
A Proof of Theorem 3.1

In this section, we show that in the infinite width limit, warm starting a neural network will result in
the same predictions as the cold started variant when trained using gradient descent for t = ∞. We
give the proof for a feed-forward neural network, but as shown by Yang and Littwin [21], it is trivial
to show that the same proof structure can be used for any other architecture.

Background We mostly use the same notation as Jacot et al. [7]. We focus on fully connected
feed-forward neural networks with L+1 hidden layers numbered from 0 (input) to L (output), where
each layer has n0, . . . , nL neurons. We assume that its nonlinearity is a Lipschitz, twice differentiable
function σ : R → R. Such a network has P =

∑L−1
l=0 (nl + 1)nl+1 parameters: A weight matrix

W (l) ∈ Rnl×nl+1 and a bias vector b(l) ∈ Rnl+1 per layer. This network is defined as fθ where
θ = ∪L

l=0θ
l and θl = vec(W (l), b(l)). The function fθ is characterized according to the definition:

α(0)(x; θ) = x

α̃(l+1)(x; θ) =
1

√
nl

W (lα(l)(x; θ) + βb(l)

α(l)(x; θ) = σ(α̃(l+1)(x; θ))

fθ(x) := α̃(L)(x; θ)

(14)

We define the realization function of the network as f(L) : RP → F , the function mapping parameters
θ : RP to functions fθ ∈ F where F is the space of all neural networks of this architecture.

Assuming that the training set is defined as D ⊆ Rn0 × RnL , we define pin to be the fixed empirical
distribution of the finite input dataset {(x1, y1), (x2, y2), · · · , (xN , yN )} : 1

N

∑N
i=0 δxi . Thus, F is

defined as all the functions {f : Rn0 → RnL}. On this space, we consider the seminorm || · ||pin ,
defined as

⟨f, g⟩pin = Ex∼pin [f(x)
T
g(x)]. (15)

The dual space of F with respect to pin can be defined as F∗. F∗ is the set of all linear forms
µ : F → R. We can define each element of this set as µ = ⟨d, ·⟩pin for some d ∈ F .

In the process of optimizing the parameters of a neural network f , we define the cost functional as:
C(f) = 1

N

∑N
i=1 (f(xi)− yi)

2. As we assumed that pin is fixed, the value of C(f) only depends
on the values of f ∈ F at the datapoints (x, y) ∈ pin. Thus, the functional derivative of the cost
functional can be viewed as a member of the dual space of F , namely F∗. We note by d|f0 ∈ F the
corresponding dual element of partial derivative of the cost functional with respect to the function f
at f0, namely: ∂in

f C|f0 . Thus, ∂in
f C|f0 = ⟨d|f0 , ·⟩pin .

According to Jacot et al. [7], Kernel Gradient ∇KC|f0 ∈ F is defined as ΦK

(
∂in
f C|f0

)
where Φ

is a map from F∗ to F defined as: [ΦK(µ)]i,·(x) = ⟨d,Ki,·(x, ·)⟩pin where µ = ⟨d, ·⟩pin . Here, K
refers to a multi-dimensional kernel which is defined as a function Rn0 × Rn0 → RnL×nL such
that K(x, x′) = K(x′, x)⊤. They showed that when trained using gradient descent on C ◦ F(L), the
neural network function’s evolution in time can be captured using kernel gradient descent with the
corresponding Neural Tangent Kernel (NTK): ∂tfθ(t) = −∇KC|fθ(t)

where K is the corresponding
Neural Tangent Kernel of fθ(t). For simplicity, from here onwards, we drop the θ index from a
function fθ(t) and show it by ft. Since one can define a map between the time t and function fθ(t)
when the training setting is fixed, this doesn’t create any confusion. Thus, the cost functional evolves
as

∂tC|ft = −⟨d|ft ,∇KC|ft⟩pin (16)

Here, −d|ft ∈ F defines the training direction of function f(t) in the function space F while being
trained using gradient descent (flow). As mentioned earlier, when the we train using C ◦ F(L) loss,
this training direction is the dual of ∂in

f C|ft .

Setting A. We have C overlapping datasets, S1, S2, . . . , SC such that ∀i > j;Sj ⊂ Si and ∀i ∈
[1, C];Si = {(x1, y1), . . . , (xmi

, yMi
)} where Mi is the size of i’th dataset. We initialize the network
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f with parameters θ0 such that θ0 satisfies the initialization criteria mentioned in Jacot et al. [7]
(namely, LeCun initialization). We define f0 as f with parameters θ0. f has L+ 1 layers such that
in the limit n0, n1, . . . , nL → ∞ sequentially. We train f sequentially on all the sets using gradient
descent with C ◦ FL loss for infinite time:

f0
S1−−−→

t=∞
fS1

S2−−−→
t=∞

fS1,2
→ . . .

SC−−−→
t=∞

fS1,2,...,C
. (17)

In the following, we first note that starting from the initialization and training the network according
to (17), the sum of integrals of the training directions remains stochastically bounded (Remark A.1).
Thus, based on Theorem 2 in [7], the corresponding Neural Tangent Kernel of f remains asymptoti-
cally constant (and according to their Theorem 1, it converges in probability to the limiting Neural
Tangent Kernel at initialization). Next, in Theorem A.2, we prove that under this setting, the resulting
function of sequential warm-start training on S1 to SC , is the same as the function that we get when
doing simple gradient descent on only the last dataset SC when starting from initialization (Also
known as cold-start). In other words, ∀x ∈ Rn0 ; fS1,...,C

(x) = fSC
(x) where fSC

is derived using

f0
SC−−−→
t=∞

fSC
.

Remark A.1. Under Setting A, assuming that we have a function T : R → R which gets past time
since starting gradient descent as the input and outputs the index i of the dataset Si currently being
trained in the sequential training process, limT→∞

∫ T

t=0
||d|ST (t)

ft
||pindt is stochastically bounded.

Proof. We start by deriving the Gâteaux derivative of the cost functional C(f) = 1
N

∑N
i=1 ||f(x)−

y||22:

∂in
f C|ft(f) =

2

N

N∑
i=1

f(xi)
⊤ (ft(xi)− yi) (18)

This shows the amount of change in C(ft) when ft is moved towards f by an infinitesimal t. As
mentioned before, this functional derivative only depends on the values of f on the datapoint in pin.
Thus, it’s in the dual space of F , noted by F∗ and we can write it as ⟨d|ft , f⟩pin . We’re interested in
deriving the closed form of d|ft in this inner product.

⟨d|ft , f⟩pin =
1

N

N∑
i=1

d|ft(xi)
⊤f(xi) =

2

N

N∑
i=1

f(xi)
⊤ (ft(xi)− yi) (19)

This implies

∀(xi, yi) ∈ pin; d|ft(xi) =
1

2
(ft(xi)− yi) . (20)

If we define f∗(x) as the function that maps each datapoint to its label on pin and is arbitrary
elsewhere, d|ft(x) = 1

2 (ft(x)− f∗(x)) on pin. Accordingly, when we train using only a portion of
the data Si ⊆ pin such that XSi = {x : (x, y) ∈ Si}, but the cost functional still operates on whole
of pin, we have that:

d|Si

ft
(x) =

I(x ∈ XSi
)

2

(
ft(x)− f∗

Si
(x)

)
(21)

where f∗
Si

is defined on Si as f∗ is on pin. To analyze
∫ T

t=0
||d|Si

ft
||pindt, we first derive ||d|Si

ft
||pin :

||d|Si

ft
||pin = Ex∼pin

[(
d|Si

ft
(x)

)2
]
=

1

4N

∑
xj∈XSi

||ft(xj)− f∗
Si
(xj)||22 (22)

As Jacot et al. [7] (Section 5) mentioned, as t grows, this norm is strictly decreasing and thus the
integral is bounded. Moreover, as we’re following the direction of gradient flow in the functional
space, ∃t ≥ 0 ft(xj) = f∗

t (xj) for all datapoints xj in Si. Thus, limT→∞
∫ T

t=0
||d|Si

ft
||pindt is

also stochastically bounded. We can apply the same structure for the case where we start from fSi

and perform gradient flow towards fSi+1 , showing that the integral in the infinite time limit is also
stochastically bounded. Thus, it’s straightforward to show that using induction, when training the
neural network sequentially on S1, S2, . . . , SC for sequentially infinite time, the integrals of training
directions remain stochastically bounded.
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Theorem A.2. Under Setting A, the following equality holds:

∀x ∈ Rn0 fS1,...,C
(x) = fSC

(x) (23)

Proof. As Remark A.1 showed, when training a neural network on multiple overlapping datasets
under Setting A, the training direction remains stochastically bounded. Thus, as the width of the
layers of the network tend to infinite sequentially, we can use Jacot et al. [7]’s Theorem 2 to show
that the NTK K also remains constant during training in this setting. Accordingly, when trained only
on a dataset Si, the neural network function f evolves as

∂tft(x) = −∇KC|Si

ft
(x) = −ΦK

(
∂Si

f C|ft
)
= − 1

2N

∑
xj∈Si

K(x, xj)(ft(xj)− f∗
Si
(xj))

=
1

2N

∑
xj∈Si

K(x, xj)ft(xj)︸ ︷︷ ︸
function of ft(x), x at t

− 1

2N

∑
xj∈Si

K(x, xj)f
∗(xj)︸ ︷︷ ︸

function of x at t

(24)

where K is the corresponding NTK of ft, which remains constant during training. If we look closely,
we witenss that this is a system of ODEs, whose solution for the finite dataset Si from initialization
f0 can be written as

ft(XSi
) = f∗

Si
(X ) + e−tKSi

(
f0(XSi

)− f∗
Si
(XSi

)
)
. (25)

where KSi
= K(XSi

,XSi
). As ΦK(·) helps us generalize the values of kernel gradient (and consecu-

tively ft, as it evolves according to kernel gradient) to values x outside the dataset Si (and also pin).
Now that we have derived the closed form solution of the outputs of ft on XSi , we can also derive
the outputs of ft on any arbitrary x by taking the integral of (24) and replacing ft according to (25):

ft(x) =
1

2N

∑
xj∈Si

K(x, xj)

[∫ t

t′=0

(
ft′,z(xj)− f∗

Si,z(xj)
)
dt′

]
z

= f0(x) +K(x,XSi
)K−1

Si

(
I − e−tKSi

) (
f∗
Si
(XSi

)− f0(XSi
)
) (26)

where f·,z shows the zth index of output of f and [·]z shows the stacked vector for different values of
z, such that z is an integer in [1− nL]. Starting from initialization, we can use this to characterize the
outputs of the trained neural network on Si using gradient flow for time t. We’re interested in starting
from fSi and training on Si+1 for infinite time, according to the same loss function defined on pin.
For the sake of having more clear notations, we denote this function as fSi→Si+1 (defiend as fSi,Si+1

in the statement that we are proving).

fSi→Si+1(x) = fSi(x) +K(x,XSi+1)K−1
Si+1

(
f∗
Si+1

(XSi)− fSi(XSi+1)
)

= K(x,XSi+1)K−1
Si+1

f∗
Si+1

(XSi+1)

+
(
K(x,XS1

)−K(x,XSi+1
)K−1

Si+1
K(XSi+1

,XSi
)
)

︸ ︷︷ ︸
A

K−1
Si

(
f∗
Si
(XSi

)− f0(XSi
)
)

+ f0(x)−K(x,XSi+1
)K−1

Si+1
f0(XSi+1

)

= fSi+1(x) +AK−1
Si

(
f∗
Si
(XSi)− f0(XSi)

)
(27)

If we look closely, A can be written as:

A = K(x,XSi+1
)

[
IMi

O(Mi+1−Mi)×Mi

]
−K(x,XSi+1

)K−1
Si+1

K(XSi+1
,XSi

)

= K(x,XSi+)

([
IMi

O(Mi+1−Mi)×Mi

]
−K−1

Si+1
K(XSi+1

,XSi
)

)
= K(x,XSi+1

)

([
IMi

O(Mi+1−Mi)×Mi

]
−K−1

Si+1
K(XSi+1

,XSi+1
)

[
IMi

O(Mi+1−Mi)×Mi

])
= K(x,XSi+1

)× 0 = 0

(28)
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(c) SVHN: ResNet18
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(d) CIFAR10: ResNet18

Figure 4: Comparison of the-state-of-the-art active learning methods on various benchmark datasets.
Vertical axis shows difference from random acquisition, whose accuracy is shown in text.

where Mi denotes the number of datapoints in Si. Note that (28) doesn’t depend on the indices of
Si and Si+1. Rather, it just relies on Si ⊆ Si+1, which is the case in Setting A for any consecutive
batches. Thus, for any arbitrary x, fSi→Si+1(x) = fSi+1(x). Using basic forward induction,
starting from fSi

, we can prove that fS1→S2→···→SC
(x) = fSC

(x) for any arbitrary x. The proof is
complete.

B Additional Comparison with State-of-the-art Methods

In Figure 2, we demonstrate that our proposed method is equal or better compared to other state-
of-the-art methods on various benchmark datasets in active learning, with different architectures.
In this section, we provide additional experiment results as shown in Figure 2. Among all the
combinations of the datasets we use (MNIST, SVHN, CIFAR10 and CIFAR100), and architectures
(1-layer WideResNet, 2-layer WideResNet, and ResNet18), we do not provide results on MNIST
with 2-layer WideResNet and ResNet18 since 1-layer WideResNet is large enough for MNIST. Also,
we do not provide the results with 1-layer WideResNet on CIFAR10 since 1-layer WideResNet is
too shallow for complicate data like CIFAR10 and 100. Similarly, according to our experiments,
WideResNet with 1 or 2-layers are too shallow for CIFAR 100, unlike ResNet18.

As a result, in Figure 4, we provide the experiment results of all the other combinations. We visualize
in the same way as we do for Figure 2 where we plot the difference between each method and random
acquisition function at each cycle. Figure 4 shows that the proposed NTK approximation is equal or
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Figure 5: Additional comparisons.

better than the other state-of-the-art methods; especially, NTK is better than any other methods for
Figure 4a and Figure 4c, and comparable to entropy acquisition function for Figure 4b and Figure 4d.

C Instability of LL4AL

In Figure 2, we do not include LL4AL [38] performance on CIFAR10 or CIFAR100; its perfor-
mance is too poor to show on the same plots. To validate this was not due to a simple poor
hyperparameter choice, we show the performance of LL4AL on CIFAR100 with varying learn-
ing rates in Figure 5a. We run each experiment 3 times with the maximum learning rates of
{0.3, 0.1, 0.03, 0.01, 0.003, 0.001} for the 1cycle learning rate policy [47], which we use for all the
other methods. When the maximum learning rate is 0.3, the gradient blows up and the model does
not learn anything.

Figure 5a shows none of the learning rates are comparable with random acquisitions (trained with
the maximum learning rate of 1.0), although it has been reported that LL4AL performs better than
the random acquisition function. We conjecture this is because, if we train with random acquisitions
using a learning rate that “works” for LL4AL, LL4AL performs better. On the other hand, when the
learning rate is tuned to maximize the performance of each method, random acquisition can perform
better.

We added the figures Figure 6 based on the results shared in this GitHub repository which is a direct
implementation of the LL4AL method. We further elaborate on each plot below:

CIFAR10, ResNet18 (Figure 6a): We observe that although when using the learning rate of 0.1
LL4AL’s performance is 4% better than random (91.3% vs 87.3%), when the learning
rate is tuned in favor of random (0.3 LR instead of 0.1) and use that for LL4AL too, the
difference shrinks down to 1.2% (90.0% vs 87.8%). Moreover, using larger learning rates
like 1.0 would result in LL4AL to diverge while random still gets descent results.

SVHN, ResNet18 (Figure 6b): Again, the difference is 3.3% (93.8% vs 90.5%) when LR is tuned
in favor of LL4AL, but drops to 1.1% (91.9% vs 90.8%) when using a LR of 1.0. This time
however, when LR is fully tuned in favor of random (2.0), LL4AL diverges.

CIFAR10, 1-block WideResNet (Figure 6c): The 2.6% difference when using 0.1 LR (82.2% vs
79.6%) drops to -1.8% (78.8% vs 80.6%) when LR is tuned in favor of random (0.3). We
remind that as we’re using one block layer here, the LL4AL’s performance drop is much
more noticeable to the point that it performs worse than random when LR is tuned in favor
of random!

SVHN, 1-block WideResNet (Figure 6d): The 2% difference when using 0.1 LR (95% vs 93%)
drops to -1.4% (92.4% vs 93.8%) when LR is tuned in favour of random (0.5).
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(c) Varying LL4AL’s learning rate (Cifar10 -
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(d) Varying LL4AL’s learning rate (SVHN -
1-layer WideResNet).

Figure 6: Additional experiments on instability/poor performance of LL4AL on large learning rates.

D Comparison of L2 and Cross-entropy Loss

We use L2 loss instead of cross-entropy loss to train a classifier. As mentioned in the main paper,
Hui and Belkin [22] empirically show L2 loss is just as effective as cross-entropy loss for various
classification tasks in computer vision and natural language processing. Because of this, previous
works that exploit a linearized network using empirical NTKs also use L2 loss as a replacement for
cross-entropy [25, 48].

To further demonstrate that L2 loss is indeed as effective as cross-entropy in active learning, we
provide experimental results with L2 and cross-entropy loss (CE) for both random and the proposed
NTK acquisition functions in Figure 5b. Although cross-entropy starts with a higher accuracy, L2

quickly catches up. Overall, the difference between L2 and cross-entropy is not significant for either
random or NTK acquisition functions.

E Conventional Format for Comparison of the Proposed Method vs. SOTA

We have provided the conventional accuracy-based plots for the experimental results of comparing
our proposed method with other state-of-the-art methods. We think the ∆Acc based plots are better at
letting readers observe the differences between performances of each method on each task. However,
for the sake of completeness and in case one finds the plots in the main paper confusing, we have
provided the conventional plots in Figure 7.
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(a) SVHN: 1-layer WideResNet
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(b) CIFAR10: 2-layer WideResNet
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(c) CIFAR100: ResNet18
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(d) MNIST: 1-layer WideResNet
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(e) SVHN: 2-layer WideResNet
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(f) SVHN: ResNet18
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(g) CIFAR10: ResNet18

Figure 7: Comparison of the-state-of-the-art active learning methods on various benchmark datasets.
Vertical axis shows attained accuracy of each acquisition method.
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