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Abstract
We prove the Fast Equilibrium Conjecture proposed by Li et al. [1], i.e., stochastic
gradient descent (SGD) on a scale-invariant loss (e.g., using networks with various
normalization schemes) with learning rate η and weight decay factor λ mixes in
function space in Õ(1/(ηλ)) steps, under two standard assumptions: (1) the noise
covariance matrix is non-degenerate and (2) the minimizers of the loss form a
connected, compact and analytic manifold. The analysis uses the framework of Li
et al. [2] and shows that for every T > 0, the iterates of SGD with learning rate
η and weight decay factor λ on the scale-invariant loss converge in distribution
in ln(1 + Tλ/η)/(4ηλ) iterations as ηλ → 0 while satisfying η ≤ O(λ) ≤
O(1). Moreover, the evolution of the limiting distribution can be described by a
stochastic differential equation that mixes to the same equilibrium distribution for
every initialization around the manifold of minimizers as T → ∞.

1 Introduction

Generalization in modern deep learning has significantly deviated from classical learning theory
due to the vast overparametrization in deep neural networks and is underlain by the implicit bias of
training algorithms [3]. Instead of decreasing the training objective as fast as possible, the training
algorithm and its hyperparameters are often tuned for good implicit bias, i.e., the ability to pick
empirical minimizers with good generalization among various different minimizers. Sometimes
good implicit bias occurs at the cost of less efficient optimization, including the usage of large
learning rates (LR) [4] or small batch size [5, 6]. Thus the training objective alone is not an effective
measure of the entire training progress. In other words, behind the minimization of the training
objective, there potentially exists some hidden progress, and the evolution of the model therein
plays a crucial role in the implicit bias.

The current paper aims to provide a better theoretical understanding of such hidden progress for
neural networks equipped with normalization layers (e.g., BatchNorm [7], LayerNorm [8], and
others [9–13]) trained by Stochastic Gradient Descent (SGD) with Weight Decay (WD), dubbed
SGD+WD. For learning rate (LR) η and WD factor λ, we formulate SGD+WD as

xη,λ(k + 1) = (1− ηλ)xη,λ(k)− η∇Lξk(xη,λ(k)) (1)

where xη,λ(k) ∈ RD is the parameter after k iterations, and Lξk is the loss over the ξk-th sample
with each ξk being sampled independently and uniformly randomly across all training data. In
particular, we are interested in explaining the following phenomenon:

Longer training with SGD+WD after LR decay improves final test accuracy of
normalized networks.

We demonstrate such phenomenon in Figure 1, where test accuracy after LR decay keeps improving
when training accuracy plateaus. In an extreme case, Li et al. [1] empirically showed that the test
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(a) Train and test accuracy for CIFAR-10
training with η = 0.8, λ = 5 · 10−4.

(b) Test accuracy after LR decay and the to-
tal norm of parameters before LR decay.

Figure 1: The train and test accuracy plateaus after parameter norm convergence within 100 epochs, but the
generalization of SGD iterate after LR decay keeps improving. Figure 1a shows the train and test accuracy of
scale invariant PreResNet trained by SGD+WD on CIFAR-10 with standard data augmentation. Each red dot
in Figure 1b represents the test accuracy of model which decays LR to 10−3 at the corresponding epoch. The
test accuracy is evaluated until achieving full training accuracy after LR decay.

accuracy of ResNet can still improve after maintaining nearly full training accuracy for thousands
of epochs when trained by SGD+WD on CIFAR10. Such phenomenon is also demonstrated for
a standard decoder-only Transformer trained by Adam on small arithmetic datasets and is named
‘grokking’ by Power et al. [14], where the validation accuracy can increase from random guess to
full accuracy long after the almost perfect fitting of the training data.

Based on theoretical derivations, Li et al. [1] further proposed the Fast Equilibrium Conjecture (Con-
jecture 1.1), which informally says that for the normalized model trained by SGD+WD, such hidden
progress happens in Õ(1/(ηλ)) steps and the model converges to an equilibrium, and since then,
further training can no longer improve the final test accuracy. A recent line of works [15, 16, 2]
show that gradient noise in stochastic gradient can cause a higher order regularizing effect and im-
prove generalization even when training loss is close to 0. In particular, Li et al. [2] proposed a
mathematical framework for characterizing the implicit bias of SGD in the time scale of O(1/η2).
Under such a time scale, the hidden progress of SGD is shown to be described by a Stochastic Dif-
ferential Equation (SDE) termed the limiting diffusion, which can then be used to rigorously prove
its generalization benefit in some cases (see Section 6 in [2]).

However, the O(1/η2) rate given by Li et al. [2] is not applicable to networks with normalization
layers and WD, because the assumptions on the loss landscape made in [2] that minimizers of
training loss connect as a manifold fail to hold for networks with normalization layers and WD,
or more broadly, for all scale invariant loss (see Definition 2.2) with ℓ2 regularization. Here a loss
L is scale invariant means that L(Cx) = L(x) for any C > 0 and parameter x ̸= 0, which is a
consequence of normalization layers. The assumption of manifold of minimizers fails because any
ℓ2-regularized scale invariant loss has no local minimizer, not to mention the manifold of minimizers.
To see this, simply note that for every x where scale invariant loss is well-defined, i.e., x ̸= 0,
reducing its norm while keeping the direction of x strictly decreases ℓ2 regularized scale invariant
loss. Moreover, the loss landscape becomes unboundedly sharp around the origin. These drastic
changes to loss landscape induced by normalization layers could lead to bizarre training dynamics
beyond the scope of standard optimization viewpoint, e.g., deep neural networks with normalization
can even be trained with an exponentially increasing LR schedule [17].

1.1 Our Results

In this paper, we show that for networks with normalization trained by SGD+WD the Õ(1/(ηλ))
rate is indeed the correct time scale for the aforementioned hidden progress and deliver a partial
proof to the Fast Equilibrium Conjecture proposed by Li et al. [1]. The key observation here is
that we need to rescale the SGD+WD dynamics both in time and parameter norm by leveraging the
scale invariance of loss, so that the framework in [2] can again be applied to achieve an SDE-based
characterization for the hidden progress. Our rescalings are motivated by the analysis in [1] for the
parameter norm convergence which happens in Õ(1/(λη)) steps.

Before stating the main theorem, we will first introduce some notations and restate the Fast Equilib-
rium Conjecture. Let Fz(x) be the output of a scale invariant neural network with parameter x on
data z, i.e., Fz(x) = Fz(Cx) for any parameter x, input data z and constant C > 0. In other words,
the output of the network only depends on the direction of parameter, shorthanded as x := x/∥x∥2.
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Let Ξ be the total number of training data and L(x) = 1
Ξ

∑Ξ
ξ=1 Lξ(x) be the empirical training loss.

Denote σ(x) = (σ1(x), . . . , σΞ(x)) where each σξ(x) := (∇Lξ(x) − ∇L(x))/
√
Ξ. Then we can

rewrite SGD+WD (Equation (1)) as

xη,λ(k + 1) = (1− ηλ)xη,λ(k)− η
(
∇L(xη,λ(k)) +

√
Ξ · σξk(xη,λ(k))

)
. (2)

Let {W (t)}t≥0 be a Ξ-dimensional Brownian motion. As a common approach to analyzing SGD,
the canonical SDE approximation of SGD+WD (Equation (2)) is

dXη,λ(t) = −η∇L(Xη,λ(t))dt− ηλXη,λ(t)dt+ ησ(Xη,λ(t))dW (t) (3)

The Fast Equilibrium Conjecture is stated below. The convergence rate is much faster than the
e−Θ(1/η) global mixing time of Langevin dynamics [18] and thus the conjecture gets its name.
Conjecture 1.1 (Fast Equilibrium Conjecture, Li et al. [1]). Suppose Xη,λ(t) is a solution of (3),
then for any input z, Fz(Xη,λ(t)) converges to the same equilibrium distribution independent of the
initial parameter xinit in Õ(1/(ηλ)) time.

We note that the above conjecture is implied by the convergence of the distribution of the parameter
direction Xη,λ(t). Next, the main theorem of this paper is stated informally below.
Theorem 1.2 (Informal version of Theorem 5.5). Suppose Γ is a connected manifold consisting
only of local minimizers of L. Under some regularity assumptions, there is an open neighborhood
U of Γ, such that for any initialization xinit ∈ U and T > 0, as ηλ → 0 with η ≤ O(λ) ≤
O(1), both x̄η,λ

(⌊
ln( 2λ

η (e2T−1)+1)

4ηλ

⌋)
and Xη,λ

(
ln( 2λ

η (e2T−1)+1)

4ηλ

)
converge in distribution to the

same distribution denoted by µT,xinit . Moreover, as T → ∞, µT,xinit weakly converges to the same
equilibrium distribution for every xinit ∈ U .

The main contributions of this paper are summarized as follows:

1. We give a SDE-based characterization (Theorem 4.4) for the limiting dynamics of
SGD+WD for a scale invariant stochastic loss in the limit of ηλ → 0 with η = O(λ)
and λ = O(1). By introducing a novel time-rescaling tailored to the scale invariant loss
and weight decay, our analysis adapts the framework proposed by Li et al. [2].

2. We show that SGD without WD for a stochastic scale invariant loss has the same limiting
dynamics as that of SGD+WD, but is exponentially slower (see Theorem 3.2). This is
consistent to the empirical observation that turning on WD for SGD for scale invariant loss
helps generalization [19, 1].

3. Under the assumption of all minimizers forming a manifold and noise being non-degenerate
in the tangent space of the manifold, we show that from any initialization, the limiting
dynamics of SGD+WD converges to a unique stationary distribution (see Theorem 5.4 and
Theorem 5.5). This delivers a partial proof to the Fast Equilibrium Conjecture in [1].

4. Though our convergence result is asymptotic, we verify in simplified settings that the phe-
nomena predicted by our theory happens with LR η and WD factor λ of practical scale (see
Section 6 for details of experiments). We also show empirically that the mixing process
exists in practical settings, and is beneficial for generalization.

2 Preliminary
Notations. We denote by N the set of all nonnegative integers and R+ the set of all nonnegative
real numbers. For any k ∈ N, we denote by Ck the set of all k times continuously differentiable
functions. For any vector u ∈ RD, we denote its i-th coordinate by ui. For any mapping F : RD →
RD, we denote the Jacobian of F at x by ∂F (x) ∈ RD×D where the (i, j)-th entry is ∂jFi(x). We
also use ∂F (x)[u] and ∂2F (x)[u, v] to denote the first and second order directional derivatives of
F at x along the derivation of u (and v). With a slight abuse of notation, we view ∂2F as a linear
mapping on RD×D such that ∂2F (x)[A] =

∑D
i,j=1 ∂

2F (x)[ei, ej ]Aij , for any A ∈ RD×D. For
any submanifold Γ ⊂ RD and x ∈ Γ, we denote by Tx(Γ) the tangent space of Γ at x. We denote
by 1ξ ∈ RΞ the one-hot vector where the ξ-th coordinate is 1, and 1 denotes the all 1 vector. We
say K ⊂ RD is a cone if and only if 0 /∈ K and ∀α > 0, αK ⊆ K.
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Recall that the training loss L : RD → R is defined as L = 1
Ξ

∑Ξ
i=1 Li where Li is the loss on the i-

th sample. With vast overparametrization in modern machine learning models, multiple minimizers
can exist and form a manifold [20, 21]. Thus following Fehrman et al. [22], Li et al. [2], Arora et al.
[23], we make the assumption below throughout this paper.
Assumption 2.1. Each loss function Li : RD → R is a C4 function. Γ is a (D −M)-dimensional
C2-submanifold of RD for some integer M ∈ [0, D − 1], where each x ∈ Γ is a local minimizer of
L and rank(∇2L(x)) =M for all x ∈ Γ.

Note that ∇2L(x) must have zero eigenvalues in the tangent space of Γ at x, we are indeed assuming
the Hessian ∇2L attains the maximal rank everywhere on the manifold Γ.

In this paper, we are interested in the behavior of SGD+WD with each Li being scale invariant,
or equivalently, 0-homogenous. We note that the level sets of scale invariant functions are always
cones, which will be used frequently in our analysis. To this end, we make Assumption 2.3.
Definition 2.2 (Homogeneous Functions). We say a function f : RD \ {0} → Rm is a k-
homogeneous for some k ∈ R if and only if for all x ∈ RD \ {0} and α > 0, f(αx) = αkf(x).
Specifically, we say a function f is scale invariant if and only if it is 0-homogeneous.
Assumption 2.3. Li is scale invariant for each 1 ≤ i ≤ Ξ and Γ is a cone.

Below are two useful properties of homogeneous functions, whose proofs follow from directly ap-
plying chain rules.
Lemma 2.4. For any l ∈ N and k-homogeneous function f , ∇lf is (k − l)-homogeneous.
Lemma 2.5 (Euler’s Theorem for Homogeneous Functions). For any real-valued k-homogeneous
function f , ⟨x,∇f(x)⟩ = kf(x). Specifically, if f is scale invariant, ⟨x,∇f(x)⟩ ≡ 0.

Recall that σi(x) = 1√
Ξ
(∇Li(x)−∇L(x)), so the noise function σ is (−1)-homogeneous and thus

the noise covariance Σ(x) = σ(x)σ(x)⊤ is (−2)-homogeneous.

Next, the following notion of limiting map of gradient flow plays a key role in our analysis.
Definition 2.6. For any x ̸= 0, we define the gradient flow governed by −∇L as the unique solution
of ϕ(x, t) := x −

∫ t
0
∇L(ϕ(x, s))ds for t ≥ 0 and denote its associated limiting map by Φ(x) =

limt→∞ ϕ(x, t) whenever the limit exists.

Throughout the paper, we use U to denote the attraction set of Γ under gradient flow, that is, U =
{x ∈ RD | Φ(x) is well-defined and Φ(x) ∈ Γ}. By Lemma B.15 of Arora et al. [23], U is open
and Φ is C2 in U with ∇2Φ being locally lipschitz.
Lemma 2.7. Under Assumption 2.3, U is a cone and Φ is 1-homogeneous in U .

Li et al. [2] established several important properties of Φ by relating the derivatives of Φ to those of
L, and in particular, we recall the following characterization of ∂Φ.
Lemma 2.8 (Lemma 4.3, [2]). For any x ∈ Γ, ∂Φ(x) ∈ RD×D is the orthogonal projection
matrix onto the tangent space Tx(Γ). As a consequence, for any x ∈ Γ, Assumption 2.3 =⇒
x ∈ Tx(Γ) =⇒ ∂Φ(x)x = x.

2.1 Limiting Diffusion on The Manifold of Local Minimizers

We recap the notion of Katzenberger processes proposed by Li et al. [2] and the characterization of
the corresponding limiting diffusion based on Katzenberger’s theorems [24]. In this subsection we
only assume Assumption 2.1, but not Assumption 2.3.
Definition 2.9 (Uniform metric). The uniform metric between two functions f, g : [0,∞) → RD is
defined to be dU (f, g) =

∑∞
T=1 2

−T min{1, supt∈[0,T ) ∥f(t)− g(t)∥2}.

For each n ∈ N, let An : R+ → R+ and Bn : R+ → R+ be two non-decreasing functions
with An(0) = Bn(0) = 0, and {Zn(t)}t≥0 be a RΞ-valued stochastic process. In our context of
SGD+WD, given loss function L : RD → R, noise function σ : RD → RD×Ξ and initialization
xinit ∈ U , we call the following stochastic process (4) a Katzenberger process

Xn(t) = xinit +

∫ t

0

σ(Xn(s))dZn(s) +

∫ t

0

Xn(t)dBn(s)−
∫ t

0

∇L(Xn(s))dAn(s) (4)
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if as n→ ∞ the following conditions are satisfied:

1. An increases infinitely fast, i.e., ∀ϵ > 0, inft≥0(An(t+ ϵ)−An(t)) → ∞;
2. Bn(t) converges to c · t in uniform metric for some constant c.

3. Zn converges in distribution to (IΞ − 1
Ξ11

⊤)W in uniform metric where W is a Ξ-
dimension standard Brownian motion;

Theorem 2.10 (Adapted from Theorem 4.6 in Li et al. [2]). Given a Katzenberger process
{Xn(·)}n∈N, if SDE (5) has a global solution Y in U with Y (0) = Φ(xinit), then for any t > 0,
Xn(t) converges in distribution to Y (t) as n→ ∞.

Y (t) = Φ(xinit) +

∫ t

0

c∂Φ(Y (s))Y (s)ds+

∫ t

0

∂Φ(Y (s))σ(Y (s))dW (s)

+

∫ t

0

1

2
∂2Φ(Y (s))[Σ(Y (s))]ds. (5)

We note that the global solution always exists if the manifold Γ is compact. Our notion of Katzen-
berger process and theorem statement is slightly more general than those in Li et al. [2] to handle
the weight decay. However, our formulation is still under the original framework of Katzenberger
[24] and the proof in Li et al. [2] can be easily adapted to Theorem 2.10.

3 Warm-up: Simultaneous Limit Case
As a warm-up, we first consider the setting where η, λ → 0 simultaneously with λ

η ≡ C for some
constant C ≥ 0. In this special regime, we do not need to use the scale invariance property of
the loss, and we can directly apply Theorem 2.10 to obtain the limiting diffusion of SGD+WD.
Nonetheless, we will see the benefit of weight decay as a source of acceleration. While for the
general case of ηλ → 0 that will be considered in Section 4, we need to carefully design a time
rescaling by calibrating with the dynamics of parameter magnitude, so that under the new scaling
the dynamics can still be understood as a Katzenberger process.

Now, recall the SGD+WD updates in Equation (2), and let us fix xη,λ(0) = xinit for some xinit ∈ U .
Define X̌η,λ(t) = xη,λ(⌊t/η2⌋), which is roughly equivalent to SDE (3) with 1/η2 times accelera-
tion, and we can rewrite the discrete-time update of xη,λ as

X̌η,λ(t) = xinit +

∫ t

0

σ(X̌η,λ(s))dZη,λ(s) +

∫ t

0

X̌η,λ(s)dBη,λ(s)−
∫ t

0

∇L(X̌η,λ(s))dAη,λ(s) (6)

where Aη,λ, Bη,λ and Zη,λ are defined by

Aη,λ(t) = η⌊t/η2⌋, Bη,λ(t) = λη⌊t/η2⌋, Zη,λ(t) = η
∑⌊t/η2⌋

k=1

√
Ξ

(
1ξk − 1

Ξ
1

)
. (7)

Note that Aη,λ(t) is roughly t/η which becomes very large for small η, thus the negative gradient
part will drive X̌η,λ(t) rapidly towards the manifold Γ and force X̌η,λ(t) to stay close to Γ after
that. On the other hand, as η → 0, Bη,λ(t) will converge to Ct and Zη,λ will weakly converge to
a Brownian motion, and these terms make up the slow dynamics of SGD. More precisely, we have
the following lemma summarizing the properties of these integrators, which shows Equation (6) is
a valid Katzenberger process.

Lemma 3.1. Let Aη,λ, Bη,λ and Zη,λ be as defined in Equation (7). Then as η, λ→ 0 with λ
η ≡ C,

it holds that (1) Aη,λ increases infinitely fast, (2) Bη,λ(t) converges to Ct in uniform metric and
(3) Zη,λ converges in distribution to (IΞ − 1

Ξ11
⊤)1/2W in uniform metric where {W (t)}t≥0 is the

Ξ-dimensional standard Brownian motion.

Therefore, a direct application of Theorem 2.10 yields the limiting diffusion in this case.
Theorem 3.2. Under Assumption 2.1, let xη,λ(0) ≡ xinit ∈ U , ∀η, λ > 0 in SGD+WD (2). Consider

dYC(t) = −C∂Φ(YC)YCdt+
1

2
∂2Φ(YC)[Σ(YC)]dt+ ∂Φ(YC)σ(YC)dW (t) (8)

where {W (t)}t≥0 is the standard Brownian motion in RΞ. Suppose SDE (8) has a global solution
YC in U for some C ≥ 0 with YC(0) = Φ(xinit), then xη,λ(⌊t/η2⌋) converges in distribution to
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YC(t) as λ, η → 0 with λ
η ≡ C. Also, under Assumption 2.3, SDE (8) with any C ′ ≥ 0 has a global

solution YC′ in U with YC′(0) = Φ(xinit). Moreover, YC′(t)
d
= Y0(

e4C
′t−1

4C′ )e−C
′t.

Remark 3.3. Theorem 3.2 shows that when there is no WD, the limiting diffusion is still the same
as that with WD, but exponentially slower than that with WD in the regime of LR η and WD factor
λ going to zero with a fixed ratio.

4 Limiting Diffusion for The General Case

In the previous section, we showed that the limiting diffusion exists when η and λ go to zero with
a fixed ratio. However, the situation is more complicated in the general case where we drop the
assumption of η/λ being fixed. Below we first explain the challenges in analysis and our solution
for this general regime. Then we present the continuous-time analysis for SDE and the discrete-time
analysis for SGD+WD. Our analysis applies for all the cases when ηλ→ 0 with η = O(λ) = O(1).

Challenges for the General Case. A concrete example for the challenge is when η → 0 and λ be
fixed as a constant, which is also the most natural and practical setting. We quickly find ourselves
in a dilemma if we still want to apply Katzenberger’s theorem [24], or its simplified version The-
orem 2.10: If we view WD or ℓ2 regularization as the ‘fast’ past of the dynamics, that is, a part
of the loss function, then there is no minimizer for the ℓ2 regularized scale-invariant loss and thus
it doesn’t satisfy the condition of Katzenberger’s theorem; if we view WD as some ‘slow’ dynam-
ics and formulate it as λ

ηXη,λdBη,λ(t) in Equation (6), then unlike the simultaneous limit case, λη
doesn’t necessarily have a limit, and thus the condition of Katzenberger’s theorem is again not met.

The above dilemma reflects two different roles of WD in early and late phase of training: in the
early phase, when the norm is large, WD is more like a part of the loss function that executes the
ℓ2 regularization. In contrast, in the late phase of SGD training, especially when the norm square
of parameters has stabilized to some value, i.e., ∥xη,λ(t)∥22 ∝

√
η
λ (e.g. Figure 1b), WD should be

viewed as the ‘slow’ dynamics and we can apply the analysis in the simultaneous limit case. This
is because by the scale-invariance of loss L, Equation (2) can be rewritten as the following form,
Equation (9), with η̃ =

√
ηλ, λ̃ =

√
ηλ, x̃η̃,λ̃ = (λη )

1/4xη,λ.
x̃η̃,λ̃(k + 1) = (1− η̃λ̃)x̃η̃,λ̃(k)− η̃(∇L(xη̃,λ̃(k)) +

√
Ξσξ̃k(xη̃,λ̃(k))) (9)

With such a rescaling, we successfully make the norm of parameters in constant scale, that is,
∥x̃η̃,λ̃∥22 =

√
λ
η ∥xη,λ∥

2
2 = Θ(1) and thus we can apply Katzenberger’s theorem. Note that we

cannot do this in the early phase of SGD+WD as we start from a fixed initialization and such a
rescaling will change the magnitude of the initilaization.

Our Strategy for Analysis. To overcome the above dilemma, our core strategy is to introduce
a novel combination of parameter rescaling Rη,λ (Equation (11)) and time rescaling τη,λ (Equa-
tion (12)) which smoothly interpolates the early and late regime. Because the rescalings are adap-
tive to the norm of the parameter along the training trajectory, they allow us to apply Katzenberger’s

theorem on the rescaled dynamics
Xη,λ(τ

−1
η,λ(t))

Rη,λ(τ
−1
η,λ(t))

. (See formal statements in Theorem 4.1). Compared

with the ordinary SGD without WD studied in Li et al. [2] where the time rescaling is set to be a
fixed acceleration by 1/η2 times, here the design of the time rescaling is more complicated.

Since the norm has no effect on the loss value but only affects the speed, we need to consider the
dynamics of the parameter direction. To do so, we need to normalize the iterates properly. However,
when the trace of the noise covariance is not constant, in general it is hard to find a close-form
solution for ∥Xη,λ(t)∥2, but we can approximate it using the former special case. In specific, recall
the canonical SDE approximation in (3). Li et al. [1] proved that the dynamics of ∥Xη,λ(t)∥22 is

d∥Xη,λ(t)∥22 = −2ηλ∥Xη,λ(t)∥22 + η2 tr(Σ(Xη,λ(t))dt.

Suppose tr(Σ(x)) ≡ σ̂2/∥x∥22 for some σ > 0, then the above further simplifies into d∥Xη,λ(t)∥22 =

−2ηλ∥Xη,λ(t)∥22dt+
η2σ̂2

∥Xη,λ(t)∥2
2
dt, which admits a closed-form solution:

∥Xη,λ(t)∥42 =
ησ̂2

2λ
+ e−4ληt

(
∥Xη,λ(0)∥42 −

ησ̂2

2λ

)
. (10)
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This implies that the norm of the weights at the equilibrium is of order (η/λ)1/4. Moreover, Equa-
tion (10) reflects the scaling of the norm of the iterates in terms of η and λ as we will see later.

4.1 Continuous-time Analysis for SDE

We first consider the continuous-time case of the SDE approximation (3). The main result is sum-
marized in Theorem 4.1, which shows that the limiting diffusion exists for SDE with a suitable
non-linear rescaling.

As mentioned in the previous discussion, we consider a scaling function Rη,λ(t) inspired by the
norm dynamics for the special case in Equation (10):

Rη,λ(t) =

(
η

2λ
+ e−4ηλt

(
1− η

2λ

))1/4

. (11)

Next, to rescale the time, we define τη,λ : [0,∞) → [0,∞) by

τη,λ(t) =

∫ t

s=0

η2

Rη,λ(s)4
ds =

1

2
ln

(
1 + (e4ηλt − 1)

η

2λ

)
(12)

where the second equality follows from a direct calculation. It is easy to show that τ−1
η,λ(T ) =

ln( 2λ
η (e2T−1)+1)

4ηλ . Then we have the following theorem (see Appendix E for the proof), which
says the rescaled version of SDE approximation Equation (3) admits the following limiting dif-
fusion Equation (13), where {W (t)}t≥0 is the standard Brownian motion in RΞ.

dY (t) = −1

2
Y (t)dt+

1

2
∂2Φ(Y (t))[Σ(Y (t))]dt+ ∂Φ(Y (t))σ(Y (t))dW (t) (13)

Theorem 4.1. Under Assumption 2.1 and 2.3, let Xη,λ(0) ≡ xinit ∈ U for all η, λ > 0 in SDE (3).
Let Rη,λ(t) and τη,λ(t) be defined in (11) and (12). If SDE (13) has a global solution Y in U with

Y (0) = Φ(xinit), then
Xη,λ(τ

−1
η,λ(T ))

Rη,λ(τ
−1
η,λ(T ))

converges in distribution to Y (T ) as ηλ → 0 with η < 2λ < c

for some constant c.
Remark 4.2. The additional constraint η < 2λ when ηλ → 0 can be relaxed to η < 2Cλ for any
constant C > 0. It suffices to note that for SDE (3), Xη,λ with Xη,λ(0) = xinit and XC−1/2η,C1/2λ

with XC−1/2η,C1/2λ(0) = C−1/4xinit have the same trajectories, up to a rescaing of C−1/4. This is
equivalent to replace η/(2λ) by η/(2Cλ) in (11).

4.2 Discrete-time Analysis for SGD+WD

Now, we proceed to analyze SGD+WD by mimicking the continuous-time behavior. Specifically,
we view Rη,λ(k) as an approximation of the norm of xη,λ(k), and consider the rescaled version
of Equation (2) denoted by x̂η,λ(k) = xη,λ(k)/Rη,λ(k). Next, we introduce the time rescaling
through the τη,λ(·) defined in Equation (12) and denote t̃ = τη,λ(t), so t = τ−1

η,λ(t̃). Now define

X̃η,λ(t̃) := x̂η,λ(⌊t⌋), and it can be shown that (see Appendix E for the derivation)

X̃η,λ(t̃) = X̃η,λ(t̃) +

∫ t̃

s̃=0

−∇L(X̃η,λ(s̃))dAη,λ(s̃)−
∫ t̃

s̃=0

X̃η,λ(s̃)dBη,λ(s̃)

−
∫ t̃

s̃=0

σ(X̃η,λ(s̃))dZη,λ(s̃)

(14)

where Aη,λ, Bη,λ and Zη,λ are defined by

Aη,λ(t̃) =
∑⌊τ−1

η,λ(t̃)⌋

i=1

η

Rη,λ(i)Rη,λ(i+ 1)
, (15)

Bη,λ(t̃) =
∑⌊τ−1

η,λ(t̃)⌋

i=1
ηλ− (1− ηλ)

(
Rη,λ(i)

Rη,λ(i+ 1)
− 1

)
, (16)

Zη,λ(t̃) =
∑⌊τ−1

η,λ(t̃)⌋

i=1

η
√
Ξ

Rη,λ(i)Rη,λ(i+ 1)

(
1ξi −

1

Ξ
1

)
. (17)

The convergence of Aη,λ, Bη,λ and Zη,λ are summarized in the following lemma.
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Lemma 4.3. Let Aη,λ, Bη,λ and Zη,λ be as defined in Equation (15), (16) and (17) respectively.
Then as ηλ → 0 with η < 2λ < c for some constant c, it holds that (1) Aη,λ increases infinitely
fast, (2) Bη,λ(t) converges to t

2 in uniform metric, and (3) Zη,λ converges in distribution to (IΞ −
1
Ξ11

⊤)1/2W in uniform metric where {W (t)}t≥0 is the Ξ-dimensional standard Brownian motion.

Therefore, X̃η,λ(t̃) is also a valid Katzenberger process. Applying Theorem 2.10 yields:
Theorem 4.4. Under Assumption 2.1 and 2.3, let xη,λ(0) ≡ xinit ∈ U for all η, λ > 0 in
SGD+WD (2). Let Rη,λ(t) and τη,λ(t) be defined in (11) and (12). If SDE (13) has a global

solution Y in U with Y (0) = Φ(xinit), then for any T > 0,
xη,λ(⌊τ−1

η,λ(T )⌋)
Rη,λ(⌊τ−1

η,λ(T )⌋) converges in distribution

to Y (T ) as ηλ→ 0 with η < 2λ < c some constant c.

5 Mixing to Equilibrium
Now we proceed to study the ergodicity of the limiting diffusion (13). Omitted proofs of this section
are delayed to Appendix F.

Due to the nature of the scale invariant of the loss L, we only care about the direction of Y (t), i.e.,
Y (t)/∥Y (t)∥2. To study the ergodicity of the normalized diffusion process, we need some additional
assumptions on Γ and the noise covariance. For any r > 0, define Γr := Γ∩{x ∈ RD : ∥x∥2 = r}.
We assume that Γ1 is compact manifold to ensure the existence of stationary distribution of the
limiting diffusion process. We also need to assume that Γ1 are connected (so is Γ) for the uniqueness
of the stationary distribution.
Assumption 5.1. Γ1 is compact and connected.
We further assume that the noise is non-degenerate on the manifold of local minimizers, so that as a
Markov chain the limiting diffusion is irreducible.
Assumption 5.2 (Controllability). For each x ∈ Γ, span({∂Φ(x)σi(x)}Ξi=1) = Tx(Γ∥x∥2

).

Assumption 5.3. tr(Σ(·)) is an analytic function on RD \ {0} and Γ is an analytic manifold.

Now we are ready to state our main result in this section, which is Theorem 5.4. It is proved in two
cases respectively in Appendices F.3 and F.4, depending on whether the trace of gradient covariance
tr(Σ) is constant on Γ1 or not. If it is, then the diffusion process essentially is on a (D −M − 1)-
dimensional manifold (after suitable rescaling), Γ1, just as in the analysis by Wang and Wang [25].
Otherwise, the situation becomes more complicated and the diffusion process is on Γ, a (D −M)-
dimensional manifold, in which case we will need the analyticity assumption (Assumption 5.3).
Theorem 5.4. Under Assumption 2.1, 2.3, 5.1, 5.2 and 5.3, starting from any initialization Y (0) ∈
Γ, the distribution of Y (t) converges to a unique stationary distribution π on Γ1 in total variation.

Our main result on the fast mixing of SGD+WD and its SDE approximation follows from a direct
combination of the convergence of the SGD+WD iterates proved in Theorem 4.4 and Theorem 5.4.
Here note that as Γ1 is compact, convergence in total variation implies convergence in distribution.
Theorem 5.5 (Fast Mixing of SGD+WD). Under Assumption 2.1, 2.3, 5.1, 5.2 and 5.3, let
xη,λ(0) ≡ Xη,λ(0) ≡ xinit ∈ U for all η, λ > 0 for SGD+WD (2) and SDE approximation (3).

For any T > 0, as ηλ → 0 with η = O(λ) and λ = O(1), both x̄η,λ(⌊
ln( 2λ

η (e2T−1)+1)

4ηλ ⌋) and

Xη,λ(
ln( 2λ

η (e2T−1)+1)

4ηλ ) converge in distribution to the same distribution, denoted by µT,xinit . More-
over, for every xinit ∈ U , µT,xinit weakly converges to the same equilibrium distribution π supported
on Γ1 as T → ∞.

6 Experiments
In this section, we first empirically verify our theory for the time scaling of the dynamics in a simple
setting where our theory applies. We then show that the diffusion process exists during the training
of PreResNet on CIFAR-10, and it has implicit bias towards better generalization.

6.1 Verification of Time Scaling

Setting and Theoretical Prediction. We train the following normalized linear model by ℓ2 re-
gression: Fz(x) = ⟨ x

∥x∥2
, z⟩, where x ∈ RD is the model parameter, and z ∈ RD is the input.
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Figure 2: Scatter plots for projections of model parameters into the affine subspace containing the 1D zero-loss
unit norm manifold. Models are trained with LR η ∈ {10−2, 10−3, 10−4} and WD factor λ = 0.05. Each
small box in the figure contains 60 models that are trained with the same LR and the same number of steps. The
x axis indicates the product of the LR and the number of steps of each box; the y axis indicates log10(LR) of
each box. The dashed lines represent the time scaling 1

2
ln

(
1 + (e4ηλt − 1) η

2λ

)
= T for different T ’s (from 0

to 15.58), where t is the number of steps in SGD+WD. The dynamics are consistent with time scaling suggested
by our theory (Theorem 4.1).

Let {zi}Ni=1 be the input samples, and yi = Fzi(x
∗) be the target label for each zi, for some x∗.

The training loss is L(x) = 1
2N

∑N
i=1(Fzi(x) − Fzi(x

∗))2. We set N = D − 2, so the solution
space S = {w : ⟨w − x∗

∥x∗∥2
, zi⟩ = 0,∀i ∈ [N ]} is a 2-dimensional linear space. The manifold

of unit-norm global minimizers Γ1 is then equal to S ∩ {x | ∥x∥2 = 1}. We generate {zi}Ni=1

randomly in a way that almost surely x∗ is not contained in the linear span of {zi}Ni=1. This implies
thatM = rank(∇2L(x)) = D−2 on Γ1 and that Γ1 is a 1-dimensional manifold (a circle), thus As-
sumption 2.1 and 5.1 hold. During training, we set the loss at step t as L(t)(x) = L(x) + ⟨ x

∥x∥2
, ϵt⟩

where ϵt
iid∼ N(0, σ̂2ID) for some σ̂. Then the SGD+WD update rule is

xη,λ(k + 1) = (1− ηλ)xη,λ(k)− η

(
∇L(xη,λ(k)) +

(
ID − xx⊤

∥x∥22

)
· ϵt
∥x∥2

)
. (18)

Let σ(x) = σ̂
∥x∥2

(ID − xx⊤

∥x∥2
2

), and the canonical SDE approximation is

dXη,λ(t) = −η∇L(Xη,λ(t))dt− ηλXη,λ(t)dt+ ησ(Xη,λ(t))dW (t). (19)

For SDE approximation, we set Ξ = D, and thus Theorem 4.1 applies to Equation (19), suggesting
that the correct time scale (number of steps for SGD+WD) for the limiting dynamics is τ−1

η,λ(T ) =
ln((2λ/η)(e2T−1)+1)

4ηλ for each T ≥ 0. Furthermore, Assumption 5.3 holds because every term in this
example is analytic. Assumption 5.2 holds because for any vector v ∈ Tx(Γ∥x∥2

), we have ⟨x, v⟩ =
0, and hence ∂Φ(x)σ(x)v = ∂Φ(x) σ̂

∥x∥2
v = σ̂

∥x∥2
v. Therefore, our main theorem (Theorem 5.5)

predicts that the limiting dynamics mix in ln(λ/η)+O(1)
4ηλ steps.

Remark 6.1. For ease of demonstration, our main theorem (Theorem 5.5) is proved for SGD+WD
with finitely many samples and thus does not directly apply to Equation (18). However, our analysis
can be extended to the case of Gaussian noise in an straightforward way and the claim in Theo-
rem 5.5 indeed holds for Equation (18).

Experimental Results. In our experiments, we chooseD = 10, σ = 0.3, the WD factor λ = 0.05,
and LR η ∈ {10−2, 10−3, 10−4}. In Figure 2, we plot the projections of x

∥x∥2
on the solution space

for 60 different runs with identical initialization for each η. For each run, the only differences
are the LR η and/or the noise ξt. The dashed lines in the figure indicates our time scaling, i.e.,
1
2 ln

(
1 + (e4ηλt − 1) η2λ

)
= T . Figure 2 shows that time scaling of O((ln 2λ/η + T )/(λη)) fits the

dynamics better, compared to O(T/(ηλ)).

6.2 Limiting Diffusion on CIFAR-10

Beyond the toy example, we further study the limiting diffusion of PreResNet on CIFAR-10 [26].
We train a 32-layer PreResNet [27] with initial LR η = 0.8 and WD factor λ = 5 · 10−4. Unlike the
normalized linear model, it is hard to visualize the model projection of PreResNet on the manifold.
Instead, we choose the test accuracy of Φ(xt) as a test function. In particular, we decay the LR
to 10−3 to approximate gradient flow at different time t, and record the test accuracy after training
1000 more epochs. The results are shown in Figure 1 and Figure 3.
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We observe that without LR decay, the train accuracy, test accuracy and parameter norm converge
quickly after training 100 epochs; the test accuracy of Φ(xt) converges much slower. It suggests that
there exists a mixing process after reaching the manifold. Moreover, we observe the test accuracy
of Φ(xt) after convergence is significantly higher than Φ(xt) at 100th epoch. It indicates that the
mixing process is beneficial for generalization.

Our time scaling (12) suggests that the optimal step of LR decay grows no faster than Ω̃(1/ηλ) as
η → 0. Unfortunately, (12) alone is not sufficient for deciding the optimal step for decaying LR as
the mixing time T for the continuous dynamics is unknown. A potential usage of time scaling (12)
is to first estimate T via another SGD run with a larger LR, which we leave for future work.

7 Related Work

Normalization and Scale Invariance. Previous works have analyzed the benefits of normalization
layers from different viewpoints [28, 13, 29–50]. As noted before, normalization layers induce the
scale invariance. It has been shown that scale invariance enables robust and efficient training of
SGD+WD [51]. Scale invariance also brings about the interesting equivalence between the effect
of WD and LR schedules [52, 19, 17]. Moreover, for SGD+WD with LR η and WD factor λ, the
parameter norm will converge to (λ/η)1/4 [1, 53, 54], and this induces the intrinsic LR which is
equal to ηλ [1]. These observations are crucial to our derivations in the current paper.

Fast Equilibrium Conjecture. Recently, Wang and Wang [25] proposed a spherical SDE model
to approximate SGD+WD with constant LR. Using a novel adaption of Simon’s theory, they justi-
fied the Fast Equilibrium Conjecture by showing that SGD+WD dynamics consists of three stages:
descent (O(1/

√
λη) time), diffusion (O(1/(λη) time) and tunneling (O(eC/(λη)) time). However,

their analysis relies on the strong assumption of the minimizers of L being isolated, which is against
the empirical evidence that the level sets of deep learning loss functions are connected [55]. As a
result, the diffusion phase shall bring no generalization benefit and cannot explain the improvement
of final generalization if staying at training loss plateau for a longer time (see Figure 1). We allow
the local minimizers to form a connected manifold, which can be viewed a generalization of the
Morse function assumption [25], as an isolated minimizer is just a manifold of dimension 0.

Another common weakness of existing analyses in [1, 25] is that they only work for the SDE ap-
proximation (3), and do not apply to the actual discrete-time dynamics (2). In contrast, our results
can handle both the continuous and discrete time dynamics under more reasonable assumptions.

SDE Approximation. Continuous-time tools such as SDE have been a popular lens for studying
optimization algorithms including SGD [56–61]. Many interesting properties of SGD have been
discovered through this approach [1, 62–65].

Slow Dynamics of SGD Around Zero Loss Manifold. Recent works [66, 16, 2] show that under
the assumption that the minimizers locally connect as a manifold, SGD with label noise with small
learning rate will move around the manifold after convergence, towards the direction of smaller trace
of Hessian, at a very slow rate of O(η2) per step. Arora et al. [23] show that such slow dynamics
on manifold can happen without stochastic gradient noise, if the update rule is non-smooth around
the manifold of minimizers and GD enters Edge of Stability regime ([67]. Concretely, they show
that normalized GD implicitly penalizes the largest eigenvalue of the Hessian at the rate of O(η2).
Additional related works are deferred to Appendix A.

8 Conclusion and Future Work

We provide an SDE-based characterization for the limiting dynamics of SGD+WD for a scale invari-
ant loss as ηλ → 0 with η = O(λ) and λ = O(1). Under some technical assumptions, we further
show that the limiting diffusion converges to a unique stationary distribution. It leaves as future work
to relax the technical assumptions. Another interesting and important direction for future work is to
understand and characterize the benefit on generalization induced by the limiting diffusion.
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A Additional Related Work

Slow Dynamics of SGD Around Zero Loss Manifold. Ma et al. [68] argues that such flatness
driven phenomenon can also be caused by a multi-scale loss landscape. The recent paper Lyu et al.
[28] is probably the most related work to us, which shows that GD with weight decay on a scale
invariant loss function implicitly decreases penalize the spherical sharpness, i.e., the largest eigen-
value of the Hessian evaluated at the normalized parameter, under the same set of assumptions as
ours. The timescale for their sharpness-reduction phenomenon is also Θ(1/ηλ) steps. The main
difference is that the our slow dynamics (limiting diffusion) is caused by the gradient noise while
the slow dynamics in [28] is caused by Edge of Stability, thus does not have mixing property on
manifold of minimizers. Wen et al. [69] shows that the slow dynamics of sharpness-aware mini-
mization (SAM, proposed by [70]) penalizes some notion of sharpness depending on the batch size.
Gu et al. [71] studies the slow dynamics of local SGD around manifold and use it to explain the
generalization benefit of local SGD over SGD. Liu et al. [72] studies the slow dynamics of SGD
on language models using the results from [2] and empirically observed that different pretraining
procedures can result in same pretraining loss but with different downstream performance.

B Additional experimental results

Implemention: We use the implementation of 32-layer-PreResNet from https://github.com/
bearpaw/pytorch-classification, with slight changes (following Appendix C of [17]) to en-
sure the model is scale invariant.

(a) Train and test accuracy for CIFAR-10 training
with η = 0.8, λ = 0.0005.

(b) Test accuracy after learning rate decay and the
total norm of parameters before learning rate de-
cay.

Figure 3: PreResNet trained without data augmentation on CIFAR-10. The train and test accuracy
plateaus after parameter norm convergence within 100 epochs, but the generalization of SGD iterate
after LR decay keeps improves. Figure 3a shows the train and test accuracy of scale invariant Pre-
ResNet trained with standard data augmentation on CIFAR-10. Each red dot in Figure 3b represents
the test accuracy of model which decays LR to 10−3 at the corresponding epoch. The test accuracy
is evaluated at full training accuracy after LR decay.

C Preliminaries

We refer the reader to Appendix A in Li et al. [2] for preliminaries on stochastic processes that are
useful for our results.

C.1 Omitted proofs for properties induced by scale-invariance

Proof of Lemma 2.7. By the definition of U , for any x ∈ U , we have Φ(x) = limt→∞ ϕ(x, t) ∈ Γ.
Define x(t) = ϕ(x, t), and for any α > 0, let x̃(t) = α · x(t/α2), then we have x̃(0) = αx

and dx̃(t)
dt = −α−1∇L(x(t/α2)) = −∇L(x̃(t)) where the second equality follows from the scale

invariance of L. Therefore, by the definition of ϕ(x, t), we see that ϕ(αx, t) = x̃(t) = α ·x(t/α2) =
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α · ϕ(x, t/α2). Let t → ∞, and we get Φ(αx) = α · Φ(x). Since Γ itself is a cone, it follows that
Φ(αx) ∈ Γ, and thus αx ∈ U . Hence, we conclude that U is also a cone.

D Omitted Proofs for the simultaneous limit case in Section 3

Now we present the proofs for the results in Section 3 where λ, η → 0 simultaneously, that is,
η
λ ≡ C where C is some positive constant. This case can be regarded as a direct application of the
framework in Li et al. [2].

Proof of Lemma 3.1. The proof can be directly adapted from that of Lemma 4.2 in Li et al. [2].

Proof of Theorem 3.2. The first claim is a direct consequence of Lemma 3.1 and Theorem 2.10.

For the second claim, we first show that if Y0 exists, then for any C > 0, YC also exists and they
are equal in distribution after the desired rescaling. By Lemma G.1, there is some Brownian motion
W ′(t) such that W ( e

4Ct−1
4C ) =

∫ t
τ=0

e2CtdW ′(t), ∀t ≥ 0 almost surely. For convenience, we
denote Y0( e

4Ct−1
4C )e−Ct by ỸC(t). Thus we have

dỸC(t) + CỸC(t)dt

=e−Ct
(
1

2
∂2Φ(ỸCe

Ct)[Σ(ỸCe
Ct)]d

(e4Ct − 1

4C

)
− ∂Φ(ỸCe

Ct)σ(ỸCe
Ct)dW

(e4Ct − 1

4C

))
=e3Ct

1

2
∂2Φ(ỸCe

Ct)[Σ(ỸCe
Ct)]dt− eCt∂Φ(ỸCe

Ct)σ(ỸCe
Ct)dW ′(t)

=
1

2
∂2Φ(ỸC)[Σ(ỸC)]dt− ∂Φ(ỸC)σ(ỸC)dW

′(t),

where the last equality uses the fact that ∂kΦ is (1 − k)-homogeneous, σ is (−1)-homogeneous
and Σ is (−2)-homogeneous by Lemma 2.4. Thus we construct a global solution for (8) with
hyperparameter C. Since U is a cone and Y0(t) ∈ U for all t ≥ 0, it also holds that ỸC(t) ∈ U .

By applying the above argument in the other direction, we can show that if YC exists then Y0 exists
and they are equivalent up to some rescaling. This finishes the proof.

E Omitted proofs for general case in Section 4

Here we provide the proofs for the limiting diffusion for continuous-time SDE and discrete
SGD+WD respectively, in a general case of ηλ → 0 where η ≤ 2λ ≤ c and c is any constant.
Note the analysis here can be easily generalized to the case ηλ → 0 where η = O(λ) = O(1),
that is, exists constants C1, C2, such that η ≤ C1λ ≤ C2. Such a limit is more interesting than the
simultaneous limit as the it is more common to tune LR without fixing the ratio between WD and
LR.

Below we will show how these rescalings work first in the continuous case in Appendix E.1, and
then generalize the same proof idea to the discrete case, SGD+WD, in Appendix E.2.

E.1 Proof for the limiting diffusion of SDE

Proof of Theorem 4.1. Recall the scaling function Rη,λ(t) defined in Equation (11):

Rη,λ(t) =

(
η

2λ
+ e−4ηλt

(
1− η

2λ

))1/4

.

which is exactly Equation (10) except ∥X(0)∥2 is replaced with 1. A simple calculation gives

d lnRη,λ(t) = − ηλe−4ηλt(1− η/(2λ))

η/(2λ) + e−4ηλt(1− η/(2λ))
. (20)
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Now, define X̂η,λ(t) = Xη,λ(t)/Rη,λ(t), a normalized version of Xη,λ(t). Its dynamics is

dX̂η,λ(t) = − η

Rη,λ(t)
∇L(Xη,λ(t))dt−

η

Rη,λ(t)
σ(Xη,λ(t))dW (t)

− ηλXη,λ(t)

Rη,λ(t)
dt− Xη,λ(t)

Rη,λ(t)
d lnRη,λ(t)

= − η

Rη,λ(t)2
∇L(X̂η,λ(t))dt−

η

Rη,λ(t)2
σ(X̂η,λ(t))dW (t)

− X̂η,λ(t)(ηλdt+ d lnRη,λ(t)). (21)

Next, to rescale the time, recall the function τη,λ defined in Equation (12):

τη,λ(t) =

∫ t

s=0

η2

Rη,λ(s)4
ds,

and consider X̃η,λ(τη,λ(t)) = X̂η,λ(t). Note that dRη,λ(t)4 = −4ηλRη,λ(t)
4 + 2η2dt, so we have

d lnRη,λ(t)
4 =

dRη,λ(t)
4

Rη,λ(t)4
= −4ηλdt+ 2

η2

Rη,λ(t)4
dt, (22)

which implies that

τη,λ(t) =
1

2

∫ t

s=0

4ηλds+ d lnRη,λ(s)
4 = 2ηλt+ 2 lnRη,λ(t) =

1

2
ln

(
1 + (e4ηλt − 1)

η

2λ

)
.

(23)

Based on the above closed-form expression of τη,λ(t), it is straightforward to verify that

τ−1
η,λ(T ) =

ln
(

2λ
η (e2T − 1) + 1

)
4ηλ

. (24)

Applying Lemma G.1, we have

dX̃η,λ(τη,λ(t)) = −Rη,λ(t)
2

η
∇L(X̃η,λ(τη,λ(t)))dτη,λ(t)− σ(X̃η,λ(τη,λ(t)))dW (τη,λ(t))

− X̃η,λ(τη,λ(t))(ηλdt+ d lnRη,λ(t)). (25)

By the property of Rη,λ(t) in Equation (20) and the definition of τη,λ(t) in Equation (12), we have

ηλdt+ d lnRη,λ(t) =
η2/2

η/(2λ) + e−4ηλt(1− η/(2λ))
dt =

η2

2Rη,λ(t)4
dt =

1

2
dτη,λ(t)

where the second equality follows from the definition of Rη,λ(t) in Equation (11). Then combining
the above identity and Equation (25) yields

dX̃η,λ(τη,λ(t)) = −Rη,λ(t)
2

η
∇L(X̃η,λ(τη,λ(t)))dτη,λ(t)−

X̃η,λ(τη,λ(t))

2
dτη,λ(t)

− σ(X̃η,λ(τη,λ(t)))dW (τη,λ(t)).

Note that τη,λ : [0,∞) → [0,∞) is a bijection, so we can rewrite the above in t̃ := τη,λ(t) to get

dX̃η,λ(t̃) = −
R(τ−1

η,λ(t̃))
2

η
∇L(X̃η,λ(t̃))dt̃+ σ(X̃η,λ(t̃))dW (t̃)− X̃η,λ(t̃)

2
dt̃ (26)

where by writing τ−1
η,λ(·) we mean the functional inverse of τη,λ(·) defined in Equation (12).

By assumption η < 2λ, can see from Equation (11) that Rη,λ(t)2 is decreasing on [0,∞) and is
bounded from below by

√
η/(2λ). Therefore, for any t ≥ 0, Rη,λ(t)2/η ≥ 1/

√
2λη, so we can

again apply Theorem 2.10 to get the desired limiting diffusion. This finishes the proof.
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E.2 Proof for the limiting diffusion of SGD+WD

Recall the update of SGD+WD in Equation (2) and the scaling function Rη,λ in Equation (11), and
the normalized version xη,λ(k)/Rη,λ(k) satisfies the following:

xη,λ(k + 1)

Rη,λ(k + 1)
= (1− ηλ)

xη,λ(k)

Rη,λ(k + 1)
− η

Rη,λ(k + 1)
(∇L(xη,λ(k)) +

√
Ξσξk(xη,λ(k)))

=
xη,λ(k)

Rη,λ(k)
− xη,λ(k)

Rη,λ(k)
· ηλRη,λ(k)
Rη,λ(k + 1)

+

(
Rη,λ(k)

Rη,λ(k + 1)
− 1

)
xη,λ(k)

Rη,λ(k)

− η

Rη,λ(k)Rη,λ(k + 1)

(
∇L

(
xη,λ(k)

Rη,λ(k)

)
+

√
Ξσξk

(
xη,λ(k)

Rη,λ(k)

))
.

Then x̂η,λ(k) = xη,λ(k)/Rη,λ(k) satisfies

x̂η,λ(k + 1) = x̂η,λ(k)−
ηλRη,λ(k)

Rη,λ(k + 1)
x̂η,λ(k) +

(
Rη,λ(k)

Rη,λ(k + 1)
− 1

)
x̂η,λ(k)

− η

Rη,λ(k)Rη,λ(k + 1)
(∇L(x̂η,λ(k)) +

√
Ξσξk(x̂η,λ(k)))

Define X̂η,λ(t) = x̂η,λ(⌊t⌋), and rewriting the above equation yields

X̂η,λ(t) =

∫ t

s=0

[
− ηλX̂η,λ(s) + (1− ηλ)

(
Rη,λ(s)

Rη,λ(s+ 1)
− 1

)
X̂η,λ(s)

]
d⌊s⌋

−
∫ t

s=0

η

Rη,λ(s)Rη,λ(s+ 1)
∇L(X̂η,λ(s))d⌊s⌋

−
∫ t

s=0

η
√
Ξ

Rη,λ(s)Rη,λ(s+ 1)
σ(X̂η,λ(s))d

⌊s⌋∑
i=1

(
1ξi −

1

Ξ
1

)
.

Recall that X̃η,λ(t̃) = x̂η,λ(⌊t⌋) = X̂η,λ(t), thus we obtain the expression of X̃η,λ(t̃) in (14).

For clarity, we break Lemma 4.3 into the following series of lemmas and prove them respectively.

Lemma E.1. Let {Aη,λ}η,λ>0 be defined as in Equation (15). Then Aη,λ increases infinitely fast as
ηλ→ 0 with η < 2λ < c for some constant c, that is, for any ϵ > 0,

lim
η→0

inf
t̃≥0

(Aη,λ(t̃+ ϵ)−Aη,λ(t̃)) = ∞.

Proof of Lemma E.1. Fix any ϵ > 0 and t̃ ≥ 0, and let η be sufficiently small. By definition, we
have

Aη,λ(t̃+ ϵ)−Aη,λ(t̃) =

⌊τ−1
η,λ(t̃+ϵ)⌋∑
i=1

η

Rη,λ(i)Rη,λ(i+ 1)
−

⌊τ−1
η,λ(t̃)⌋∑
i=1

η

Rη,λ(i)Rη,λ(i+ 1)

=

⌊τ−1
η,λ(t̃+ϵ)⌋∑

i=⌊τ−1
η,λ(t̃)⌋+1

η

Rη,λ(i)Rη,λ(i+ 1)

≥
⌊τ−1

η,λ(t̃+ϵ)⌋∑
i=⌊τ−1

η,λ(t̃)⌋

η

Rη,λ(i)2
≥

∫ ⌊τ−1
η,λ(t̃+ϵ)⌋−1

⌊τ−1
η,λ(t̃)⌋

η

Rη,λ(s)2
ds
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where the two inequalities follow from the fact that Rη,λ(t) is monotonically decreasing. Moreover,
since Rη,λ(t) ∈ (( η2λ )

1/4, 1], it holds that η/Rη,λ(t)2 ∈ [η,
√
2ηλ), for all t ≥ 0. We then have

Aη,λ(t̃+ ϵ)−Aη,λ(t̃) ≥
∫ ⌊τ−1

η,λ(t̃+ϵ)⌋−1

⌊τ−1
η,λ(t̃)⌋

η2

Rη,λ(s)4
· Rη,λ(s)

2

η
ds

≥ 1√
2ηλ

∫ ⌊τ−1
η,λ(t̃+ϵ)⌋−1

⌊τ−1
η,λ(t̃)⌋

η2

Rη,λ(s)4
ds

≥ 1√
2ηλ

∫ τ−1
η,λ(t̃+ϵ)

τ−1
η,λ(t̃)

η2

Rη,λ(s)4
ds− 3

√
2ηλ.

Recall the definition of τη,λ(t) in Equation (12), we further have

Aη,λ(t̃+ ϵ)−Aη,λ(t̃) ≥
τη,λ(τ

−1
η,λ(t̃+ ϵ))− τη,λ(τ

−1
η,λ(t̃))√

2ηλ
− 3

√
2ηλ =

ϵ√
2ηλ

− 3
√
2ηλ,

which holds for all t̃ ≥ 0 simultaneously. Hence, we obtain the desired result:

lim
η→0

inf
t̃≥0

Aη,λ(t̃+ ϵ)−Aη,λ(t̃) ≥ lim
η→0

ϵ√
2ηλ

− 3
√
2ηλ = ∞.

Lemma E.2. Let {Bη,λ}η>0 be defined as in Equation (16). Then as ηλ → 0 with η < 2λ < c for
some constant c, Bη,λ(t̃) converges to t̃/2 in uniform metric.

Proof of Lemma E.2. Since t̃ = τη,λ(t) =
∫ t
0
τ ′η,λ(s)ds, the idea is to show that the above sum

can be seen as an approximation of the Riemann sum, which then yields the approximation of the
integral. To see this, recall the definition ofRη,λ(t) in Equation (11), and note that there exists some
ti ∈ [i, i+ 1] such that

Rη,λ(i)

Rη,λ(i+ 1)
− 1 =

−R′
η,λ(ti)

Rη,λ(i+ 1)
=

ηλe−4ηλti(1− η
2λ )

Rη,λ(i+ 1)Rη,λ(ti)3
. (27)

Then since Rη,λ(t) is positive and monotonically decreasing, it follows that

Bη,λ(t̃) =

⌊τ−1
η,λ(t̃)⌋∑
i=1

ηλ− (1− ηλ)
ηλe−4ηλti(1− η

2λ )

Rη,λ(i+ 1)Rη,λ(ti)3

≤
⌊τ−1

η,λ(t̃)⌋∑
i=1

ηλ− (1− ηλ)
ηλe−4ηλti(1− η

2λ )

Rη,λ(ti)4

=

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2/2 + η2λ2e−4ηλti(1− η
2λ )

Rη,λ(ti)4

≤ 1

2

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i+ 1)4
+
(
1− η

2λ

) ⌊τ−1
η,λ(t̃)⌋∑
i=1

η2λ2e−4ηλi

Rη,λ(i+ 1)4

where the last inequality again follows from the monotonicity of R(t).
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Note that when i ≤ 1
8ηλ ln 1

η , we have Rη,λ(i)4 ≥ √
η(1 − η

2λ ), and when i > 1
8ηλ ln 1

η , we have
e−4ηλi ≤ √

η. Thus we further have

Bη,λ(t̃) ≤
1

2

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i+ 1)4
+

(
1− η

2λ

) ⌊ 1
8ηλ ln 1

η ⌋−1∑
i=1

η2λ2e−4ηλi

Rη,λ(i+ 1)4

+

(
1− η

2λ

) ⌊τ−1
η,λ(t̃)⌋∑

i=⌊ 1
8ηλ ln 1

η ⌋

η2λ2e−4ηλi

Rη,λ(i+ 1)4

≤ 1

2

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i+ 1)4
+

⌊ 1
8ηλ ln 1

η ⌋−1∑
i=1

η3/2λ2e−4ηλi

+
√
η

(
λ2 − ηλ

2

) ⌊τ−1
η,λ(t̃)⌋∑

i=⌊ 1
8ηλ ln 1

η ⌋

η2

Rη,λ(i+ 1)4

≤
(
1

2
+
√
ηλ2

) ⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i+ 1)4
+

1

8

√
ηλ ln

1

η
.

Then since Rη,λ(t) is monotonically decreasing, it follows that

Bη,λ(t̃) ≤
(
1

2
+
√
ηλ2

)∫ τ−1
η,λ(t̃)+2

3

η2

Rη,λ(s)4
ds+

1

8

√
ηλ ln

1

η

≤
(
1

2
+
√
ηλ2

)
τη,λ(τ

−1
η,λ(t̃)) + 2ηλ+ 4η3/2λ3 +

1

8

√
ηλ ln

1

η

=

(
1

2
+
√
ηλ2

)
t̃+ 2ηλ+ 4η3/2λ3 +

1

8

√
ηλ ln

1

η
(28)

where the second inequality follows from the fact that η2

Rη,λ(t)4
∈ [η2, 2ηλ) for all t ≥ 0.

We can similarly establish a lower bound for Bη,λ(t̃). It follows from Equation (27) that

Bη,λ(t̃) ≥
⌊τ−1

η,λ(t̃)⌋∑
i=1

(
ηλ− (1− ηλ)

ηλe−4ηλti(1− η
2λ )

Rη,λ(i+ 1)4

)

=

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2/2 + [ηλe−4ηλ(i+1) − (1− ηλ)ηλe−4ηλti ](1− η
2λ )

Rη,λ(i+ 1)4

≥ 1

2

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i+ 1)4
+

(
1− η

2λ

) ⌊τ−1
η,λ(t̃)⌋∑
i=1

ηλ(e−4ηλ − 1)e−4ηλi

Rη,λ(i+ 1)4

≥ 1

2

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i+ 1)4
−
(
4− 2η

λ

) ⌊τ−1
η,λ(t̃)⌋∑
i=1

η2λ2e−4ηλi

Rη,λ(i+ 1)4

where the last inequality is due to the fact that 1 − e−x ≤ x for x ≥ 0. Then applying the similar
argument as we have used for the upper bound, we get

Bη,λ(t̃) ≥
(
1

2
− 4

√
ηλ2

)
t̃− C

√
η ln

1

η
(29)

for some universal constant C > 0.

Now, combining the upper bound in Equation (28) and the lower bound in Equation (29), we obtain∣∣∣∣Bη,λ(t̃)− t̃

2

∣∣∣∣ ≤ 4
√
ηλ2t̃+ C

√
η ln

1

η
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for all t̃ ≥ 0, where C > 0 is some universal constant. Recall the definition of the uniform metric,
and we then have

dU (Bη,λ(t̃), t̃/2) ≤
∞∑
T=1

2−T min

{
1, sup
t̃∈[0,T )

∣∣∣∣Bη,λ(t̃)− t̃

2

∣∣∣∣}

≤
∞∑
T=1

2−T min

{
1, 4

√
ηλ2T + C

√
η ln

1

η

}
where the right-hand-side converges to 0 by a standard ϵ-δ argument as η → 0. This completes the
proof.

Lemma E.3. Let Rη,λ(t) be defined in Equation (11), and τη,λ(t) in Equation (12). Then it holds
that

lim
η→0,ηλ→0

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i)2Rη,λ(i+ 1)2
= t̃

uniformly for all t̃ ≥ 0.

Proof of Lemma E.3. First, since Rη,λ(t) is positive and monotonically decreasing, we have

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i)4
≤

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i)2Rη,λ(i+ 1)2
≤

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i+ 1)4

which further implies that

∫ ⌊τ−1
η,λ(t̃)⌋

1

η2

Rη,λ(s)4
ds ≤

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i)2Rη,λ(i+ 1)2
≤

∫ ⌊τ−1
η,λ(t̃)⌋+2

2

η2

Rη,λ(s)4
ds.

Then since η2/Rη,λ(t)4 ≤ max{2ηλ, η2} for all t ≥ 0, we have

∫ τ−1
η,λ(t̃)

0

η2

Rη,λ(s)4
ds− 2max{2ηλ, η2} ≤

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i)2Rη,λ(i+ 1)2

≤
∫ τ−1

η,λ(t̃)

0

η2

Rη,λ(s)4
ds+ 2max{2ηλ, η2}.

Recall the definition of τη,λ(t) in Equation (12), so
∫ τ−1

η,λ(t̃)

0
η2

Rη,λ(s)4
ds = τη,λ(τ

−1
η,λ(t̃)) = t̃. There-

fore, we get ∣∣∣∣ ⌊τ
−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i)2Rη,λ(i+ 1)2
− t̃

∣∣∣∣ ≤ 2max{2ηλ, η2}

for all t̃ ≥ 0. This implies the uniform convergence for all t̃ ≥ 0 and thus completes the proof.

Lemma E.4. Let {Zη,λ}η>0 be defined as in Equation (17). Then as ηλ → 0 with η < 2λ < c for
some constant c, Zη,λ weakly converges to (IΞ − 1

Ξ11
⊤)1/2W in the uniform metric, where W is a

Ξ-dimensional standard Brownian motion.

Proof of Lemma E.4. For any η > 0, note that Zη,λ is a stochastic process with independent in-
crements, so Zη,λ is indeed a Ξ-dimensional martingale. Thus we can apply the multidimensional
martingale functional central limit theorem (Theorem G.2) to get the desired convergence.

To do so, we need to verify two facts: 1) the expected value of the maximum jump in Zη,λ is
asymptotically negligible; 2) for each fixed t̃ ≥ 0, limη→0 E[Zη,λ(t̃)Zη,λ(t̃)⊤] = t̃(IΞ − 1

Ξ11
⊤).

These two facts correspond to conditions (55) and (56) respectively.
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For the first fact, note that the norm of the i-th jump in Zη,λ is bounded by η
√
Ξ

Rη,λ(i)Rη,λ(i+1)∥1ξi −
1
Ξ1∥2. Since Rη,λ(t) ≥ min{( η2λ )

1/4, 1} for all t ≥ 0, we see that η
√
Ξ

Rη,λ(i)Rη,λ(i+1)∥1ξi −
1
Ξ1∥2 ≤

(1+
√
Ξ)max{

√
2ηλ, η}, which implies that any jump inZη,λ is asymptotically negligible as η → 0

and ηλ→ 0.

For the second fact, fixing any t̃ ≥ 0, we have

E[Zη,λ(t̃)Zη,λ(t̃)⊤] =
⌊τ−1

η,λ(t̃)⌋∑
i,j=1

η2Ξ

Rη,λ(i)Rη,λ(j)Rη,λ(i+ 1)Rη,λ(j + 1)
E
[(

1ξi −
1

Ξ
1

)(
1ξj −

1

Ξ
1

)⊤]

=

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2Ξ

Rη,λ(i)2Rη,λ(i+ 1)2
E
[(

1ξi −
1

Ξ
1

)(
1ξi −

1

Ξ
1

)⊤]

=

⌊τ−1
η,λ(t̃)⌋∑
i=1

η2

Rη,λ(i)2Rη,λ(i+ 1)2

(
IΞ − 1

Ξ
11⊤

)
where the second equality follows from the independence between ξi and ξj for i ̸= j. Now,
applying Lemma E.3 yields limη→0 E[Zη,λ(t̃)Zη,λ(t̃)⊤] = t̃(IΞ − 1

Ξ11
⊤).

Combining the above two facts, applying Theorem G.2 and ?? completes the proof.

F Omitted Proofs in in Section 5

Here we provide the proof of the fast mixing of SGD+WD. By Theorem 4.4, we know that the
iterates of SGD+WD track the solution to the limiting diffusion in Equation (13) at time T after
roughly 1

4ηλ ln( 2λη (e2T −1)+1) steps. Here T is the time index for the limiting diffusion, which can
be shown to mix to the equilibrium and the mixing speed is independent of η or λ since Equation (13)
does not rely on these parameters. Therefore, it suffices to establish the ergodicity of the limiting
diffusion, and the mixing of SGD+WD immediately follows. Then the total number of steps of
SGD+WD is on the order of O( 1

ηλ ln λ
η ), yielding the fast mixing of SGD+WD.

F.1 Preliminary on the ergodic theory for SDEs

We first briefly review some preliminaries on the ergodic theory for diffusion processes. Our main
references are from [73–75].

Let Γ be a M -dimensional smooth submanifold of RD. Recall that in the main context we specify Γ
to be the manifold of some scale invariant loss, here we consider the general case with slight abuse
of notation. Consider the following diffusion process on Γ:

dX(t) = f̂0(X(t))dt+

Ξ∑
i=1

fi(X(t))dWi(t) (30)

where f̂0, f1, . . . , fΞ are smooth vector fields on Γ and W (t) = (W1(t), . . . ,WΞ(t))
⊤ is a Ξ-

dimensional Brownian motion. Writing the above diffusion process in the Stratonovich form, it is
equivalent to

dX(t) =

(
f̂0(X(t))− 1

2

Ξ∑
i=1

∂fi(X(t))fi(X(t))

)
︸ ︷︷ ︸

f0(X(t))

dt+

Ξ∑
i=1

fi(X(t)) ◦ dWi(t). (31)

We denote the associated Markov transition kernel of {X(t)}t≥0 by {Pt}t≥0, where each Pt :
Γ × B(Γ) → R+ and Pt(x, S) is equal to the probability that starting from x the process is in the
set S ⊆ Γ at time t. Each Pt is a Markov operator on the space of probability measures on Γ, where
for any probability measure µ on Γ, Ptµ is defined by (Ptµ)(S) :=

∫
x∈X Pt(x, S)µ(dx). For
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convenience, we denote f0 := f̂0 − 1
2

∑Ξ
i=1 ∂fifi. {Pt}t≥0 is also known as a Markov semigroup,

and the corresponding generator is

L := f0 +
1

2

Ξ∑
i=1

f2i .

To study the ergodicity of {Pt}t≥0, the approach used in [74, 73] associates the diffusion process to
a deterministic control system

dψ(t)

dt
= f0(ψ(t)) +

Ξ∑
i=1

fi(ψ(t))ui(t) (32)

where u : R+ → RΞ is any piecewise continuous function, which is called the control function.
The controllability of the control system (32) can be characterized using the property of Lie algebra
generated by {fi}Ξi=0, which is closely related to the ergodic properties of {Pt}t≥0.

Next, we introduce some useful notions and results corresponding to the control system (32). Denote
byψ(t, x, u) the solution to (32) at time twith initialization x under the control u. Define the positive
orbit of x ∈ Γ at time t as O+(x, t) = {y ∈ Γ : there exists u ∈ U such that y = ϕ(t, x, u)}, and
O+(x) = ∪t≥0O+(x, t). Let S ⊆ Γ satisfy that for any x, y ∈ S, it holds that y ∈ O+(x). For any
such S, there exists a unique maximal set R ⊇ S with this property, and such a R is called a control
set for the control system (32).

Definition F.1 (Invariant control set). A set S ⊆ Γ is called an invariant set for the control sys-
tem (32) if O+(x) ⊆ S for all x ∈ S. A control set R ⊆ Γ is called an invariant control set for the
control system (32) if for any x ∈ R, O+(x) = R.

A probability measure µ on Γ is called an invariant probability measure for the diffusion process
X(t) if it satisfies that µ(S) =

∫
x∈Γ

Pt(x, S)µ(dx) for any Borel set S ⊆ Γ. Moreover, if µ cannot
be decomposed into the sum of two different invariant measures, then we say µ is an extremal
invariant probability measure. The following lemma characterize the relationship between extremal
invariant probability measures and invariant control sets.

Lemma F.2 (Lemma 4.1, Kliemann [73]). Let µ be an extremal invariant probability measure for
{X(t)}t≥0. Then the support of µ, denoted by suppµ, is an invariant control set, and µ is the
unique invariant probability measure on suppµ.

We can view each Pt as a mapping from the space of functions on Γ to itself, by generalizing the
fact that for any probability measure µ on Γ, Ptµ is still a probability measure on Γ. Then we
say the Markov semigroup {Pt}t≥0 satisfies the Feller property if each Pt maps the space of con-
tinuous bounded functions into itself. The following theorem guarantees the existence of invariant
probability measures for any Feller process.

Theorem F.3 (Krylov-Bogolioubov Theorem, [76]). Let {Pt}t≥0 be a Feller Markov semigroup
over Γ. Assume that there exists a probability measure µ0 on Γ such that the sequence {Ptµ0}t≥0

is tight, then there exists at least one invariant probability measure for {Pt}t≥0.

However, the Feller property does not guarantee the ergodicity of a Markov semigroup, as there
might be many invariant probability measures having disjoint supports. To this end, we need a
stronger regularity condition known as the strong Feller property. Specifically, the Markov semi-
group {Pt}t≥0 is strong Feller if each Pt maps all bounded Borel functions to bounded continuous
functions. The well known Hörmander’s theorem provides a sufficient condition for the strong Feller
property, which depends on the Lie algebra generated by {fi}Ξi=0.

For any vector fields f, g on Γ, the Lie bracket between f and g is defined by

[f, g](x) = ∂g(x)f(x)− ∂f(x)g(x).

The Lie algebra generated by {fi}Ξi=0, denoted by LA(f0, f1, . . . , fΞ), is the smallest vector space
containing f0, f1, . . . , fΞ that is further closed under the Lie bracket operation. The following
lemma characterizes when the Markov semigroup {Pt}t≥0 is strong Feller.
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Lemma F.4 (Lemma 5.1, Ichihara and Kunita [74]). For the Markov semigroup {Pt}t≥0 associated
with the diffusion process (30), regard f0 + ∂

∂t , f1, . . . , fΞ as vector fields on the product manirold
R+ × Γ, where R+ is the time set and ∂

∂t is the shift invariant vector field in the time variable.
Suppose dimLA(f0 +

∂
∂t , f1, . . . , ft)(t, x) = dim(Γ) + 1 for all (t, x) ∈ R+ × Γ. Then {Pt}t≥0

is a strong Feller Markov semigroup.

To determine the dimension of LA(f0 +
∂
∂t , f1, . . . , ft), we can apply Lemma F.5.

Lemma F.5 (Lemma 2.1, Ichihara and Kunita [74]). Assume that dimLA(f0, f1, . . . , fΞ) =
dim(Γ). Then for any x ∈ Γ, dimLA(f0 + ∂

∂t , f1, . . . , fΞ)(x) is dim(Γ) or dim(Γ). Further-
more, the following three conditions are equivalent:

(a) dimLA(f0 +
∂
∂t , f1, . . . , fΞ)(x) = dim(Γ).

(b) dimLA0(x) = dim(Γ)− 1.

(c) f0(x) /∈ LA0(x).

Here LA0 is defined as LA0 = {
∑k
i=1 λifi+g : k ∈ [Ξ], λi ∈ R,∀i ∈ [k], g ∈ LA′}, where LA′ is

the set of all linear sums of Lie brackets between any two iterative Lie brackets of {f0, f1, . . . , fΞ}.

The strong Feller property further implies that the transition probability admits a continuous density.

Theorem F.6 (Theorem, Ichihara and Kunita [74]). Under the setting of Lemma F.4, there exists a
C∞ function pt(x, y) on (0,∞)× Γ× Γ such that pt(x, y)dy = Pt(x, dy).

Finally, for a strong Feller {Pt}t≥0, its ergodic property is given in the following proposition.

Proposition F.7 (Proposition 5.1, Ichihara and Kunita [74]). Under the setting of Lemma F.4, further
suppose the Markov semigroup {Pt}t≥0 has an extremal invariant probability measure µ. Then
limt→∞ ∥Pt(x, ·)− µ∥TV = 0 for any x ∈ suppµ.

With the above tools in hand, we are ready to show the mixing of the limiting diffusion on the
manifold of local minimizers. The proofs in the following subsections are organized as follows:

1. We first prove Lemma F.9 in Appendix F.2, which describes the dynamics of the parameter
norm of the limiting diffusion.

2. Then in Appendix F.3 we prove the mixing of the limiting diffusion in the special case
when the trace of the noise covariance is constant on Γ1.

3. Finally, we provide the proof for the mixing in the general case in Appendix F.4.

We note that our proofs only requires a strictly weaker assumption than Assumption 5.2, which is
stated below (Assumption F.8).

Assumption F.8. dimLA(f1, . . . , fΞ) = dim(Γ)− 1 = D −M − 1.

F.2 Norm Dynamics of The Limiting Diffusion

First, we characterize the norm of the limiting dynamics as follows.

Lemma F.9. For SDE (13), it holds that d∥Y (t)∥22 = −∥Y (t)∥22dt+ tr(Σ(Y (t)))dt.

We need the following intermediate lemma.

Lemma F.10. Under Assumption 2.3, for any x ∈ U and Q ∈ RD×D, it holds that

⟨Φ(x), ∂2Φ(x)[Q]⟩ = tr(Q)− tr(∂Φ(x)Q∂Φ(x)⊤).

Proof of Lemma F.10. Note that for any x ∈ U , since L is scale invariant⟨x,∇L(x)⟩ = 0, we have
∥Φ(x)∥22 = ∥x∥22, and thus ∂2∥Φ(x)∥22 = 2ID, that is,

∂2∥Φ(x)∥22[Q] = 2ID[Q] = 2 tr(Q). (33)
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for any Q ∈ RD×D. On the other hand, we have

∂j∥Φ(x)∥22 = 2

D∑
i=1

∂jΦi(x)Φi(x)

for any j ∈ [D], and then

∂jk∥Φ(x)∥22 = 2

D∑
i=1

∂jkΦi(x)Φi(x) + 2

D∑
i=1

∂jΦi(x)∂kΦi(x)

for any j, k ∈ [D]. Therefore, for any Q ∈ RD×D, we have

∂2∥Φ(x)∥22[Q] =

D∑
j,k=1

∂jk∥Φ(x)∥22Qjk

= 2

D∑
i,j,k=1

∂jkΦi(x)Φi(x)Qjk + 2

D∑
i,j,k=1

∂jΦi(x)∂kΦi(x)Qjk

= 2⟨Φ(x), ∂2Φ(x)[Q]⟩+ 2 tr(∂Φ(x)Q∂Φ(x)⊤). (34)

Finally, combining (33) and (34) yields the desired result.

Proof of Lemma F.9. Applying Ito’s lemma, we have

d∥Y (t)∥22 = −⟨Y (t), ∂Φ(Y (t))Y (t)⟩dt+ ⟨Y (t), ∂2Φ(Y (t))[Σ(Y (t))]⟩dt
+ 2⟨Y (t), ∂Φ(Y (t))σ(Y (t))dW (t)⟩+ tr

[
∂Φ(Y (t))Σ(Y (t))∂Φ(Y (t))⊤

]
dt.

Note that since ∂Φ(Y (t))Y (t) = Y (t), we have

⟨Y (t), ∂Φ(Y (t))σ(Y (t))dW (t)⟩ = ⟨∂Φ(Y (t))Y (t), σ(Y (t))dW (t)⟩
= ⟨Y (t), σ(Y (t))dW (t)⟩ = 0.

Since Y (t) stays on Γ, we always have Φ(Y (t)) = Y (t), then it follows from Lemma F.10 that
⟨Y (t), ∂2Φ(Y (t))[Σ(Y (t))] = tr(Σ(Y (t))) − tr(∂Φ(Y (t))Σ(Y (t))∂Φ(Y (t))⊤). Combining the
above yields the desired formula of the dynamics of ∥Y (t)∥22.

Next, we divide the proof of Theorem 5.4 into two parts stratified by whether the trace of the noise
covariance is constant on Γ1 or not.

F.3 Proof for the Mixing When Trace is a Constant

From now on, we specify Γ to be the manifold of local minimizers of the loss L, as given in As-
sumption 2.1. Recall that Γ1 = {x ∈ Γ | ∥x∥2 = 1} is the restriction of Γ on the unit sphere.
In this subsection, we prove the mixing result when the tr(Σ) is a constant on Γ1, that is, under
Assumption F.11.
Assumption F.11. For any x ∈ Γ1, tr(Σ(x)) = 1.1

Note that, by Lemma F.9, Assumption F.11 implies that

d∥Y (t)∥22 =

(
− ∥Y (t)∥22 +

1

∥Y (t)∥22

)
dt,

which is deterministic and has a closed-form solution:

∥Y (t)∥22 =
√

1 + e−2t(∥Y (0)∥42 − 1). (35)

Therefore, regardless of the initialization, ∥Y (t)∥2 will always (monotonically) converge to 1 as t→
∞. In this case, we only need to consider the mixing of the direction of Y (t), i.e. Y (t)/∥Y (t)∥2.

1Here 1 can be replaced by any positive constant and the proof still works.
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Lemma F.12. Under Assumption F.11, for SDE (13), define Y (t) = Y (t)/∥Y (t)∥2. Then

dY (t) =
∂2Φ(Y (t))[Σ(Y (t))]− Y (t)

2 + 2e−2t(∥Y (0)∥42 − 1)
dt+

∂Φ(Y (t))σ(Y (t))√
1 + e−2t(∥Y (0)∥42 − 1)

dW (t). (36)

Proof of Lemma F.12. By Lemma F.9, we have

dY (t) =
1

∥Y (t)∥2
dY (t)− Y (t)

2∥Y (t)∥32
d∥Y (t)∥22

= −∂Φ(Y (t))Y (t)

2∥Y (t)∥2
dt+

∂2Φ(Y (t))[Σ(Y (t))]

2∥Y (t)∥2
dt+

∂Φ(Y (t))σ(Y (t))

∥Y (t)∥2
dW (t)

+
Y (t)

2∥Y (t)∥2
dt− tr(Σ(Y (t)))Y (t)

2∥Y (t)∥32
dt

=
∂2Φ(Y (t))[Σ(Y (t))]− Y (t)

2∥Y (t)∥42
dt+

∂Φ(Y (t))σ(Y (t))

∥Y (t)∥22
dW (t) (37)

where the third equality follows from Lemma 2.8 and the assumption that tr(Σ(x)) ≡ 1/∥x∥22.
Finally plugging-in the expression for ∥Y (t)∥22 in Equation (35) finishes the proof.

Now according to Lemma F.12, {Y (t)}t̃≥0 is a diffusion process on Γ1. We denote the associated
class of Markov transition kernel by {Pt}t≥0. To align with the notation in Equation (30) and (31),
we define

f̂0(x) =
1

2
(∂2Φ(x)[Σ(x)]− x) and fi(x) = ∂Φ(x)σi(x) for each i ∈ [Ξ].

We rescale the time by defining τ(t) =
∫ t
0

1
1+e−2s(∥Y (0)∥4

2−1)
ds. Let Ỹ (τ(t)) ≡ Y (t), identifying

t̃ ≡ τ(t), then by Lemma F.12, Ỹ admits

dỸ (t̃) =
1

2

∂2Φ(Y (t))[Σ(Y (t))]− Y (t)

1 + e−2t(∥Y (0)∥42 − 1)
dt+

∂Φ(Y (t))σ(Y (t))√
1 + e−2t(∥Y (0)∥42 − 1)

dW (t)

=
1

2
(∂2Φ(Y (t))[Σ(Y (t))]− Y (t))dτ(t) + ∂Φ(Y (t))σ(Y (t))dW (τ(t))

= f̂0(Ỹ (t̃))dt̃+

Ξ∑
i=1

fi(Ỹ (t̃)dWi(t̃)

where the second equality follows from Lemma G.1 and the definition of τ(t). For Ỹ , we de-
note the associated Markov semigroup by {P̃t̃}t̃≥0. Since there is a bijection between t and t̃ and
limt→∞ t̃/t = 1, the mixing of P̃t̃ implies that of Pt.

Next, as introduced in the previous subsection, writing the dynamics of Ỹ as a Stratonovich SDE,
we get

dỸ (t̃) = f̂0(Ỹ (t̃))dt̃− 1

2

Ξ∑
i=1

∂fi(Ỹ (t̃))fi(Ỹ (t̃))dt̃+

Ξ∑
i=1

fi(Ỹ (t̃)) ◦ dWi(t̃)

= f0(Ỹ (t̃))dt̃+

Ξ∑
i=1

fi(Ỹ (t̃)) ◦ dWi(t̃)

whose associated deterministic control system is given by

dψ(t)

dt
= f0(ψ(t)) +

Ξ∑
i=1

fi(ψ(t))ui(t) (38)

where u is any piecewise continuous RΞ-valued functions.

The following lemma establishes the key property of the control system in Equation (38).
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Lemma F.13. Under Assumption 5.1 and F.8, Γ1 itself is the unique invariant control set contained
in Γ1 for the control system (38).

Proof of Lemma F.13. It suffices to show that for any x, y ∈ Γ1, y ∈ O+(x). By Assumption F.8,
{fi}Ξi=1 satisfies the Lie algebra rank condition, so the following driftless control system

dψ̂(t)

dt
=

Ξ∑
i=1

fi(ψ̂(t))ui(t) (39)

is globally controllable by Rashevski-Chow theorem (see, e.g., [77, 78]), which means that there
exists some tx,y > 0 and a control u : R+ → RΞ such that y = ψ̂(tx,y, x;u), where ψ̂(tx,y, x;u) is
the solution of Equation (39) at time tx,y with initialization x under the control u. Next, we can use
the global controllability of the driftless control system (39) to show that y ∈ O+(x) for the original
control system (38).

For any δ > 0, define a control uδ : R+ → RΞ as uδ(t) = u(t/δ), then we have y =

ψ̂(tx,y, x;u) = ψ̂(tx,yδ, x;uδ). Now using uδ for the original control system (38), it follows that
limδ→0 ψ(tx,yδ, x;uδ) = y as the drift is dominated by the controlled terms. Thus we conclude that
y ∈ O+(x), and this completes the proof.

Now we are ready to prove Theorem 5.4 in the special case of constant trace.

Proof of Theorem 5.4 when trace is constant. Since P̃t̃ = Pt and limt→∞ t̃/t = 1 by L’Hospital’s
rule, it suffices to show the ergodicity of {P̃t̃}t̃≥0. Let LA(f1, . . . , fΞ) be the Lie algebra generated
by {f1, . . . , fΞ}. Assumption F.8 (implied by Assumption 5.2) assumes that dimLA(f1, . . . , fΞ) =
D − M − 1, which is equal to the dimension of Γ1. Therefore, by Lemma F.5, it follows that
dimLA(f0 + ∂

∂t , f1, . . . , fΞ) = D −M = dim(Γ1) + 1. Then applying Lemma F.4 yields that
P̃t̃ satisfies the strong Feller property. Since Γ1 is compact by Assumption 5.1, there exists at least
one invariant measure by Theorem F.3, which further implies that there exists at least on extremal
invariant measure by Krein-Milman theorem. Moreover, combining Lemma F.13 and Lemma F.2,
we see that {P̃t̃}t̃≥0 has a unique invariant measure, which we denote by π, and suppπ = Γ1.
Finally, by Proposition F.7, P̃t̃ is ergodic in the sense that

lim
t̃→∞

∥P̃t̃(x, ·)− π(·)∥TV = 0, ∀x ∈ Γ1.

where ∥ · ∥TV denotes the total variation distance. This completes the proof.

F.4 Proof for the Mixing When Trace is not Constant

Recall the limiting diffusion given in Equation (13):

dY (t) = −1

2
Y (t)dt+

1

2
∂2Φ(Y (t))[Σ(Y (t))]dt+ ∂Φ(Y (t))σ(Y (t))dW (t).

We continue to use the notation f̂0(x) = 1
2 (∂

2Φ(x)[Σ(x)] − x), fi(x) = ∂Φ(x)σi(x) for each
i ∈ [Ξ], and f0(x) = f̂0(x) − 1

2

∑Ξ
i=1 ∂fi(x)fi(x). Writing the dynamics of Y in (13) as a

Stratonovich SDE, we again get

dY (t) = f0(Y (t)dt+

Ξ∑
i=1

fi(Y (t)) ◦ dWi(t).

Similarly we define its associated deterministic control system:

dψ(t)

dt
= f0(ψ(t)) +

Ξ∑
i=1

fi(ψ(t))ui(t) (40)

Since tr(Σ(x)) is continuous and Γ1 is compact, we know that both βmax := maxx∈Γ1
tr(Σ(x))

and βmin := minx∈Γ1
tr(Σ(x)) can be attained in Γ1. Note that βmin > 0 by Assumption F.8.
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Recall the dynamics of ∥Y (t)∥22 given by Lemma F.9, which implies that if ∥Y (t)∥2 ≥ β
1/4
max then

d∥Y (t)∥2
2

dt ≤ 0 and that if ∥Y (t)∥2 ≤ β
1/4
min then d∥Y (t)∥2

2

dt ≥ 0. Similarly for the control system (40),
we have

d∥ψ(t)∥22
dt

= 2
〈
ψ(t),

dψ(t)

dt

〉
= 2⟨ψ(t), f0(ψ(t))⟩+ 2

Ξ∑
i=1

ui(t)⟨ψ(t), fi(ψ(t))⟩

where the second term is equal to 0 as each fi(ψ(t)) = ∂Φ(ψ(t))σi(ψ(t)) is in Tψ(t)(Γ∥ψ(t)∥2
). To

further simplify the first term, we need the following lemma.
Lemma F.14. Under Assumption 2.3, for any x ∈ Γ, it holds that tr(Σ(x)) = 2⟨x, f0(x) + x

2 ⟩.

Proof of Lemma F.14. Applying Lemma F.10, we have

2
〈
x, f0(x) +

x

2

〉
= ⟨x, ∂2Φ(x)[Σ(x)]⟩ −

Ξ∑
i=1

⟨x, ∂fi(x)fi(x)⟩

= tr(Σ(x))− tr(∂Φ(x))Σ(x)∂Φ(x)⊤)−
Ξ∑
i=1

⟨x, ∂fi(x)fi(x)⟩.

Recall that Σ(x) = σ(x)σ(x)⊤ and σ(x) = (σ1(x), . . . , σΞ(x)). Moreover, for all i ∈ [Ξ],
⟨x, fi(x)⟩ = ⟨x, ∂Φ(x)σi(x)⟩ = 0, which by differentiating with x further implies that ∂fi(x)⊤x =
−fi(x). Therefore, it follows that

2
〈
x, f0(x) +

x

2

〉
= tr(Σ(x))−

Ξ∑
i=1

(
tr(∂Φ(x)σi(x)σi(x)

⊤∂Φ(x)⊤)− ⟨∂Φ(x)σi(x), ∂Φ(x)σi(x)⟩
)

= tr(Σ(x)).

This completes the proof.

Hence, similar to ∥Y (t)∥22, the dynamics of ∥ψ(t)∥22 for the control system (40) can also be simpli-
fied into

d∥ψ(t)∥22
dt

= −∥ψ(t)∥22 + tr(Σ(ψ(t)).

Now, define

Γa,b := {x ∈ Γ | a ≤ ∥x∥2 ≤ b},

and the above calculation implies that Γa,b is an invariant set for the control system (40) if a ≤ β
1/4
min

and b ≥ β
1/4
max. This motivates us to define

Γ∗ := {x ∈ Γ | βmin ≤ ∥x∥42 ≤ βmax}, (41)

which can be shown to be the unique invariant control set in Γ for the control system (40).
Lemma F.15. Under Assumption 5.1 and F.8, Γ∗ is the unique invariant control set contained in Γ
for the control system (40).

Proof of Lemma F.15. As discussed above, Γ∗ itself is an invariant set, so it suffices to show that
for every x ∈ Γ, Γ∗ ⊆ O+(x). Specifically, below we will show that for any y ∈ Γ∗ and x ∈ Γ,
y ∈ O+(x).

By the same argument as in the proof of Lemma F.13, Assumption 5.1 and F.8 imply that for any
x ∈ Γ, we have Γ∥x∥2

⊂ O+(x). Then, it suffices to show there exist u ∈ Γ∥x∥2
and v ∈ Γ∥y∥2

such that v ∈ O+(u), as it would follow that y ∈ O+(v) ⊆ O+(u) ⊆ O+(x).

Without loss of generality, we assume that ∥x∥2 > ∥y∥2. Our strategy is to pick an arbitrary z∗ ∈
argminz∈Γ1

tr(Σ(z)) and let v = ∥y∥2 z∗ and u = ∥x∥2 z∗. Note that for any r ∈ (∥y∥2, ∥x∥2], we
have

−∥rz∗∥22 + tr(Σ(rz∗)) = −r2 + 1

r2
tr(Σ(z∗)) <

1

r2
(−∥y∥42 + tr(Σ(z∗)) ≤ 0 (42)
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where the last inequality is due to the definition of Γ∗. Thus the idea is to use the controlled terms
in (40), i.e.,

∑Ξ
i=1 fi(ψ(t))ui(t), to cancel the part of f0(ψ(t)) in the tangent space of Γ∥ψ(t)∥2

, so
that the remaining dynamics becomes

dψ̃(t)

dt
= −1

2
ψ̃(t) +

1

2

〈 ψ̃(t)

∥ψ̃(t)∥2
, f0(ψ̃(t))

〉 ψ̃(t)

∥ψ̃(t)∥2
(43)

under which v is in the positive orbit of u by the above calculation.

To do so, for any r ∈ (∥y∥2, ∥x∥2], consider the part of f0(rz∗) in the tangent space of Γr, which is
given by

(I − z∗z
⊤
∗ )f0(rz∗) =

1

2
(I − z∗z

⊤
∗ )

(
∂2Φ(rz∗)[Σ(rz∗)]−

Ξ∑
i=1

∂(∂Φσi)(rz∗)∂Φ(rz∗)σi(rz∗)

)

=
1

2r3
(I − z∗z

⊤
∗ )

(
∂2Φ(z∗)[Σ(z∗)]−

Ξ∑
i=1

∂(∂Φσi)(z∗)∂Φ(z∗)σi(z∗)

)
=

1

2r3
(I − z∗z

⊤
∗ )f0(z∗) (44)

where the second equality follows from the fact that ∂Φ(x) is 0-homogeneous, ∂2Φ(x) and each
σi(x) are (−1)-homogeneous, and Σ(x) is (−2)-homogeneous. By Assumption F.8, there exists
some λ ∈ RΞ such that

1

2
(I − z∗z

⊤
∗ )f0(z∗) =

Ξ∑
i=1

λi∂Φ(z∗)σi(z∗). (45)

For the ordinary differential equation (10) with initialization ψ̃(0) = ∥x∥2z∗, denote r(t) = ∥ψ̃(t)∥2
which is continuously decreasing in time t. Then for the control system (40) initialized at ψ(0) =
∥x∥2z∗, we choose the control function as ui(t) = λi

r(t)3 for all i ∈ [Ξ], it follows from (44) and (45)
that

dψ(t)

dt
= f0(ψ(t)) +

Ξ∑
i=1

∂Φ(ψ(t))σi(ψ(t))ui(t)

= f0(ψ(t)) +
λi
r(t)3

Ξ∑
i=1

∂Φ(ψ(t))σi(ψ(t))

= −1

2
ψ(t) +

1

2

〈 ψ(t)

∥ψ(t)∥2
, f0(ψ(t))

〉 ψ(t)

∥ψ(t)∥2
whose solution is given by ψ(t) = r(t)z∗. By (42), it holds that either r(t) = ∥y∥2 for some t > 0

or limt→∞ r(t) = ∥y∥2. Therefore, we conclude that ∥y∥2z∗ ∈ O+(∥x∥2z∗). This finishes the
proof.

Next, to show that the limiting diffusion is still a strong Feller process, we need to verify the condi-
tion for Lemma F.4.
Lemma F.16. Let f and g be two vector fields on Γ. Suppose ⟨f(x), x⟩ = 0 for every x ∈ Γ, then
it holds that ⟨x, [f, g](x)⟩ = ⟨∇ ⟨x, g(x)⟩ , f(x)⟩. In particular, ⟨x, [x, f ](x)⟩ = 0.

Proof of Lemma F.16. By definition, we have

⟨x, [f, g](x)⟩ = ⟨x, ∂g(x)f(x)− ∂f(x)g(x)⟩ (46)

and

⟨∇⟨x, g(x)⟩, f(x)⟩ = ⟨g(x) + ∂g(x)⊤x, f(x)⟩. (47)

Since ⟨f(x), x⟩ ≡ 0, differentiating both sides with x yields

f(x) + ∂f(x)⊤x = 0 (48)
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Combining (47) and (48), we obtain

⟨∇⟨x, g(x)⟩, f(x)⟩ = ⟨g(x),−∂f(x)⊤x⟩+ ⟨∂g(x)⊤x, f(x)⟩. (49)

Finally, comparing (46) with (49), we conclude that ⟨x, [f, g](x)⟩ = ⟨∇⟨x, g(x)⟩, f(x)⟩. Moreover,
in the special case of g(x) ≡ x, it follows that

⟨x, [x, f ](x)⟩ = −⟨x, [f, x](x)⟩ = −⟨∇⟨x, x⟩, f(x)⟩ = −2⟨x, f(x)⟩ = 0

where the first equality follows from the anti-symmetry of Lie bracket.

Definition F.17 (Analytic Function). Let V ⊆ RD be any open set, a function f : V → R is
analytic if for each x ∈ V , there is a neighborhood Vx of x such that the Taylor series of f expanded
at x converges to f everywhere in Vx. A vector-valued function is analytic if each of its coordinate
functions is analytic.

Lemma F.18. For any positive integer k, define

Ak := {[[[fi1 , fi2 ], fi3 ], . . . , fik ] | i1 ∈ [Ξ], i2, . . . , ik ∈ {0} ∪ [Ξ]}

and A = ∪∞
k=1Ak. Then under Assumption F.8, 2.3 and 5.3, it holds that for all x ∈ Γ,

rank(span({f(x) | f ∈ A})) = D −M.

Proof of Lemma F.18. By Assumption F.8, it suffices to show for each x∗ ∈ Γ1, that there exists
some f ∈ A such that ⟨x∗, f(x∗)⟩ ≠ 0. Now that tr(Σ(x)) is a non-constant analytic function, we
claim that for every x∗ ∈ Γ1, there must exist a relatively open neighborhood V ⊆ Γ1 of x∗, some
k∗ ≥ 1, some elements of A, {hi}Ni=1, and some linear combination denoted by f =

∑N
i=1 αihi,

such that

f (k
∗)(tr(Σ))(x) = (f ◦ · · · ◦ f)︸ ︷︷ ︸

k∗times

(tr(Σ))(x) ̸= 0.

Here for a smooth vector field f on Γ1 and a smooth function g on Γ1, we define f(g)(x) ≜
∂g(x+tf(x))

∂t |t=0 = ⟨∇g(x), f(x)⟩ for x ∈ RD. Moreover, we define f (k) as the composition of f
for k times.

To prove the above claim, we first note that since Γ1 is an analytic manifold, there is an analytic
diffeomorphism ψ : V → RD−M such that the push-forward mapping of hi, f and tr(Σ) are all
analytic, which are defined as ψ∗hi(y) :=

∂ψ(x)
∂x |x=ψ−1(y)hi(ψ

−1(y)), ψ∗f(y) := f(ψ−1(y)) and
ψ∗ tr(Σ)(y) := tr(Σ(ψ−1(y))) respectively. For convenience, we denote ψ∗ tr(Σ) by g. Since g is
analytic and non-constant, there exists k∗ ≥ 1 and v ∈ RD−M such that ∇k∗g(x∗)[v, . . . , v] ̸= 0,
and ∇kg(ψ(x∗)) = 0 for all k ≤ k∗ − 1. By Assumption F.8, we know there are some elements of
A, {hi}Ni=1, and some linear combination denoted by f =

∑N
i=1 αihi, such that ψ∗f(ψ(x

∗)) = v.
Therefore,

f (k
∗)(tr(Σ))(x∗) = (ψ∗f)

(k∗)(g)(ψ(x∗)) = ∇k∗g(ψ(x∗))[v, . . . , v] ̸= 0,

where the second equality we use the property that ∇kg(ψ(x∗)) = 0 for all k ≤ k∗ − 1.

Now we continue the proof of Lemma F.18. By Lemma F.14, we know that tr(Σ(x)) = 2⟨x, f0(x)+
x
2 ⟩. Since ⟨f(x), x⟩ = 0 for every x ∈ Γ, we can apply Lemma F.16 iteratively to get〈
x,

[[[[
f0(x) +

x

2
, f

]
, f

]
, . . .

]
, f

]
(x)

〉
=

〈
∇
〈
· · ·

〈
∇
〈
∇
〈
x, f0(x) +

x

2

〉
, f

〉
, f

〉
· · · , f

〉
, f

〉
(x)

=
1

2
⟨∇⟨· · · ⟨∇ ⟨∇ tr(Σ), f⟩ , f⟩ · · · , f⟩, f⟩ (x)

= (f ◦ · · · ◦ f)︸ ︷︷ ︸
k∗times

(tr(Σ))(x) ̸= 0

Applying the second claim of Lemma F.16 iteratively, we have that ⟨x, [[[[x2 , f ], f ], . . .], f ](x)⟩ = 0.
This completes the proof.
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Proof of Theorem 5.4 when trace is not constant. Let {Pt}t≥0 be the Markov semigroup associated
with the limiting diffusion. Recall the unique invariant control set Γ∗ = {x ∈ Γ | βmin ≤ ∥x∥42 ≤
βmax} defined in (41). As discussed above, the dynamics of ∥Y (t)∥22 satisfies that d∥Y (t)∥2

2

dt ≤ 0

when ∥Y (t)∥2 ≥ β
1/4
max and d∥Y (t)∥2

2

dt ≥ 0 when ∥Y (t)∥2 ≤ β
1/4
min. Thus, without loss of generality,

we can assume that the initialization xinit is in a compact manifold Γ̂ = Γa,b where 0 < a ≤ β
1/4
min

and β1/4
max ≤ b <∞.

Based on Lemma F.15 and F.18, following the same argument as that in the proof for case of constant
trace, we get that {Pt}t≥0 is strong Feller, has a unique invariant measure π∗ and is ergodic in the
sense that

lim
t→∞

∥Pt(x, ·)− π∗(·)∥TV = 0, ∀x ∈ supp(π∗) (50)

where supp(π∗) = Γ∗. It remains to generalize the above convergence guarantee to all x ∈ Γ̂.

Note that Pt(x,Γ∗) = 1 for all t ≥ 0 and x ∈ Γ∗ as Γ∗ is the unique invariant control set. Then
fixing any s∗ > 0 and ϵ > 0, by the strong Feller property and Theorem F.6, there exists some
as∗,ϵ ∈ (0, β

1/4
min) and bs∗,ϵ ∈ (β

1/4
max,∞) such that Ps∗(x,Γ∗) ≥ 1− ϵ for all x ∈ Γ̃ := Γas∗,ϵ,bs∗,ϵ .

Further note that for any t > s∗ and x ∈ Γ̃,

Pt(x,Γ∗) = P(Y (t) ∈ Γ∗ | Y (0) = x)

= P(Y (t) ∈ Γ∗ | Y (s∗) ∈ Γ∗, Y (0) = x) · P(Y (s∗) ∈ Γ∗ | Y (0) = x)

+ P(Y (t) ∈ Γ∗ | Y (s∗) /∈ Γ∗, Y (0) = x) · P(Y (s∗) /∈ Γ∗ | Y (0) = x)

≥ P(Y (t) ∈ Γ∗ | Y (s∗) ∈ Γ∗) · Ps∗(x,Γ∗) = 1− ϵ (51)

where for the inequality we use the Markov property. Moreover, by Lemma F.9, we have d∥Y (t)∥2
2

dt <
−cs∗,ϵ < 0 when ∥Y (t)∥2 ≤ as∗,ϵ or ∥Y (t)∥2 ≥ bs∗,ϵ, for some constant cs∗,ϵ > 0. This implies
that for any initialization Y (0) ∈ Γ̂, Y (t) will reach Γ̃ after an initial burn-in period of length at
most s0 = max{as∗,ϵ−a

cs∗,ϵ
,
b−bs∗,ϵ

cs∗,ϵ
}. Note that Γ̃ is also an invariant set.

Next, for any x ∈ Γ̂ and t ≥ s∗ + s0, we can bound the TV distance between Pt(x, ·) and π∗ as
follows:

∥Pt(x, ·)− π∗(·)∥TV =
1

2

∫
Γ̂

|Pt(x, dy)− π∗(dy)|

=
1

2

∫
y∈Γ̂

∣∣∣∣ ∫
z∈Γ̂

(Pt−s0(z,dy)− π∗(dy)Ps0(x, dz)
∣∣∣∣

≤ 1

2

∫
y∈Γ̂

∫
z∈Γ̃

∣∣∣∣ ∫
w∈Γ̃

(Pt−s∗−s0(w,dy)− π∗(dy))Ps∗(z,dw)
∣∣∣∣Ps0(x, dz)

≤ 1

2

∫
y∈Γ̂

∫
z∈Γ̃

∫
w∈Γ∗

|Pt−s∗−s0(w,dy)− π∗(dy)|Ps∗(z,dw)Ps0(x,dz)

+
1

2

∫
y∈Γ̂

∫
z∈Γ̃

∫
w∈Γ̃\Γ∗

(Pt−s∗−s0(w,dy) + π∗(dy))Ps∗(z,dw)Ps0(x, dz)
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where for the first equality we apply Ps0(x, Γ̃) = 1, and the second equality is due to the fact that Γ̃
is an invariant set. Applying Fubini’s theorem, we further have

∥Pt(x, ·)− π∗(·)∥TV ≤ 1

2

∫
z∈Γ̃

∫
w∈Γ∗

∫
y∈Γ̂

|Pt−s∗−s0(w,dy)− π∗(dy)|Ps∗(z,dw)Ps0(x,dz)

+
1

2

∫
z∈Γ̃

∫
w∈Γ̃\Γ∗

∫
y∈Γ̂

(Pt−s∗−s0(w,dy) + π∗(dy))Ps∗(z,dw)Ps0(x, dz)

=
1

2

∫
z∈Γ̃,w∈Γ∗

∥Pt−s∗−s0(w, ·)− π∗(·)∥TVPs∗(z,dw)Ps0(x, dz)

+

∫
z∈Γ̃

∫
w∈Γ̃\Γ∗

Ps∗(z,dw)Ps0(x,dz)

=
1

2

∫
z∈Γ̃,w∈Γ∗

∥Pt−s∗−s0(w, ·)− π∗(·)∥TVPs∗(z,dw)Ps0(x, dz)

+

∫
z∈Γ̃

(1− Ps∗(z,Γ∗))Ps0(x, dz)

≤ 1

2

∫
z∈Γ̃,w∈Γ∗

∥Pt−s∗−s0(w, ·)− π∗(·)∥TVPs∗(z,dw)Ps0(x, dz) + ϵ

(52)

where the second inequality is because Ps∗(z,Γ∗) ≥ 1− ϵ for all z ∈ Γ̃ by the definition of Γ̃. For
any fixed w ∈ Γ∗, by (50) we have limt→∞ ∥Pt−s∗−s0(w, ·) − π∗(·)∥TV = 0. Then since the TV
distance is always bounded by 1, it follows from Dominated Convergence Theorem that there exists
some T > 0 such that

1

2

∫
z∈Γ̃,w∈Γ∗

∥Pt−s∗−s0(w, ·)− π∗(·)∥TVPs∗(z,dw)Ps0(x,dz) ≤ ϵ, ∀t ≥ T. (53)

Then combining (52) and (53), we get

∥Pt(x, ·)− π(·)∥TV ≤ 2ϵ, ∀t ≥ T.

Since ϵ is arbitrary, we conclude that

lim
t→∞

∥Pt(x, ·)− π(·)∥TV = 0, ∀x ∈ Γ̂, (54)

so the distribution of Y (t) converges in TV distance to a unique stationary distribution π∗ on Γ.

Finally, by data processing inequality, the distribution of Y (t) = Y (t)
∥Y (t)∥2

also converges in TV
distance to the distribution π on Γ1 which is uniquely induced by π∗. This completes the proof.

G Auxiliary Results

The following lemma is a classic result. See, e.g., Corollary 8.5.5 in Oksendal [79].

Lemma G.1 (Time-changed Brownian motion). Let g : [0,∞) → [0,∞) be a differentiable func-
tion with nonnegative first-order derivative. Then it holds that

W (g(t))
d
=

∫ t

s=0

√
g′(t)dW (s).

The multidimensional martingale functional central limit theorem can be found in, e.g., Theorem 7.1
in Ethier and Kurtz [80] or Theorem 2.1 in Whitt [81]. We use a version of Theorem 2.1 in Whitt
[81] given in Theorem G.2.

Theorem G.2 (Multidimensional martingale FCLT, [81]). For n ≥ 1, let Mn = (Mn,1, . . . ,Mn,k)
be a martingale satisfying Mn(0) = (0, . . . , 0). Let C ∈ Rk×k be a semi-positive definite matrix.
Suppose the following holds:
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• The expected value of the maximum jump in Mn is asymptotically negligible, i.e., for each
T > 0,

lim
n→∞

E[J(Mn, T )] = 0 (55)

where J(x, T ) = sup{|x(t)− x(t−)| : 0 < t ≤ T} for any function x : [0,∞) → R.

• For each pair (i, j) ∈ [k]× [k] and each t > 0,

[Mn,i,Mn,j ](t) ⇒ Cijt as n→ ∞. (56)

Then Mn ⇒
√
CW in Skorokhod metric where W is the k-dimensional standard Brownian motion.

Lemma G.3 (Problem 7, Section 5, Pollard [82]). If Xn ⇒ X in the Skorokhod metric, and X has
sample paths in CRD [0,∞), then Xn ⇒ X in the uniform metric.
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