sparse attacks [7, 8], there
are huge differences which make the comparison hardly possible. Firstly, the goal of PAR is to
compress noise from initial adversarial examples while the goal of `0 attacks is to minimize the
number of perturbed pixels. Secondly, `0 attacks usually need some additional information, e.g.,
random adversarial images for sparse decomposition in LSDAT [7], while PAR only needs hard label
of the target model.

Boundary Attack’s ignorance of the difference in noise sensitivity between patches results in two
serious consequences. First of all, since the initial noise zinit and compression noise are uniform for
each pixel, the magnitude of noise on each pixel after multiple steps of compression is also close.
When the noise in the most sensitive region of the image is compressed, it is difficult for the updated
adversarial example to maintain misclassification, and the subsequent query is likely to fail. To some
extent, this explains why the noise compression efficiency of Boundary Attack gradually decreases as
the query number grows [1].

Except for Boundary Attack, most of the existing decision-based attack methods are essentially local
random search starting from a random noise. For example, SurFree [9] focuses on the geometric
properties in the neighborhood of current adversarial example x∗. HSJA [3] estimates the decision
boundary near x∗. BBA [4] and CAB [10] samples in the entire image space based on x∗ with adaptive
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Table 3: Median and average `2 distance of adversarial perturbations between four models on
ImageNet-21k.

Target vit_s32 vit_b16 vit_b_32 r50_s32
Methods median average median average median average median average

Initial 42.939 47.117 28.839 44.511 34.515 44.885 56.912 41.267
PAR 4.968 7.814 5.637 10.397 5.614 9.699 3.191 9.306
HSJA 24.728 27.328 16.244 27.895 20.486 29.87 38.993 29.514

PAR+HSJA 4.573 7.487 4.476 9.684 5.185 9.159 2.218 7.788
BBA 4.008 6.063 4.012 10.119 4.086 8.264 8.666 17.211

PAR+BBA 2.162 4.482 3.202 8.071 2.877 6.431 2.218 7.322
Evo 5.311 7.617 5.562 12.347 6.107 11.24 14.355 13.757

PAR+Evo 3.361 5.728 3.965 8.777 4.335 8.134 2.218 8.006
Boundary 8.012 9.768 7.519 13.406 7.822 12.011 12.587 15.687

PAR+Boundary 4.265 6.324 4.42 9.176 4.737 8.372 2.218 8.55
SurFree 4.996 6.319 3.343 9.349 4.725 8.64 6.83 13.943

PAR+SurFree 2.951 5.387 3.412 8.187 3.608 7.291 2.218 8.067
CAB 4.749 8.815 2.4 9.127 4.749 11.391 8.275 13.307

PAR+CAB 1.696 4.24 1.72 6.235 2.225 6.007 2.218 5.437
Sign-OPT 27.239 36.776 23.278 38.681 24.656 37.362 47.589 36.398

PAR+Sign-OPT 4.335 7.057 5.251 10.238 4.728 8.353 2.684 8.793

Table 4: Noise compression comparison when minimum patch size PSmin = 1.
Initial Patch Size 112 56 28 14 7

Minimum Patch Size 1 1 1 1 1

vgg-19
Mid Noise 4.73 4.95 5.20 5.98 13.05
Avg Noise 6.32 6.31 6.55 7.05 11.31

Avg Query Number 810.22 811.86 835.30 882.28 945.43

vit_s16
Mid Noise 8.89 8.97 9.38 11.88 24.93
Avg Noise 17.68 17.53 17.49 18.90 26.84

Avg Query Number 825.60 831.32 855.66 909.22 969.57

distribution. Existing decision-based attack methods mainly focus on searching for adversarial
examples with smaller noise magnitude in the neighborhood of current adversarial example, but
ignore the noise in xinit with larger magnitude and easier to compress due to the difference in noise
sensitivity.

A.3 More Experimental Results

To further verify the advantage of PAR over existing decision-based attacks on different ViTs and
CNNs, we report the median and average adversarial perturbation of more target models on ILSVRC-
2012 and ImageNet-21k in Table 1, Table 2, and Table 3. The first row of three tables represents
target models with different structures. We compare the average (Avg) and median (Mid) noise
magnitude generated by PAR and other 6 attacks on different target models. We also use PAR as
the noise initialization for other decision-based attacks. The noise compressed by PAR is handed
over to other decision-based attacks for further compression. It can be seen that when PAR is used to
initialize adversarial noise, the average and median noise magnitude drops significantly compared
with only using the original decision-based attack. This verifies the strong noise compression ability
of PAR.

In Table 4 we add experimental results with a minimum patch size of 1. A minimum patch size of
1 means that PAR will try to remove noise on a single pixel. It can be seen from the results that
using a too small minimum patch size will also lead to low compression efficiency. Because when
PSmin = 1, a single query can only remove noise on a single pixel at most even if it succeeds. At
the same time, the number of queries consumed by PAR will also increase sharply with a too small
minimum patch size.

In Table 5, we compare the time consumption and noise compression efficiency of PAR and other
decision-making attacks on the Imagenet. The target model is r-ti-16. The total number of queries
is 1000 times. Among them, the first 50 times are used for generating Gaussian noise to find initial
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Table 5: Comparison of time cost and compression efficiency.

Methods Time Cost (s) Used step Time Per Query (s)
Noise Compression

Per Query
PAR 2.22 60 0.037 0.673
Evo 28.28 950 0.030 0.035

PAR+Evo 27.22 950 0.029 0.045
Boundary 31.37 950 0.033 0.040

PAR+Boundary 34.72 950 0.037 0.044
CAB 36.09 950 0.038 0.044

PAR+CAB 70.15 950 0.074 0.047

adversarial examples. When PAR is not applied, the next 950 times are all used for decision-based
attacks. When initialized with PAR, 60 queries are used for PAR, and then the remaining 890 queries
are used for decision-based attack. The experimental results report the total time consumption,
number of queries, query time per query and average compression noise per query. Since the main
time-consuming of the query lies in the forward propagation process of the target model, the used
time of a single query for each method is similar. But it can be seen that the noise compression
efficiency of each decision attack method is improved after initializing with PAR. During the first 60
queries of PAR, the noise compression efficiency is significantly higher than other decision-based
attacks, which demonstrates the effectiveness of PAR.
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