
A Derivation of the ELBO

The complete derivation of the ELBO in Equation 1 is as follows.
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p (ŝ1:T ,u0:T , z1:T )
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qθ (ŝ1:t | u0:t, z1:t) log [p(ut | zt) p(zt | ŝt)] dŝ1:t
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p(ŝt | ŝt−1,ut−1)
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}
,

where ŝ1:T ∼ qθ (ŝ1:T | u0:T , z1:T ) and the inequality in Equation 3 is obtained via Jensen’s inequal-
ity.

B Experimental Setup

In order to clarify the generalization of our proposed method, we used three different Dec-POMDP
domains, SMAC, Google Research Football, and Multi-Agent Discrete MuJoCo, as experimental
platforms. All experiments in this paper are carried out with five different seeds on Nvidia GeForce
RTX 3090 and Intel(R) Xeon(R) Platinum 8280. We use the official codes for other baseline
algorithms, and the hyperparameters are consistent with their original work. Next, we will introduce
the settings of the three environments, respectively.

B.1 SMAC

In SMAC, each agent can only obtain entity information within the visible range. The goal of training
is to guide the allied agents to defeat the enemy units, so the reward function is related to the health
value of all enemy agents. Besides, agents can obtain the current set of available actions. We set the
dimension of the latent state in SMAC as the product of 16 and the number of allied agents, and other
training hyperparameters for MBVD follow that of QMIX. For MBVD, each independent experiment
takes 8 to 30 hours, which is the same as the time spent by QMIX.

We used StarCraft version SC2.4.6.2.69232 instead of the relatively easy version SC2.4.10. The
results for different versions are not directly comparable since the underlying dynamics differ. Table 1
provides an overview of the SMAC scenarios. The recognized difficulties of the scenarios are also
determined based on the version SC2.4.6.2.69232 of StarCraft.
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Name Ally Units Enemy Units Type Difficulty

2s3z 2 Stalkers
3 Zealots

2 Stalkers
3 Zealots

Heterogeneous
Symmetric Easy

3s5z 3 Stalkers
5 Zealots

3 Stalkers
5 Zealots

Heterogeneous
Symmetric Easy

1c3s5z
1 Colossus
3 Stalkers
5 Zealots

1 Colossus
3 Stalkers
5 Zealots

Heterogeneous
Symmetric Easy

5m_vs_6m 5 Marines 6 Marines Homogeneous
Asymmetric hard

bane_vs_bane 4 Banelings
20 Zerglings

4 Banelings
20 Zerglings

Heterogeneous
Symmetric hard

2c_vs_64zg 2 Colossi 64 Zerglings
Homogeneous
Asymmetric

Large Action Space
hard

MMM2
1 Medivac

2 Marauders
7 Marines

1 Medivac
3 Marauder
8 Marines

Heterogeneous
Asymmetric
Macro tactics

Super Hard

27m_vs_30m 27 Marines 30 Marines
Homogeneous
Asymmetric

Massive Agents
Super Hard

3s5z_vs_3s6z 3 Stalkers
5 Zealots

3 Stalkers
6 Zealots

Heterogeneous
Asymmetric Super Hard

Table 1: Maps in different scenarios.

B.2 Google Research Football

In Google Research Football, we need to train our players to kick the ball into the opponent’s
goal. We chose three official scenarios in the Football Academy: academy_3_vs_1_with_keeper,
academy_pass_and_shoot_with_keeper, and academy_run_pass_and_shoot_with_keeper. The initial
positions of all players and the ball in the three scenarios are shown in Figure 8. We control all the
agents in red (except the goalkeeper on the far left) against the agents in blue, which are controlled
by built-in AI. Our players have 19 discrete actions, including moving, passing, shooting ,and so
on. Unlike SMAC, the agents in Google Research Football cannot know which actions are feasible.
The global state of the environment includes the two-dimensional position coordinates and moving
directions of all agents on the field, as well as the three-dimensional position coordinates and moving
directions of the football. The physical meaning of the local observation is the same as that of the
global state, except that the absolute positions of all entities are replaced with relative ones. We also
ignore the identifier of agents.

(a) (b) (c)

Figure 8: The initial position of each agent in the Google Research Football scenarios considered in
our paper: (a) academy_3_vs_1_with_keeper, (b) academy_pass_and_shoot_with_keeper, and (c)
academy_run_pass_and_shoot_with_keeper. The red dots represent our players, and the blue dots
denote the opposing players. The football is represented by green dots.

For the reward function, in addition to the reward for scoring a goal, we also added an additional
reward contribution for moving the ball close to the opponent’s goal, similar to the official CHECK-
POINT reward function in the Football Engine. To increase the game’s difficulty and speed up the
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agent’s training, we set the episode to end when the ball returns to the left half. Besides, scoring
goals and reaching the maximum time step will also cause the episode to be terminated.

Due to the small number of agents in Google Research Football scenarios, we adjusted the latent
state dimension to the product of 8 and the number of our players. In addition, since there is no
information about the feasible action set in this environment, we ignore the LFA item in Equation 2.
All experiments in Google Research Football were completed within two days.

B.3 Multi-Agent Discrete MuJoCo

In the original Multi-Agent MuJoCo, the action space of each joint is [−1, 1]. To accommodate
algorithms like QMIX, we discretize the action space into K equally spaced atomic actions. The set

of atomic actions for any joint is A =
{

2j
K−1 − 1

}K−1

j=0
. We treat each joint as an agent, and joints

are connected by adjacent edges. A configurable parameter l ≥ 0 determines the maximum graph
distance to the agent at which joints are observable. The agent observation is then given by a fixed
order concatenation of the representation vector of each observable joint. Furthermore, all features
in the state are normalized. With the above modifications, we get a benchmark for cooperative
multi-agent robotic control with discrete action spaces. In this paper, we set K = 31 and l = 1.

(a) HalfCheetah (6) (b) Hopper (3) (c) Walker (6) (d) Humanoid (17)

Figure 9: Illustration of benchmark tasks in Multi-Agent MuJoCo. The numbers in brackets mean
the number of joints (agents) contained in each robot.

B.4 Hyperparameters

In this paper, we use the QMIX-style framework with its default hyperparameters suggested by the
original paper for the reinforcement learning process of MBVD. Table 2 presents the hyperparameters
of MBVD. We use n to represent the number of our agents in the environment.

Description Value
Type of optimizer RMSProp
RMSProp param α 0.99
RMSProp param ϵ 0.00001
Learning rate 0.0005
How many episodes to update target networks 200
Reduce global norm of gradients 10
Batch size 32
Capacity of replay buffer (in episodes) 5000
Discount factor γ 0.99
Starting value for exploraton rate annealing 1
Ending value for exploraton rate annealing 0.05
Horizon of the imagined rollout k 3
KL balancing α 0.3
Dimension of the latent state ŝ in SMAC n×16
Dimension of the latent state ŝ in Google Research Football n×8
Dimension of the latent state ŝ in Multi-Agent Discrete MuJoCo n×8
Dimension of the aggregated rollout state ŝRollout Same as that of the real state s

Table 2: Hyperparameter settings.
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C Additional Experimental Results

C.1 Results of Other Scenarios in SMAC

We give the performance of all algorithms on other official SMAC maps in Figure 10. The version of
StarCraft II in the paper is SC2.4.6.2.69232. The reason why we use this difficult version is that the
difficulty of each map is originally delineated according to this version. We do not think there will
be a significant change in the ranking of algorithm performance even in SC2.4.10. In 3s_vs_5z and
corridor, MBVD performs worse than some other baselines, which we believe is caused by its basic
algorithm QMIX. As can be seen from the 3s_vs_5z scenario, MBVD can still improve the sample
efficiency of QMIX. In both 6h_vs_8z and corridor maps, QMIX fails to solve tasks, which is why
MBVD performs poorly in both scenarios. However, MBVD based on QMIX performs better than
other baselines in most scenarios and can be applied to almost all value decomposition methods to
improve the sample efficiency of the original algorithm.
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Figure 10: Comparisons between MBVD and baselines on all other maps in SMAC.

C.2 Additional Ablation Studies

We perform ablation studies on other SMAC maps and show the results. The experiments are
performed in the easy map 1c3s5z and the super hard map MMM2, respectively. We still explore the
role of the imagination module first. In Figure 11, QMIX-RS and QMIX-LS still perform poorly,
especially in MMM2, which clarifies that the inconsistency between the current policy and the policy
that generates imagined states is detrimental to the reinforcement learning process.
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Figure 11: Results for ablation studies on two maps.

Next, we continue to explore how horizon length affects the performance of MBVD. The performance
of MBVD under different k values in these two scenarios is shown in Figure 12. In the easy scenario
1c3s5z, the sample efficiency of MBVD under smaller k values is higher; in the super hard scenario
MMM2, the opposite is true. Therefore, we conclude that the optimal value of k is different in
different scenarios. Longer rollout horizons in easy scenarios will introduce more instability early in
training. In hard scenarios, small values of k can make MBVD underutilize its imagination.

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 (%
)

1c3s5z

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

100

M
ed

ia
n 

Te
st

 W
in

 (%
)

MMM2
k=1 k=3 k=5 QMIX best

Figure 12: MBVD with different k values on two maps.
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