
A Appendix

A.1 Derivation of modular adjoint

We present a standard adjoint gradient derivation (Bradley, 2019), and show that the adjoint of a graph neighbor-
hood differential is sparse.

For completeness, we define an ODE system

ż(t) = f(z, t,θ) (11)

z(t) = z0 +

∫ t

0

f(z, t,θ)dτ, (12)

where z ∈ RD is a state vector, ż ∈ RD is the state time differential defined by the vector field function f and
parameterised by θ. The starting state is z0, and t, τ ∈ R+ are time variables. Our goal is to solve a constrained
problem

min
θ

G(θ) =

∫ T

0

g(z, t,θ)dt (13)

s.t. ż− f(z, t,θ) = 0, ∀t ∈ [0, T ] (14)
z(0)− z0 = 0, (15)

where G is the total loss that consists of instant loss functionals g. We desire to compute the gradients of the
system ∇θG.

We optimise the constrained problem by solving the Lagrangian

L(θ,λ,µ) = G(θ) +

∫ T

0

λ(t)⊤(ż− f(z, t,θ))dt+ µ⊤(z(0)− z0) (16)

=

∫ T

0

[
g(z, t,θ) + λ(t)⊤(ż− f(z, t,θ))

]
dt+ µ⊤(z(0)− z0) . (17)

The constraints are satisfied by the ODE definition. Hence, ∇θL = ∇θG, and we can set values θ and µ
freely. We use a shorthand notation ∂a

∂b
= ab, and omit parameters from the functions for notational simplicity.

Applying the chain rule, we note that the gradient becomes

∇θL = ∇θG =

∫ T

0

[
gzzθ + gθ + λ⊤żθ − λ⊤fzzθ − λ⊤fθ

]
dt , (18)

where the µ term drops out since it does not depend on parameters θ. We apply integration by parts to swap the
differentials in term λ⊤żθ , resulting in∫ T

0

λ⊤żθdt = λ⊤zθ|t=T − λ⊤zθ|t=0 −
∫ T

0

λ̇⊤zθdt . (19)

Substituting this into previous equation and rearranging the terms results in

∇θL =

∫ T

0

(gz − λ⊤fz − λ̇⊤)zθ︸ ︷︷ ︸
0, if λ̇⊤=gz−λ⊤fz

dt+

∫ T

0

(gθ − λ⊤fθ)dt+ λ⊤zθ|t=T︸ ︷︷ ︸
0, if λ(T )=0

−λ⊤zθ|t=0︸ ︷︷ ︸
0

. (20)

The last term is removed since z(0) not depend on θ as a constant, and thus zθ(0) = 0. The difficult term in the
equation is zθ . We remove it by choosing

λ̇⊤ = gz − λ⊤fz. (21)

Finally, we choose λ(T ) = 0 which also removes the second-to-last term. The choices lead to a final term

∇θG = ∇θL =

∫ T

0

(gθ − λ⊤fθ)dt (22)

s.t. λ̇⊤ = gz − λ⊤fz (23)
λ(T ) = 0. (24)

In the derivation the adjoint λ(t) = ∂L
∂z(t)

∈ RD represents the change of loss with respect to instant states,
and is another ODE system that runs backwards from λ(T ) = 0 until λ(0). The final gradient ∇θL counts all
adjoints within [0, T ] multiplied by the ‘immediate’ partial derivatives fθ . The final gradient also takes into
account the instant loss parameter derivatives. For simple MSE curve fitting, the instant loss has no parameters.

14



The adjoint depends on the instant loss state derivatives gz. These are often only available for observations yj at
observed timepoints tj . This can be represented by having a convenient loss

g(z, t,θ) = δ(t = tj)g̃(z,yj , t,θ), (25)

and now the term gz induces discontinuous jumps at observations. This does not pose problems in practice,
since we can integrate the ODE in continuous segments between the observation instants.

The sparsity of the adjoint evolution is evident from Equation 23, where the λ̇i is an inner product between λ
and one column of ∂f

∂z
, which is invariant to non-neighbors. This gives the result

dλi

dt
= −λ(t)⊤

∂f
(
t, zi(t), zNi(t),xi,xNi

)
∂z

= −
∑

j∈Ni∪{i}

λj(t)
⊤ ∂f

(
t, zi(t), zNi(t),xi,xNi

)
∂zj

. (26)

A.2 Tree Decomposition

For tree decomposition of the molecules, we followed closely the procedure described in Jin et al. (2018). The
rings as well as the nodes corresponding to each ring substructure were extracted using RDKit’s functions,
GetRingInfo and GetSymmSSSR. We restricted our vocabulary to the unique ring substructures in the molecules.
The vocabulary of clusters follows a skewed distribution over the frequency of appearance within the dataset.
In particular, only a subset (∼ 30) of ring substructures (labels) appear with high frequency in molecules
within the vocabulary. Therefore, we simplify the vocabulary by only representing the 30 commonly occurring
substructures of Atree. In Figure 8, we show some examples of these ring substructures for the two datasets.

(a) QM9 Dataset (b) ZINC250K Dataset

Figure 8: Examples of frequently occurring ring substructures

A.3 Equivariant Graph Neural Networks

Equivariant Graph Neural Networks (EGNN) (Satorras et al., 2021) are E(3)-equivariant with respect to an
input set of points. The E(3) equivariance accounts for translation, rotation, and reflection symmetries, and can
be extended to E(n) group equivariance. The inherent dynamics governing the EGNN can be described, for
each layer l, as follows. Here, hl

i and xl
i pertain, respectively, to the embedding for the node i and that for its

coordinates; and aij abstracts the information about the edge between nodes i and j.

mij = ϕe

(
hl
i,h

l
j ,
∥∥∥xl

i − xl
j

∥∥∥2

, aij

)
xl+1
i = xl

i + C
∑
j ̸=i

(
xl
i − xl

j

)
ϕx (mij)

mi =
∑
j ̸=i

mij

hl+1
i = ϕh

(
hl
i,mi

)
Initially, messages mij are computed between the neighboring nodes via ϕe. Subsequently, the coordinates of
each node i are updated via a weighted sum of relative position vectors {(xi − xj) : j ̸= i} with the aid of
ϕx. Finally, the node embeddings are updated based on the aggregated messages mi via ϕh. The aggregated
message can be computed based on only the neighbors of a node by simply replacing the sum over j ̸= i with a
sum over j ∈ Ni in these equations.

15



Table 7: ModFlow as a temporal graph network (TGN). Adopting notation for TGNs from Rossi
et al. (2020) vi is a node-wise event on i; eij denotes an (asymmetric) interaction between i and j; si
is the memory of node i; and t and t− denote time with t− being the time of last interaction before
t, e.g., si(t−) is the memory of i just before time t; and msg and agg are learnable functions (e.g.,
MLP) to compute, respectively, the individual and the aggregate messages. For ModFlow, we use rij
to denote the spatial distance xi − xj , and aij to denote the attributes of the edge between i and j.
The functions ϕe, ϕx, and ϕh are as defined in Satorras et al. (2021), and summarized in A.3.

Method TGN layer ModFlow

Edge m′
ij(t) = msg (si (t

−) , sj (t
−) ,∆t, eij(t)) mij(t) = ϕe

(
zi(t), zj(t), ∥rij(t)∥2 , aij

)
m′

i(t) = agg
(
{m′

ij (t) |j ∈ Ni}
)

mi(t) =
∑

j∈N (i) mij

m̂ij(t) = rij(t) · ϕx (mij(t))
m̂i(t) = C

∑
j∈N (i) m̂ij(t)

Memory state si(t) = mem (m′
i(t), si (t

−)) xi(t+ 1) = xi(t) + m̂i(t)

Node z′i(t) =
∑

j∈Ni
h (si(t), sj(t), eij(t),vi(t),vj(t)) zi(t+ 1) = ϕh (zi(t),mi(t))

A.4 Connection to Temporal Graph Networks

Temporal Graph Networks (Rossi et al., 2020; Souza et al., 2022) are state-of-the-art neural models for embedding
dynamic graphs. A prominent class of these models consists of a combination of (recurrent) memory modules
and graph-based operators, and rely on message passing for updating the embeddings based on node-wise or
edge-wise events.

Specifically, adopting the notation from Rossi et al. (2020), an interaction eij(t) between any two nodes i and j
at time t triggers an edge-wise event leading to the following steps. First, a message m′

ij(t) is computed based
on the memory si

(
t−

)
and sj

(
t−

)
of the two nodes just before time t via a learnable function msg (such as

multilayer perceptron). For each node i, the messages thus accrued over a small period due to interactions of
with neighbors j are combined (via agg) into an aggregate message m′

i(t). This message, in turn, is used to
update the memory of i to si(t) via mem (implemented e.g., as a recurrent neural network). Finally, the node
embedding of i is revised based on its memory si(t), interaction eij(t) and memory sj(t) of each neighbor
j ∈ Ni, as well as any additional node-wise events vi(t) involving i or any node in Ni.

It turns out (see Table 7) that ModFlow can be viewed as an equivariant message passing temporal graph network.
Interestingly, the coordinate embedding xi plays the role of the memory si.

A.5 Implementation Details

We implemented the proposed models in PyTorch (Paszke et al., 2019).1 We used a single layer for EGNN with
embedding dimension 32 and aggregated information for each node from only its immediate neighbors. For
geometric (spatial) information, we worked with the polar coordinates (2D) or the spherical polar coordinates
(3D). We solved the ODE system with the Dormand–Prince adaptive step size scheme (i.e., the dopri5 solver).
The number of function evaluations lay roughly between 70 and 100. The models were trained for 50-100
epochs with the Adam (Kingma and Ba, 2014) optimizer.

Time comparisons. We found the training time of ModFlow to be slightly worse than one-shot discrete
flow models that characterize the whole system using a single flow (recall that, in contrast, ModFlow associates
an ODE with each node). However, ModFlow is faster to train than the auto-regressive methods.

Note that computation is a crucial aspect of generative modeling for application domains with a huge search
space, as is true for the molecules. We report the computational effort (excluding the time for preprocessing) for
generating 10000 molecules averaged across 5 independent runs in Table 8. Notably, largely by virtue of being
one-shot, ModFlow is able to generate significantly faster than the auto-regressive models such as GraphAF
and GraphDF. ModFlow also owes this speedup, in part, to obviate the need for multiple decoding (unlike, e.g.,
JT-VAE) as well as any validity checks.

1We make the code available at https://github.com/yogeshverma1998/
Modular-Flows-Neurips-2022.

16

https://github.com/yogeshverma1998/Modular-Flows-Neurips-2022
https://github.com/yogeshverma1998/Modular-Flows-Neurips-2022


Table 8: Generation time (in seconds/molecule) on QM9 and ZINC250K.

Method ZINC250K QM9

GraphEBM 1.12 ± 0.34 0.53 ± 0.16
GVAE 0.86 ± 0.12 0.46 ± 0.07
GraphAF 0.93 ± 0.14 0.56 ± 0.12
GraphDF 3.12 ± 0.56 1.92 ± 0.42
MoFlow 0.71 ± 0.14 0.31 ± 0.04

ModFlow (2D-EGNN) 0.46 ± 0.09 0.16 ± 0.04
ModFlow (3D-EGNN) 0.55 ± 0.13 0.24 ± 0.06
ModFlow (JT-2D-EGNN) 0.53 ± 0.07 0.21 ± 0.07
ModFlow (JT-3D-EGNN) 0.62 ± 0.11 0.28 ± 0.09

A.6 Additional Evaluation Metrics

We invoked additional metrics, namely the MOSES metrics (Polykovskiy et al., 2020), to compare the different
models in terms of their ability to generate molecules. These metrics, described below, access the overall quality
of the generated molecules.

• FCD: Fréchet Chemnet Distance (FCD) (Preuer et al., 2018) is a general purpose metric that measures
diversity of the generated molecules, as well as the extent of their chemical and biological property
alignment with a reference set of real molecules. Specifically, the last layer activations of ChemNet
are used for this purpose. Lower is better.

• Frag: Fragment similarity (Frag), measures the cosine distance between the fragment frequencies of
the generated molecules and a set of reference molecules. Higher is better.

• SNN: Nearest Neighbor Similarity (SNN) quantifies how close the generated molecules are to the true
molecule manifold. Specifically, it computes the average similarity of a generated molecule to the
nearest molecule from the reference set. Higher is better.

• IntDiv: As the name suggests, Internal Diversity (IntDiv) accounts for diversity by computing the
average pairwise similarity of the generated molecules. Higher is better.

For our purpose, we evaluated these metrics with QM9 and ZINC250K as the reference sets. As shown in Table 9
and Table 10, ModFlow achieves better performance results across all metrics. Notably, ModFlow registers
lower FCD and higher IntDiv scores compared to other methods, suggesting that ModFlow is able to generate
diverse set of molecules similar to those present in the real datasets.

Table 9: Evaluation of performance on MOSES metrics on generative models on QM9 dataset. FCD
is lower the better, Frag, SNN, and IntDiv higher the better.

Method FCD (↓) Frag (↑) SNN (↑) IntDiv (↑)
GVAE 0.513 0.821 0.582 0.822
GraphEBM 0.551 0.831 0.547 0.831
GraphAF 0.732 0.863 0.565 0.823
GraphDF 0.683 0.892 0.562 0.839
MoFlow 0.496 0.840 0.502 0.852

ModFlow (2D-EGNN) 0.432 0.928 0.608 0.875
ModFlow (3D-EGNN) 0.478 0.934 0.613 0.885
ModFlow (JT-2D-EGNN) 0.421 0.921 0.595 0.867
ModFlow (JT-3D-EGNN) 0.401 0.939 0.624 0.889

17



Table 10: Evaluation of performance on MOSES metrics on generative models on ZINC250K dataset.
FCD is lower the better, Frag, SNN, and IntDiv higher the better.

Method FCD (↓) Frag (↑) SNN (↑) IntDiv (↑)
JTVAE 0.512 0.890 0.5477 0.855
GVAE 0.571 0.871 0.532 0.852
GraphEBM 0.613 0.843 0.487 0.821
GraphAF 0.524 0.803 0.465 0.855
GraphDF 0.658 0.869 0.515 0.829
MoFlow 0.597 0.851 0.452 0.832

ModFlow (2D-EGNN) 0.495 0.891 0.570 0.863
ModFlow (3D-EGNN) 0.512 0.905 0.584 0.869
ModFlow (JT-2D-EGNN) 0.501 0.915 0.563 0.857
ModFlow (JT-3D-EGNN) 0.523 0.929 0.594 0.879

We also evaluated the generated structures via distributions of their important properties. Specifically, we
obtained kernel density estimates of these distributions to aid in visualization. We consider the following
standard properties.

• Weight: sum of the individual atomic weights of a molecule. The weight provides insight into the bias
of the generated molecules toward lighter or heavier molecules.

• LogP: ratio of concentration in octanol-phase to the aqueous phase, also known as the octanol-water
partition coefficient. It is computed via the Crippen (Wildman and Crippen, 1999) estimation.

• Synthetic Accessibility (SA): an estimate for the synthesizability of a given molecule. It is calculated
based on contributions of the molecule fragments Ertl and Schuffenhauer (2009).

• Quantitative Estimation of Drug-likeness (QED): describes the likeliness of a molecule as a viable
candidate for a drug. It ranges between [0,1] and captures the abstract notion of aesthetics in medicinal
chemistry (Bickerton et al., 2012).

Figure 9 and Figure 10 show that barring some dispersion in QED and logP (especially on Zinc250K), the
property distributions of the molecules generated by ModFlow generally match the corresponding distributions
on the reference datasets quite closely. These results demonstrate the effectiveness of ModFlow in generating
molecules that have properties similar to the molecules in the reference set.

18



Figure 9: (QM9) Distributions of the chemical properties.

Figure 10: (ZINC250K) Distributions of the chemical properties.

19



A.7 Additional examples of molecules generated by ModFlow .

20


	Appendix
	Derivation of modular adjoint
	Tree Decomposition
	Equivariant Graph Neural Networks 
	Connection to Temporal Graph Networks
	Implementation Details
	Additional Evaluation Metrics
	Additional examples of molecules generated by ModFlow .


