
ShapeCrafter: A Recursive Text-Conditioned 3D
Shape Generation Model

Supplementary Document
In this supplementary document, we provide more details about:

1. Real-time recursive audio-based 3D shape generation.
2. Additional experiment results comparing with other text-conditioned 3D shape generation

methods.
3. Visualization of probability distribution changes as text phrase are added.
4. Failure cases of ShapeCrafter.
5. Visualization of Text2Shape++ examples.
6. Network architecture and loss functions.

1 Real-Time Recursive Audio-based 3D Shape Generation

We provide a real-time recursive audio-based 3D shape generation demonstration. Please refer to the
video attached to the supplementary material. We use the Google Speech Recognition[1] library to
convert audio input to text, and then feed the text to ShapeCrafter. At each step, the user describes
the target shape, and ShapeCrafter will generate multiple results accordingly. To generate diverse
results and accelerate the inference step, in the video we use one random seed but repeat the same
text at batch dimension instead of using different seeds. The generated shapes are gradually evolving
as more descriptions are given. We show some screenshots below – we highly encourage readers to
watch the supplementary video.

Figure 1: Screenshots of our real-time demo (please see supplementary video).

2 Additional Experimental Results

We compare our method with other text-condtioned 3D shape generation methods, including [2], [6],
and [4]. Table 1 compares the results on the original Text2Shape dataset. We also compare with [4]
on generating 3D shapes from varied-length text inputs in Table 2. Our method performs well on all
of the metrics, which means that ShapeCrafter is comparable with the state-of-the-art in terms of the
shape quality and the text-shape correspondence. ShapeCrafter has slight advantage on CLIP-S and
Shapeglot-C with longer texts, which shows the effectiveness of recursive generation.

We also provide more qualitative results on the table category in Fig. 2. It shows that ShapeCrafter
can generalize to categories other than chairs.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

A red coffee table ...with arched legs
that are curved

inward.

...Very sleek
design.

A round dining room
table

...One center post ...with 4 feet
coming off it.

A brown short broad
wooden table

...with attached
benches n the
broader ends

brown colored,
wooden, table.

...small six pole
like

...solid legs A half circle shape
table. It has four

legs.

A short bench type
table

...with teak wood
color and three
short round legs

...and a oval cut
top

It is made up of
playwood.

...It is attached to
a cabinet with two

draws.

...It has two legs.

a square box as top ...and four short
legs

A round shaped glass
table.

...Modern open
rectangle base

...with four cross
shaped legs attached

each other.

L shaped wooden
office table.

Wooden coffee table, ...stained dark oak
with magazine shelf

A wooden end table ...with tall legs
and an oak finish.

Rectangular side
table

...with cross leg
support.

Single leg ...square base table ...made of steel and
grey colour.

This is a typical
console style table.

...It has two
drawers in it

...and it has four
curved legs.

Figure 2: Qualitative results produced by ShapeCrafter. Each unique color shows results generated
recursively from our model using the same seed to sample the shape distribution. Our method
demonstrates consistent and gradual evolution of shape enabling us to simulate shape editing.

3 Visualization of the Probability Distribution Shift

In this section, we evaluate and visualize how the probability distribution Z changes with text
input. We calculate the probability distribution difference of shape features for each grid cell at two

2

Table 1: Comparison with other methods on text conditioned generation.

Metric CLIP-S ↑ Shapeglot-C ↑ FID ↓
Chen et al. [2] 16.29 0.14 20.21
Sanghi et al. [6] 26.34 0.25 21.50
Liu et al. [4] 38.88 0.50 16.91
ShapeCrafter 52.43 0.50 16.36

Table 2: Comparison with state-of-the-art on recursive text-conditioned Generation.

Phrases [1, 2] (2, 4] (4, +∞)

CLIP-S ↑Shapeglot-C ↑FID ↓CLIP-S ↑Shapeglot-C ↑FID ↓CLIP-S ↑Shapeglot-C ↑FID ↓
Liu et al. 27.20 0.61 17.30 42.32 0.46 17.80 42.84 0.48 16.88

ShapeCrafter 45.72 0.39 17.40 53.38 0.54 16.44 58.18 0.52 16.89

consecutive time step with: diff = max(zt,k − zt−1,k) ∈ [0, 1], where k ∈ 1, 2, ...,K, and K is the
number of codes in the codebook. At two consecutive time steps, we report the ratio of grid cells
whose probability distribution difference is smaller than a threshold τ among all 83 grid cells. In the
Table. 3, we evaluate the local geometry change with the percentage of distribution difference metric.
We compare our method with AutoSDF.

Table 3: The percentage of distribution difference under threshold τ .

τ 1e-10 1e-9 1e-8 1e-7 1e-6

Liu et al. [4] 1.70 4.31 9.65 17.1 25.08
ShapeCrafter 6.98 11.96 18.03 24.17 29.56

The table shows that ShapeCrafter has lower percentage change of grid cell probability from step
to step than AutoSDF[5], which shows that recursive generation changes localized regions. We
acknowledge that this metric cannot definitely prove that the changed region semantically corresponds
to the change in the input text; this is very hard to evaluated with a single number.

The back ...is rectangle
shaped

...while the hand
rests are cylindrical

in shape

...A cushioned chair
with ash colour

Figure 3: Visualization of text inputs, generated
shapes, SDF values and probability distribution
shifts. Darker yellow corresponds to greater differ-
ence.

We visualize how the probability distribution Z
is shifted by text inputs in Figure 3. The four
rows illustrate: the text inputs, the generated
shapes, the SDF values in the resolution of 643
projected to a plane, and the difference of the
probability distribution in the resolution of 83
projected to a plane, respectively. We calculate
the probability distribution difference of grid at
two consecutive time step with:

diff =
|zt,k − zt−1,k|

zt−1,k
(1)

where zt,k stands for the probability of the index
of the discrete latent feature being k at time
t. Clearly, the probability distributions of the
discrete latent feature are locally excited by text
inputs. For instance, with the addition of text
input "while the hand rests are cylindrical in
shape", the probability significantly changes in
the portion of the grid where the armrests would
appear. Since most chairs with armrests have a
back that leans backwards, the back portion of
the grid also experiences a significant change in probability.

3

4 Failure Cases

A_wooden, four-legged
high chair, with no arms,
and three thin vertical
slats in the center.

(a) Failure case resulted by shape representation.

the chair is brown,
wooden and foldable.

...it is placed next to
a chart.

...the chair is brown,
wooden and foldable.

it is placed next to a
chart.

Se
qu

en
ce

 (1
)

Se
qu

en
ce

 (2
)

(b) Failure case resulted by global editing.

Has blue material seats
and back support.

...This appears to be a
common design metal

computer chair.

B
ef

or
e

R

an
do

m
 T

ra
ns

fo
rm

er
A

fte
r

R
an

do
m

 T
ra

ns
fo

rm
er

(c) Failure case resulted by random transformer. (d) Failure case resulted by conflict attributes.

Figure 4: Failure cases generated by ShapeCrafter.

We analyze the typical failure cases of ShapeCrafter in this section. Fig. 4 demonstrates the failure
cases.

Figure 4a shows a failure case caused by shape representation. The generated shape semantically
corresponds to the text input, but it fails to generate "three thin vertical slats". Although the vector-
quantized grid-based neural implicit representation[5] can represent shape efficiently and effectively,
it fails to represent shape with fine-grained details. A possible solution is to build a hierarchical
vector-quantized latent space that preserves more details.

Figure 4b shows a failure case caused by global editing, which is a limitation of our method. In
sequence (1), the model recursively generates a "foldable chair" from the phrase sequence. However,
if we switch the order of the phrases, it fails to generate a "foldable chair". This results from the fact
that a "foldable chair" globally differs from the shape generated in the previous step, so ShapeCrafter
fails to edit it in a reasonable way. A possible solution is that we can find the head-noun in the
sentence using dependency parsing[3] and generate the first shape according to the head noun in the
sentence.

4

Figure 4c shows a failure case caused by the random transformer[5]. In this figure, the model is
modifying the legs of the chair. If we reconstruct the shape from the grid features output by the
Residual Blocks, the chair backs look similar. However, if we reconstruct the shape from the grid
features output by the random transformer, the chair backs look different. A possible solution is to
learn a confidence map, where a higher confidence score will result in a higher likelihood of the grid
being edited at that time step. The transformer only auto-regresses on the grid features where the
confidence score is high.

Figure 4d shows a failure case caused by conflict attributes. In this figure, two consecutive text
phrases first describe the chair as "armless", and then describe that it "has armrests", which is a
pair of conflict attributes. Sampled with different seeds, ShapeCrafter sometimes generates chairs
with armrests and sometimes generates armless chairs. This could be due to the fact that our model
represents shapes as probability distributions.

5 Objective Functions

We provide the objective functions for training the (1) P-VQ-VAE model for shape representation;
(2) Auto-regressive model for shape generation; (3) BERTBASE model for text feature extraction;
(4) Text feature projection model Φ; and (5) Residuals blocks Ψ to extract the final distribution.

5.1 P-VQ-VAE Model

To train the P-VQ-VAE model, we use the reconstruction loss, the VQ loss and the commitment loss.
For the shape X , the loss is formulated as:

L =
1

T

T∑
i=1

(BCE(Dϕ(V Q(Eϕ(xi))), oi)+α ∥sg[V Q(Eϕ(xi))]− e′i∥
2

2+β ∥V Q(Eϕ(xi))− sg[zi]∥22),

(2)

where BCE is the binary cross entropy loss, sg[·] is the stop gradient operation, xi is the sampled
coordinate point, oi is the target occupancy of the sampled coordinate point, e′i is the nearest latent
feature in the codebook, T is the total points sampled in the space, and α and β are weighting factors.

5.2 Text Feature Extraction Models

The text feature extraction models include BERTBASE , Projection model Φ(·), and Residuals
blocks Ψ(·), which are trained together with the following loss function:

L = CE(Ψ(Φ(BERTBASE(I))), Q
set), (3)

where CE is the cross entropy loss, I is the text input, and Qset is the voxel grids of the index code.

5.3 Auto-regressive Model

To train the auto-regressive model f(·), we have:

L = CE(f(Z), Qset), (4)

where CE is the cross entropy loss, Z is the voxel grids of probability distribution and Qset is the
voxel grids of the index code.

5

References

[1] Speech-to-text: Automatic speech recognition | google cloud.
[2] Kevin Chen, Christopher B Choy, Manolis Savva, Angel X Chang, Thomas Funkhouser, and Sil-

vio Savarese. Text2shape: Generating shapes from natural language by learning joint embeddings.
In Asian conference on computer vision, pages 100–116. Springer, 2018.

[3] Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al. Generating typed
dependency parses from phrase structure parses. In Lrec, volume 6, pages 449–454, 2006.

[4] Zhengzhe Liu, Yi Wang, Xiaojuan Qi, and Chi-Wing Fu. Towards implicit text-guided 3d shape
generation. arXiv preprint arXiv:2203.14622, 2022.

[5] Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. Autosdf: Shape priors
for 3d completion, reconstruction and generation. arXiv preprint arXiv:2203.09516, 2022.

[6] Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang, Chin-Yi Cheng, and Marco Fumero.
Clip-forge: Towards zero-shot text-to-shape generation. arXiv preprint arXiv:2110.02624, 2021.

6

	Real-Time Recursive Audio-based 3D Shape Generation
	Additional Experimental Results
	Visualization of the Probability Distribution Shift
	Failure Cases
	Objective Functions
	P-VQ-VAE Model
	Text Feature Extraction Models
	Auto-regressive Model

