
Appendix

A Proofs and extensions

A.1 Lemma 3.1, steady-state convergence

For any environment state s, consider a reasoning Markov chain (RMC) defined on a compact action
space A with transition probabilities given by ⇡b(a0|a, s). Suppose that inf{⇡b(a0|a, s) : a0, a 2
A} > 0. Then there exists a steady-state probability distribution function ⇡s(·|s) such that:

lim
n!1

⇡b
n(a|a0, s) ! ⇡s(a|s) for all a 2 A. (17)

Proof. Let � = inf{⇡b(a0|a, s) : a0, a 2 A} > 0 and let m be the Lebesgue measure. Since A is
compact we have that m(A) = |A| is finite. Thus, let v be the uniform probability measure on A, we
have that:

⇡b(a0|a) � � ⇥ |A|⇥ v(a) for all a0, a 2 A.

Hence we have that the resulting RMC is ergodic, irreducible, and aperiodic. Furthermore, this shows
that the entire action space is a small set [87, 88] of the reasoning Markov chain. This property
directly implies the existence of a unique ⇡s and quantifies an exponential bound on the rate of
convergence [44, 89]:

||⇡b
n(a|a0, s)� ⇡s(a|s)||TV  (1� � ⇥ |A|)n, for all a, a0 2 A, (18)

where ||⇡b
n(a|a0, s)�⇡s(a|s)||TV represents the total variation distance between the n-step transition

probabilities of the RMC and the SS-policy. We refer to Nummelin [90] for a full formal derivation.
Lemma 3.1 clearly follows from the above results.

A.2 Theorem 3.2, steady-state policy gradient

Let ⇡b
✓(·|a, s) be a parameterized belief transition policy which defines a reasoning Markov chain

with a stationary distribution given by the steady-state policy ⇡s
✓(·|s). Let Qs be a real function

defined on S ⇥A, with a family of n-step extensions {Qs
n} as defined in Eq. 8. Suppose ⇡b, Qs and

their gradient with respect to the parameters ✓ (denoted r✓) are continuous and bounded functions.

Then:
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s(s, a)] = Ea⇠⇡s
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"
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0)]

#
.

Proof. We start by using the invariance of the RMC’s steady state distribution probabilities, ⇡s
✓(a|s),

when performing a reasoning step with transition probabilities from the BT-policy ⇡b
✓(a

0|a, s). Hence,
we can decompose r✓ Ea⇠⇡s

✓(·|s) [Q
s(s, a)] in the sum of two distinct terms by applying the product

rule:
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From the definition of the n-step extensions being a local approximation of the RMC with no
dependence form ✓ (since r✓Qs

n(s, a) = 0), we can rewrite term (2) as:
Z

A
(r✓⇡

s
✓(a|s))

Z

A
⇡b
✓(a

0|a, s)Qs(s, a0)da0da. = r✓

Z

A
⇡s
✓(a|s)Qs

1(s, a)da

= r✓ Ea⇠⇡s
✓(·|s) [Q

s
1(s, a)] .

Hence, from the relationship between r✓ Ea⇠⇡s
✓(·|s) [Q

s
0(s, a)] (i.e., r✓ Ea⇠⇡s

✓(·|s) [Q
s(s, a)]) with

(1) and (2) we see that:
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(1) + (2)
Since each n-step extension Qs

n has the same exact recursive relationship with the subsequent Qs
n+1

n-step extension, more generally, we have that:
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(19)

Thus, we can apply Equation 19 recursively to (2) and all resulting r✓ Ea⇠⇡s
✓
[Qs

n(s, a
0)] terms:

r✓ Ea⇠⇡s
✓(·|s) [Q

s
0(s, a

0)] = Ea⇠⇡s
✓(·|s)

h
r✓ Ea0⇠⇡b

✓(·|a,s) [Q
s
0(s, a

0)]
i
+r✓ Ea⇠⇡s

✓(·|s) [Q
s
1(s, a)]

= Ea⇠⇡s
✓

h
r✓ Ea0⇠⇡b

✓
[Qs

0(s, a
0)]
i
+ Ea⇠⇡s

✓

h
r✓ Ea0⇠⇡b

✓
[Qs

1(s, a
0)]
i
+r✓ Ea⇠⇡s

✓
[Qs

2(s, a)]

= ...

= lim
N!1

NX

n=0

Ea⇠⇡s
✓

h
r✓ Ea0⇠⇡b

✓
[Qs

n(s, a
0)]
i
+r✓ Ea⇠⇡s [Qs

N (s, a)] . (20)

Moreover, from the definitions of the n-step extensions Qs
n and the SS-policy ⇡s

✓ , we see that:
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Therefore, we can use the identity from 21 to simplify Equation 20, and we are left with:
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#
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Convergence and finite approximations. We can use the results derived in Lemma 3.1 (see A.1) to
establish some of the properties of the infinite series introduced in Theorem 3.2. To simplify notation,
we will denote each term in the series from Equation 9 with gn(s, a), i.e.:

gn(s, a) = r✓ Ea0⇠⇡b
✓(·|a,s)

⇥
Q

s
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0)
⇤
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✓

"
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#
.
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We rewrite the value of each gn(s, a) term with the score function, using the identity
r✓ log(⇡b

✓(a
0|a, s)) = r✓⇡

b
✓(a

0|a,s)
⇡b
✓(a
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Then, we explicitly subtract a baseline, Ea00⇠⇡s
✓
[Qs(s, a00)], from the n-step Q-function

value Qs
n(s, a

0) multiplying the score. Note, that Ea00⇠⇡s
✓
[Qs(s, a00)] corresponds to the

value function of the SS-policy, which is a baseline independent of a0. Therefore,
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⇤
= 0, showing that this subtraction leaves all the

gradient terms unchanged [40]:
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From our boundedness assumptions, we define existing positive real values Q+, S+ such that:

Q+ � |Qs(s, a)|, S+ � |r✓ log(⇡
b
✓(a

0|a, s))|, for all a, a0 ⇠ A, s ⇠ S.

Thus, by noting the relationship
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we use the bound defined in Equation 18 from Lemma 3.1 to show that:
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From Equation 24, it is clear that each term in the series from Theorem 3.2 will converge exponentially
fast. This shows we can estimate Ea⇠⇡s

✓

h
limN!1

PN
n=0 gn(s, a)

i
with any arbitrarily small error

using a finite N . Moreover, we can see that each gradient term in Equation 22 is based on the
expected deviation of the n-step transition function from the steady-state distribution of the RMC. This
property provides concrete intuition for the proposed adaptive truncation strategy, which considers
the expected number of steps before reaching approximate convergence (i.e., ⇡b

N ⇡ ⇡s
✓). A similar

gradient estimator for the steady-state distribution was also derived with more formal notation in prior
works [91]. Heidergott et al. [92] further extended similar convergence results to broader classes of
Markov chains and even certain unbounded performance functions, providing further motivation for
our practical method.

A.3 Policy gradient estimation for arbitrary regularized objectives

We can extend Theorem 3.2 to estimate the policy gradient with respect to a wider class of objectives
that involve the expectation over regularized functions:

J(✓) = Es,a⇠⇡s
✓(·|s) [Q

r
✓(s, a)] , (25)
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where the values of Qr
✓(s, a) might depend on the parameters of the BT-policy, ⇡b

✓. We assume Qr
✓

and its gradients respect the same regularity assumptions of continuity and boundedness stated in
Theorem 3.2. The MaxEnt objective from Equation 6 is a particular instance of this setting with the
value of Qr

✓ being dependent on the policy’s entropy, i.e., Qr
✓(s, a) = Qs(s, a) � ↵ log(⇡s

✓(a|s)).
Analogously to the unregularized case, we define a set of n-step extensions for Qr

✓ for all n =
0, 1, 2, . . . :
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A
⇡b
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0)da0, with r✓Q
r
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For any state s, we can then apply the product rule to rewrite the gradient of Equation 25 as a sum of
two expectations:
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Here, we used the definition of each Qr
n(s, a) term being a local approximation and having no

dependency on the BT-policy to rewrite term (1) as an expectation. Hence, we can directly apply the
unregularized version of Theorem 3.2 to term (1), yielding:

r✓J(✓) = Ea⇠⇡s
✓

"
lim

N!1

NX

n=0

r✓ Ea0⇠⇡b
✓
[Qr

n(s, a
0)]

#
+ Ea⇠⇡s

✓
[r✓Q

r
✓(s, a)] . (1) + (2)

Since Ea⇠⇡s
✓
[r✓Qr

✓(s, a)] = Ea⇠⇡s
✓

h
Ea0⇠⇡b

✓(·|a,s) [r✓Qr
✓(s, a

0)]
i
, we can merge back the two

expectations, obtaining:
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The resulting form of the policy gradient generalizes the original Equation 9 from Theorem 3.2, where
now the first term in the infinite series explicitly considers the full gradients from the regularized
objective. Hence, applying truncation and the reparameterization trick (as in Equation 13) now yields:

r✓J(✓) ⇡ E✏0,...,✏N
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ranQ
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#
,

where a ⇠ ⇡
s
✓(·|s), a0 = f

b(a, s, ✏0), and ai = f
b(ai�1, s, ✏i) for all i = 1, . . . , n. (28)

Practical considerations for MaxEnt RL. The reparameterized extension in Equation 28 is directly
analogous to the extension of DDPG policy gradients [12] in SAC [13, 39] when considering the
MaxEnt regularized objective:

Qr
✓(s, a) = Qs(s, a)� ↵ log ⇡s

✓(a|s), r✓Q
r
✓(s, a) = �r✓↵ log ⇡s

✓(a|s). (29)

To estimate the entropy of the SS-policy, we use the approximation ⇡s
✓(a|s) = E⇡s

✓(a
0|s)

⇥
⇡b
✓(a|s)

⇤
⇡

1
N+1

PN
n=0 ⇡

b
✓(a|an, s), which results in a nested Monte-carlo estimator [93] for evaluating this

component of the policy gradient with reparameterization. We find that using N = dN̂e (Section 3.4)
ensures enough samples for practical effectiveness, without necessitating additional debiasing tricks
(e.g., [94]).

A.4 Unlimited expressivity

The unlimited representation power of Serial Markov Chain Reasoning comes from the fact that
the distribution of agent behavior given by the SS-policy, ⇡s

✓ , is a mixture model with potentially
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infinitely many components. Hence, even a simple Gaussian parameterization of the BT-policy ⇡b
✓

makes such distribution an arbitrary mixture of Gaussian distributions, which enables agent behavior
to approximate any action distribution to arbitrary precision [53]. This is due to Gaussian mixtures
being universal approximators of densities [95]. Recent works also show that the same property
extends to arbitrary mixture models, with implications for future non-Gaussian extensions of our
framework [96].
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B Convergence detection

Figure 5: Pseudo scale reduction factor statistics collected after training an agent in the Ant-v2
environment from OpenAI Gym Mujoco with SSPG. (Left) Evolution of the average PSRF throughout
an episode by performing up to 16 reasoning steps for each action selection decision. (Right))
Empirical frequencies of the reasoning steps performed before approximate convergence to the
steady-state distribution of the RMC, as determined by Rp < 1.1.

As described in Section 3.4, we detect convergence in the reasoning process using the multivariate
version of the seminal Gelman-Rubin (GR) convergence diagnostic [50, 51]. Given a set of M
parallel reasoning chains of length N , a1:N , this diagnostic computes the pseudo scale reduction
factor (PSRF), a score that should expectedly converge to 1 as N increases and the distribution of the
different chains approaches the steady-state distribution. We provide an example in Figure 5 Left
where we display how the average PSRF evolves after performing 2-16 reasoning steps after training
an agent for the Ant-v2 Mujoco task. As described in the main text, the PSRF (Rp) is based on the
largest eigenvalue from the matrix product of the sample covariance within (W ) each of the parallel
chains (

⇥
ai1, . . . , a

i
M

⇤
, for i = 1, 2, . . . ,M ) and an unbiased estimate of the true covariance of the

steady-state distribution, utilizing the sample covariance between (B) the different chains:

Rp =

r
N � 1

N
+ �max(W�1B).

This score can be interpreted as the largest variability in any direction between these two estimates,
which can be much higher than the ratio of individual variances computed by the univariate GR scores
[52]. Intuitively, as the variance within each chain approaches the variance between independent
chains, we can take this as a strong indication that we sufficiently explored the Markov chain’s
state-space within each chain. For our problem settings, we found the PSRF to work well with
the default convergence threshold Rp < 1.1. After detecting convergence, we use the number
of performed reasoning steps (N ) to update a running mean N̂ = ⇢N̂ + (1 � ⇢)N , as shown
in Algorithm 1. To perform this update, we found a ‘untuned’ choice of ⇢ = 0.99 to also work
appropriately. We observed that for any individual task and training iteration, the majority of the
agent’s action selection decisions requiring a number of steps close to N̂ , as shown by the example in
Figure 5 Right. Hence, rather than computing the PSRF at every step we found it more efficient to
compute the first score only after simulating the RMC for N = bN̂c reasoning steps. In particular,
starting from a1:bN̂c, we consider two cases: If Rp � 1.1, we simulate and compute the PSRF for
all further steps until convergence. Otherwise, if Rp < 1.1, we backtrack to find the minimum N ,
such that the subsequence a1:N still satisfies our threshold. With this strategy, we effectively limit
the number of evaluations of the PSRF and bolster overall efficiency.

Considerations. While the assumptions underlying the properties of the GR convergence diagnostic
[50, 51] are hard to ensure in practical scenarios, we believe its widespread adoption and empirical
effectiveness are strong motivators for its use. Recent extensions [52] incorporated modern techniques
for variance/covariance estimation together with less conservative termination criteria. Such methods
could provide further efficiency gains to our framework, but might also introduce alternative forms of
bias while acting and learning. We leave such exploration and analysis to future work.
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C Implementations details

In this Section, we provide descriptions of the SSPG implementations and experimental setups,
together with comprehensive hyper-parameters lists. Since serial Markov chain reasoning is a novel
framework, where action-selection is an adaptive iterative process, it adds additional implementation
complexity compared to traditional reinforcement learning. Hence, we share our implementation
to ensure reproducibility and facilitate future extensions/comparisons. By default, the only main
requirement of implementing the serial Markov chain reasoning framework is to substitute traditional
policies ⇡(·|s) with BT-policies ⇡b(·|a, s), which take an additional input from the agent’s action
space to perform reasoning. In the considered implementations, we also store a short-term action
memory buffer, Â, for acting in the environment, as described in Section 3.3. Overall, we mostly
re-use hyper-parameters and practices from existing policy gradient implementations without major
SSPG-specific tuning. In total, our algorithm only introduces 4 new main hyper-parameters: 1. The
number of initial action beliefs, M . 2. The pseudo scale reduction factor (PSRF) threshold to detect
approximate convergence. 3. The size of the short-term memory action buffer, Â. 4. The coefficient
for updating the running mean of performed reasoning steps, ⇢ (i.e., to update the value of N̂ for
learning). The values for these new hyper-parameters were mostly chosen based on default values
from similar practices and preliminary experimentation. Overall, SSPG’s performance appeared
to be quite robust to a range of reasonable choices and we kept them fixed for all tested domains.
We provide ablation studies and examine performance with different settings in Appendix E. These
results further confirm the claimed robustness.

C.1 OpenAI Gym Mujoco

Table 1: SSPG hyper-parameters on OpenAI Gym Mujoco tasks

General MaxEnt RL hyper-parameters (following common practices [60, 61]

Replay data buffer size 1000000
Batch size 256
Minimum data before training 5000
Random exploration steps 5000
Optimizer Adam [97]
Policy/critic learning rate 0.0003
Policy/critic �1 0.9
Critic UTD ratio 10 (half the other baselines)
Policy UTD ratio 1
Discount � 0.99
Target critic polyak coefficient 0.995
Hidden dimensionality 256
Fully-connected hidden layers 3
Nonlinearity ReLU
Initial entropy coefficient ↵ 1
Entropy coefficient learning rate 0.0001
Entropy coefficient �1 0.5

Policy target entropy Hopper : -1, HalfCheetah: -3,
Walker2d: -3, Ant: -4, Humanoid: -2

Critic ensemble size 10
Critic penalization (uncertainty regularizer [98]) 0.75

SSPG-specific hyper-parameters

Number initial action beliefs, M 64
PSRF threshold 1.1
Short-term action memory size 64
Reasoning steps moving average coefficient, ⇢ 0.99
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Our Mujoco SSPG implementation follows common practices employed in the considered baselines
and recent literature. Following REDQ [60] and MBPO [61], we employ a critic ensemble of 10
models and use the suggested task-specific target entropy values for automatic tuning of the MaxEnt
coefficient, ↵ [39]. We parameterize each critic with a modern architecture [99] employing 3 fully
connected hidden layers as in [98]. Inline with observations for IAPO [62], we find that performing
iterative computations with the policy model can easily lead to a value overestimation phenomenon.
Hence, to compute the Q-function’s targets, we use the uncertainty regularizer [98] with a slightly-
increased fixed coefficient of 0.75 (the default value of 0.5 is equivalent to the penalization from
clipped double Q-learning [100]). See Table 1 for a full list of hyper-parameters.

C.2 DeepMind Control

Table 2: SSPG hyper-parameters on DeepMind Control tasks from pixels

Pixel-based RL hyper-parameters (same as DrQv2 [66])

Replay data buffer size 1000000 (quadruped_run: 100000)
Batch size 256 (walker_run: 512)
Minimum data before training 4000
Random exploration steps 2000
Optimizer Adam [97]
Policy/critic learning rate 0.0001
Policy/critic �1 0.9
Critic UTD ratio 0.5
Policy UTD ratio 0.5
Discount � 0.99
Target critic polyak coefficient 0.99
N-step 3 (walker_run: 1)
Convolutional kernel size 3⇥3
Convolutional filters 32
Convolutional layers 4
Convolutional strides 2, 1, 1, 1
Feature dimensionality 50
Hidden dimensionality 256
Fully-connected hidden layers 3
Nonlinearity ReLU

General MaxEnt RL hyper-parameters

Initial entropy coefficient ↵ 1
Entropy coefficient learning rate 0.0001
Entropy coefficient �1 0.5
Policy target entropy 0.5! �1⇥ dim(A) in 500K steps

SSPG-specific hyper-parameters

Number initial action beliefs, M 64
PSRF threshold 1.1
Short-term action memory size 64
Reasoning steps moving average coefficient, ⇢ 0.99

Our DeepMind Control pixel-based SSPG implementation mostly follows the exact hyper-parameters
and model specifications from DrQv2 [66], but re-introduces MaxEnt RL in the policy gradient
objectives. The policy target entropy is annealed from 0.5 ⇥ dim(A) to �1 ⇥ dim(A) in the first
500K steps, which was done to mimic the exploration standard deviation annealing (from 1 to 0.2 in
the first 500K steps) again from the DrQv2 implementation. Both the other MaxEnt RL parameters
and SSPG-specific parameters are kept identical to our experiments on Mujoco tasks. See Table 2 for
a full list of hyper-parameters.

24



C.3 Positional bandits

To provide visualizations and intuition for the behavior of RL agents adopting the serial Markov
chain reasoning framework, we design simple few-dimensional toy tasks, which we call positional
bandits. We used a 1-dimensional positional bandit for the example in Figure 2 and 2-dimensional
positional bandits for our expressiveness experiments in Section 4.2. Positional bandits are defined by
an arbitrary list of goal coordinates within a bounded state-space centered around 0. The action space
represents position coordinates, determining which part of the state-space the agent will immediately
visit. The reward of each action is proportional to the distance it brings the agent to the closest goal
coordinate. Thus, in each single-step episode, the agent receives information about its proximity
to only one of the goals. In these environments, we train all agents with the MaxEnt objective,
making optimal behavior correspond to visiting all-goals with similar frequencies. These minimal
problems aim to isolate and assess the ability of different agents of modeling arbitrary multi-modal
distributions of behavior in the non i.i.d. RL problem setting which also involves a non-trivial
exploration challenge.

We evaluate light-weight versions of SSPG, SAC, and a flow-based version of SAC. We largely
follow the specifications from the Mujoco experiments, with a shared UTD of 1, a single critic,
50 random exploration steps, a fixed ↵, and with all models (except the flow-based policy) using
2-layer fully-connected architectures with 32 hidden dimensions. We implemented the flow-based
version of SAC, based on inverse autoregressive flows [101], as also considered in related RL works
[62, 75]. In particular, we apply to the policy model’s outputs two additional flow transformations,
each parameterized by a 2-layer fully connected network. We found that this class of models benefits
from wider policy networks, thus, we increased back the hidden dimensionality to 256 (as in our
main Mujoco experiments). We found 1000 steps of experience collection/network updates was
sufficient for behavior to convergence in SSPG and standard SAC. Instead, the flow-based version of
SAC required much additional experience/training before attaining behavior resembling any actual
multi-modality, hence, we considered its results after 1M steps.

C.4 Other considerations

In this work, we implemented SSPG with minimal extensions to existing policy gradient models and
parameters. The purpose of this choice was to remove confounding factors related to hyper-parameter
and model tuning, and evaluate our framework mainly for its conceptual properties over traditional
RL agents. For the same reason, we concentrated our empirical analysis on established evaluation
benchmarks and toy problems, rather than exploring new challenging applications. This leaves much
potential for future work to investigate new model architectures, training practices, and push the limit
of serial Markov chain reasoning.

Early versions of our framework considered using some recurrent memory components as input to the
BT-policy. However, to preserve the Markov property, this modification would require considering
an extended state space for the RMC, consisting of both action-beliefs and memory hidden states.
Preliminary results showed that such extended state space makes convergence require an increased
amount of reasoning steps and optimization of the BT-policy more unstable.
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D Extended evaluation results

In this Section, we provide granular per-task results and further aggregate evaluations with the Rliable
evaluation protocol [55] after collecting different numbers of steps. We also compare the performance
of SSPG with a new baseline integrating prior state-of-the-art algorithms with the normalizing flow
model introduced in the first part of Section 4.2. Additionally, we report the mean running times for
the considered algorithms and the main baselines we run to obtain performance results. Together
with details about our hardware setup, these should give a solid intuition of the relative computational
training cost of each algorithm. Furthermore, we also provide results for the performance of SSPG
when ‘clipping’ the maximum number of reasoning steps allowed for each action-selection, and the
relative evaluation times to analyze potential deployment-time efficiency and trade-offs.

D.1 OpenAI Gym Mujoco

Table 3: Per-task results for the considered OpenAI Gym Mujoco tasks. Each displayed return is
averaged over 5 random seeds from 100 test rollouts from the preceding 10K training steps.

100K steps 200K steps

Tasks SSPG REDQ IAPO MBPO SAC-20 SSPG REDQ IAPO MBPO SAC-20

Invertedpendulum-v2 1000±0 1000±0 1000±0 963±37 1000±0 1000±0 1000±0 1000±0 963±37 1000±0
Hopper-v2 3314±68 2994±510 425±229 3271±192 2718±908 3487±87 3060±617 426±149 3303±203 3356±26
Walker2d-v2 4428±230 1989±1003 476±107 3393±528 2043±757 4793±186 2969±861 570±74 4034±485 3039±903
Halfcheetah-v2 8897±496 5613±436 4122±566 9533±332 5831±723 10309±653 6633±568 5303±597 10670±750 7187±839
Ant-v2 5163±275 3132±1243 5±19 1596±446 496±105 5513±238 3792±1064 118±83 4309±632 1801±776
Humanoid-v2 4992±140 1402±657 441±90 559±62 495±96 5148±51 4721±648 390±160 3316±774 405±200

Per-task results. In Table 3 we provide the per-task results collected at 100K and 200K steps for
the considered OpenAI Gym Mujoco tasks. For both experience thresholds, SSPG obtains the best
average performance in 5/6 tasks, and still lags very close the model-based MBPO [61] algorithm for
the remaining task (HalfCheetah-v2). SSPG converges much earlier than other algorithms, even while
performing many less optimization steps (REDQ, REDQ-FLOW, MBPO, and SAC-20 all employ a
UTD of 20, while we train SSPG with a UTD of 10, see Section 4).

Figure 6: OpenAI Gym Mujoco aggregate performance evaluation with Rliable [55] after 50K (Top)
and 200K (Bottom) training steps. These results complement the analogous results after 100K
training steps together with the performance curves provided in Section 4.

Extended aggregate results. In Figure 6, we provide additional aggregate metrics collected at
50K and 200K steps, using the same statistical tools described in Section 4. We see most of the
considerations for the evaluation at 100K steps, equally hold at these different experience regimes.
Most notably, SSPG aggregately outperforms all prior algorithms with statistically meaningful gains,
for the Neyman-Pearson statistical testing criterion [64] and also exhibits stochastic dominance [65]
after 200K training steps.
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D.2 DeepMind Control

Table 4: Per-task results for the considered DeepMind Control tasks. Each displayed return is
averaged over 5 random seeds from 100 test rollouts from the preceding 150K training steps.

1.5M steps 3M steps

Tasks SSPG DrQv2 DrQ CURL SAC SSPG DrQv2 DrQ CURL SAC

acrobot_swingup 218±49 272±40 24±18 6±3 8±5 371±41 422±48 43±37 6±4 10±6
cartpole_swingup_sparse 797±43 478±391 321±393 497±330 135±268 837±15 503±411 319±391 530±353 174±290
cheetah_run 755±47 781±32 777±63 520±106 8±6 888±10 873±55 832±31 589±93 7±7
finger_turn_easy 794±127 757±156 184±63 305±107 170±60 974±6 932±43 218±106 310±139 211±98
finger_turn_hard 637±138 506±229 89±48 224±134 79±53 945±42 913±60 100±65 172±75 100±55
hopper_hop 246±28 200±102 272±88 185±129 0±0 344±28 239±123 290±86 223±133 0±0
quadruped_run 570±22 402±213 135±77 182±97 61±47 760±64 494±288 115±36 170±86 56±32
quadruped_walk 855±23 591±271 147±131 126±41 68±52 888±22 905±44 124±40 154±31 52±28
reach_duplo 221±7 219±7 9±15 10±11 0±1 218±9 228±1 9±6 7±7 2±2
reacher_easy 978±4 973±3 587±198 713±87 64±59 982±3 954±22 600±163 645±156 100±61
reacher_hard 913±77 802±113 343±242 482±179 7±15 974±6 944±25 426±288 651±324 15±19
walker_run 634±16 568±273 477±153 378±235 26±4 738±7 616±297 549±139 449±223 26±4

Average score 634.79 545.72 280.34 302.20 52.28 743.32 668.60 301.97 325.41 62.77

Median score 695.85 537.37 228.13 264.37 43.49 862.73 744.66 253.97 266.34 39.08

Per-task results. In Table 4 we provide the per-task results collected at 1.5M and 3M steps for the
considered DeepMind Control tasks from pixel observations from [66]. SSPG obtains the best average
performance in 10/12 and 9/12 tasks, respectively. We can observe most notable gains in some of
the tasks that pose harder exploration challenges (e.g., cartpole_swingup_sparse) and especially in
lower-data regimes (e.g., finger_turn_hard). We believe this could be an indication that serial Markov
chain reasoning complements particularly well the MaxEnt reinforcement learning framework and is
able to overcome some of its observed limitations for tackling sparse reward, pixel-based tasks [66].

Figure 7: DeepMind Control aggregate performance evaluation with Rliable [55] after 500K (Top)
and 3M (Bottom) training steps. These results complement the analogous results after 1.5M training
steps together with the performance curves provided in Section 4.

Extended aggregate results. In Figure 7, we provide additional aggregate metrics collected at
500K and 3M steps, using the same statistical tools described in Section 4. Again, these results
are consistent with the evaluation at 1.5M steps. In particular, we highlight ubiquitous statistical
significance and stochastic dominance [65] after training from 500K environment steps.

D.3 Comparison with normalizing flows

We provide results comparing SSPG with additional new baselines, extending state-of-the-art algo-
rithms based on the traditional RL framework with the normalizing flow policy model considered in
Section 4.2. To counteract the exploration collapse phenomenon observed in the positional bandits
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experiments, we found it beneficial to add a small amount of fixed Gaussian noise on top of the
already-stochastic policy when collecting training data (� = 0.05). While powerful flow models
can also provide unlimited expressiveness, they are still based on the traditional RL framework and
represent decision-making as the output of a fixed process. Thus, these experiments can provide
insights regarding the contribution of adaptivity to our SSPG framework. We compare the relative
improvements from SSPG and flows with respect to the original performance of the considered
state-of-the-art baselines in either the OpenAI Gym Mujoco and DeepMind Control benchmarks.

Table 5: Per-task results comparing improvements from SSPG and normalizing flows over REDQ for
the considered OpenAI Gym Mujoco tasks. The results were collected as described in Table 3.

100K frames 200K frames

Tasks SSPG REDQ-FLOW REDQ SSPG REDQ-FLOW REDQ

Invertedpendulum-v2 1000±0 (0%) 868±60 (-13%) 1000±0 1000±0 (0%) 960±69 (-4%) 1000±0
Hopper-v2 3314±68 (+11%) 2476±480 (-17%) 2994±510 3487±87 (+14%) 2940±420 (-4%) 3060±617
Walker2d-v2 4428±230 (+123%) 3477±440 (+75%) 1989±1003 4793±186 (+61%) 4199±565 (+41%) 2969±861
Halfcheetah-v2 8897±496 (+58%) 8905±1034 (+59%) 5613±436 10309±653 (+55%) 9510±1065 (+43%) 6633±568
Ant-v2 5163±275 (+65%) 3695±987 (+18%) 3132±1243 5513±238 (+45%) 4750±795 (+25%) 3792±1064
Humanoid-v2 4992±140 (+256%) 3947±1542 (+181%) 1402±657 5148±51 (+9%) 4693±238 (-1%) 4721±648

In Table 5 we provide the per-task comparisons. incorporating flows with REDQ appears to provide
limited and inconsistent performance benefits as compared to incorporating our serial Markov chain
reasoning framework. This is in line with our intuition justifying SSPG’s superiority and with results
reported in prior off-policy reinforcement learning work which show flows provide marginal gains
over standard Gaussian or deterministic policies (e.g., [62, 75]).

Table 6: Per-task results comparing improvements from SSPG and normalizing flows over DrQv2 for
the considered DeepMind Control tasks. The results were collected as described in Table 4.

1.5M frames 3.0M frames

Tasks SSPG DrQv2-FLOW DrQv2 SSPG DrQv2-FLOW DrQv2

Acrobot swingup 218±49 (-20%) 296±16 (+9%) 272±40 371±41 (-12%) 398±37 (-5%) 422±48

Cartpole swingup sparse 797±43 (+67%) 622±360 (+30%) 478±391 837±15 (+67%) 633±366 (+26%) 503±411
Cheetah run 755±47 (-3%) 743±58 (-5%) 781±32 888±10 (+2%) 849±51 (-3%) 873±55
Finger turn easy 794±127 (+5%) 834±120 (+10%) 757±156 974±6 (+5%) 946±50 (+2%) 932±43
Finger turn hard 637±138 (+26%) 555±222 (+10%) 506±229 945±42 (+4%) 866±60 (-5%) 913±60
Hopper hop 246±28 (+23%) 172±103 (-14%) 200±102 344±28 (+44%) 217±131 (-9%) 239±123
Quadruped run 570±22 (+42%) 605±64 (+51%) 402±213 760±64 (+54%) 734±20 (+48%) 494±288
Quadruped walk 855±23 (+45%) 831±52 (+41%) 591±271 888±22 (-2%) 912±23 (+1%) 905±44
Reach duplo 221±7 (+1%) 218±7 (-0%) 219±7 218±9 (-4%) 227±1 (-0%) 228±1

Reacher easy 978±4 (+1%) 976±3 (+0%) 973±3 982±3 (+3%) 973±16 (+2%) 954±22
Reacher hard 913±77 (+14%) 895±20 (+12%) 802±113 974±6 (+3%) 956±18 (+1%) 944±25
Walker run 634±16 (+12%) 520±287 (-9%) 568±273 738±7 (+20%) 575±319 (-7%) 616±297

Average score 634.79 (+16%) 605.41 (+11%) 545.72 743.32 (+11%) 690.45 (+3%) 668.60

Median score 695.85 (+29%) 613.28 (+14%) 537.37 862.73 (+16%) 791.32 (+6%) 744.66

In Table 5 we provide the per-task comparisons. Similarly to our results in the OpenAI Gym Mujoco
tasks, incorporating flows with DrQv2 also appears to provide limited and inconsistent benefits as
compared to the benefits of SSPG. We note that in both benchmarks, flows appear to particularly help
earlier in training (100K steps and 1.5M steps, respectively), likely due to some initial exploration
benefits. However, its gains over DrQv2 after 3M steps remain marginal in 10 out of the 12 examined
DeepMind Control tasks.
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Figure 8: Performance evaluation of our normalizing flow agents with Rliable [55]. We integrate
flows with REDQ for the OpenAI Gym Mujoco tasks (Top) and with DrQv2 for the DeepMind
Control tasks from pixels (Bottom).

In Figure 8, we provide aggregate metrics for the normalizing flows agents, using the same statistical
tools described in Section 4. We considered performance after 100K and 1.5M steps for the OpenAI
Gym Mujoco and DeepMind Control benchmarks, since its where normalizing flows appear to yield
the most benefits. However, even in this experience regime, incorporating flows does not provide
statistically significant gains and does not exhibit stochastic dominance [65] as SSPG.

D.4 Computational requirements

Table 7: Average training times for the tested algorithms and ablations in the OpenAI Gym and
DeepMind Control tasks.

OpenAI Gym Mujoco Training time (seconds) for 1000 env. steps

SSPG (UTD=10) 50.9
SSPG (UTD=20) 84.2
SSPG, 1 reasoning step (UTD=20) 69.1
SAC-20 51.6
IAPO (Original implementation) 193.1
REDQ (Original implementation) 183.8

DeepMind Control (pixels) Training time (seconds) for 10000 env. steps

SSPG (UTD=0.5) 160.2
SSPG, 1 reasoning step (UTD=0.5) 116.7
DrQv2 111.2

We record the average training time from executing the different considered algorithms for each
training epoch, consisting of 1000 environment steps for OpenAI Gym and 10000 environment steps
for DeepMind Control. The most relevant specifications of our hardware setup are an NVIDIA RTX
3090 GPU and an AMD Ryzen Threadripper 3970x CPU. We based our implementations on the
shared code from [98] and [66] for OpenAI Gym and DeepMind Control tasks, respectively.

Training times. We show the average training times in Table 7. For the OpenAI Gym Mujoco tasks,
the increased UTD ratio severely affects computation requirements. Thus, by halving the UTD ratio
of SSPG, we are able to bring its epoch training time lower than SAC-20 and all other considered
baselines. However, we did not explore lowering the number of updates for our experiments in
DeepMind Control, as DrQv2 already employs a low UTD ratio of 0.5. Thus, DrQv2 is about 30%
computationally faster than SSPG. We believe the extra computation for carrying out the reasoning
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process is one of the main limitations of the serial Markov chain reasoning framework. However,
for real-world problems, physical constraints related to environment feedback are often the main
bottlenecks for the overall time efficiency. In such regard, we argue that the considerable sample-
efficiency improvements from our novel framework should be much more relevant than increased
computational cost.

D.5 Analysis of the cost of acting during deployment

Table 8: Performance of SSPG after ‘clipping’ the maximum number of reasoning steps during
evaluation only. We write the number of clipping steps after the algorithm’s name.

Tasks SSPG SSPG-1 SSPG-4 SSPG-8 REDQ

Ant-v2 5513±238 5356±261 5501±114 5527±219 3792±1064
Humanoid-v2 5148±51 4971±98 5120±56 5139±76 4721±648

Tasks SSPG SSPG-1 SSPG-4 SSPG-8 DrQv2

cheetah_run 888±10 880±13 889±10 891±5 873±55
quadruped_run 760±64 715±85 734±81 752±66 494±288

We report the performance of SSPG when ‘clipping’ the maximum number of reasoning steps allowed
for each action-selection to fixed values, during evaluation only. We evaluate final checkpoints of
agents learned without any clipping by our unmodified SSPG. We consider a subset of four total
environments from both OpenAI Gym Mujoco (i.e., Humanoid-v2, and Ant-v2) and DeepMind
Control (i.e., cheetah_run, and quadruped_run) for which SSPG displays different average reasoning
requirements. As shown in Table 8, clipping to as low as four reasoning steps marginally affects the
performance of SSPG, which still always surpasses the scores achieved by standard reinforcement
learning baselines. SSPG is less affected by this form of deployment-only clipping than by fixing the
number of reasoning steps for both training and evaluation phases. We motivate this finding by noting
that better capturing the canonical distribution of returns from the critic by performing additional
reasoning steps has also significant benefits during the training phase of off-policy algorithms. In
particular, this allows the agent to achieve better exploration and more easily correct the critic in the
areas of the action space where its predictions are erroneously optimistic. When training with the
unmodified SSPG algorithm, this benefit is fully retained, justifying the performance superiority than
our previous fixed-steps ablations.

Table 9: Average deployment times for the tested algorithms and ablations in the OpenAI Gym and
DeepMind Control tasks.

OpenAI Gym Mujoco Deployment time (seconds) for 1000 env. steps

Random (only simulation) 0.583
SSPG 3.523
SSPG-1 (clipping) 2.462
SSPG-4 (clipping) 2.917
SSPG-8 (clipping) 3.257
SAC-20 2.451
IAPO (Original implementation) 5.657
REDQ (Original implementation) 2.671

DeepMind Control (pixels) Deployment time (seconds) for 10000 env. steps

Random (only simulation) 0.997
SSPG 1.701
SSPG-1 (clipping) 1.637
SSPG-4 (clipping) 1.693
SSPG-8 (clipping) 1.699
DrQv2 1.604
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We report the average rollout time during deployment of each of our implementations. As shown
in Table 9, using SSPG does increase the average rollout time over standard reinforcement learning
baselines. However, the additional time required for action-selection scales sub-linearly with the
number of reasoning steps, and appears to be dominated by other fixed costs, such as simulating
the environment and converting observations to tensor objects. This is in contrast with the other
more expensive iterative baseline, IAPO [62], which performs gradient-based optimization at each
acting step. Differences with standard reinforcement learning are even more marginal in the visual
DeepMind Control environments, where the most expensive part of the computation is from encoding
the RGB input observation with a convolutional encoder (which needs to occur only once before
performing the reasoning steps with the policy ‘head’). Moreover, we note that in many real-world
applications, the additional acting cost would be greatly inferior to the actuation time costs when
using distributed hardware. However, clipping the number of reasoning steps still remains a valuable
option, as examined in the experiment above.
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E Ablations and parameter studies

We perform additional experiments to evaluate SSPG’s design choices and test alternative optimization
setups for serial Markov chain reasoning. We focus on the Humanoid-v2 and quadruped_run tasks,
which we found to be generally representative of overall agent behavior in the OpenAI Gym Mujoco
and DeepMind Control domains, respectively. For each experiment, we report the performance curves
for average returns (higher is better) and number of reasoning steps (lower is better).

E.1 Loss backpropagation

Figure 9: Performance and reasoning steps with alternative backpropagation strategies for training
SSPG’s BT-policy.

Following the policy gradient estimation derived in Section 3.2, we optimize the BT-policy by
recording its gradients with respect to the following operations: 1) We perform one (reparameterized)
reasoning step to output an action-belief, a0 ⇠ ⇡b

✓(s, a). 2) We simulate a local approximation
of the (reparameterized) RMC for N steps, yielding a1:N . 3) We compute and backpropagate the
outputs of all Qs

�(s, an), for n = 0, ..., N . A practical alternative would be to carry out step (2)
by performing N reasoning steps with the (reparameterized) BT-policy itself, rather than with a
local approximation of the RMC. While this change would not affect the objective value from each
Qs

�(s, an), it would make the computation record additional gradient dependencies to the BT-policy’s
parameters from each reasoning step, rather than just the first. As we already have to perform forward
and backward passes for the N actions computed in step (2), this extension would not come at a
significant computational overhead and would be reminiscent of differentiation through a traditional
recurrent model. In practice, we expect this change would enable to reduce optimization variance, as
we are optimizing the direct influence that the BT-policy has on the RMC starting from N different
initial action-beliefs for each sample. Yet, this alternative optimization procedure is not supported by
our theoretical intuition and would likely introduce further bias into the policy gradient estimation.

We show experimental results in Figure 9. We evaluate both a truncated version (truncated full
backprop.) and an un-truncated version (full backprop.) that perform full backpropagation through
the RMC when optimizing SSPG. The truncated version still optimizes the BT-policy with respect
to the full N reasoning steps, but prevents the gradients of future steps backpropagating to earlier
action-beliefs (somewhat reminiscent of truncation in RNN optimization). Surprisingly, we observe
no major differences performance-wise. However, we do observe somewhat higher variance between
different experiments when performing full backpropagation and slightly lower final returns, likely
symptomatic of the additional bias. On the other hand, the un-truncated version does experience
marginally faster initial learning in quadruped_run, indicating there could be some practical benefits
from backpropagating multiple reasoning steps to the BT-policy’s parameters. We leave exploration
of such potential extensions for future work.
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E.2 Initial action beliefs

Figure 10: Performance and reasoning steps with double and half SSPG’s number of initial action-
beliefs.

As described in Section 3.3, we perform the reasoning process from a set of initial action-beliefs a0.
The size of a0 (denoted |a0|) influences the number of initial starting modes and the accuracy of the
empirical PSRF computation for convergence detection. By default SSPG employs |a0| = 64. As
shown in Figure 10, doubling or halving |a0| affects convergence speed, with a greater number of
initial action-beliefs leading to a slightly faster reasoning process. We attribute this phenomenon to
the conservativeness of the proposed PSRF convergence rule [52], which becomes harder to satisfy
when evaluated from fewer parallel chains. However, these results do not take into account the
cost of performing each reasoning step which is itself affected by |a0|. SSPG’s overall efficiency
should be quite robust to most choices for this hyper-parameter with hardware optimized for parallel
computation.

E.3 Short term action memory buffer size

Figure 11: Performance and reasoning steps using a short-term action memory buffer with increased
size.

As described in Section 3.3, we sample initial action-beliefs for reasoning from the short-term
action memory buffer, Â. The size of Â (denoted |Â|) determines how far into the past to store
action-beliefs that can facilitate future reasoning. In practice, we found that the simple heuristic
of setting |Â| = |a0| works well. In Figure 11, we examine the effects of doubling the buffer size
from 64 to 128. Again, we observe this change leads to an increase in the expected reasoning steps
before reaching convergence. This result indicates that the most recent past actions are generally
most relevant, which we believe is a consequence of the fine temporal discretization of the considered
environments.
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F Additional supporting analysis results

F.1 Positional bandits quantized transition probabilities

Figure 12: Quantized transition matrices visualizations for the learned BT-policy trained in the
positional bandits with 2, 3, and 4 goals (see Figure 4 A).

We compute the quantized transition probabilities of the RMCs in the considered positional bandits
from our Policy expressiveness analysis (Section 4.2). For each positional bandit we randomly
sample a set of 1000 action-beliefs within a radius around each goal and compute the likelihood of
transitioning between any two such action-beliefs. We sum and normalize these probabilities both
with respect to the input and output action beliefs within each goal. Hence, we obtain a transition
matrix for the discretized RMC, showing the probability of updating the current action-belief based
on the resulting closest goal. We find that the BT-policy intuitively learns to consider action-beliefs
to reach all different goals in turn. For instance, in the positional bandit with three goals, performing
a reasoning step with the learned BT-policy from an action-belief that would land nearby goal 1
would almost certainly lead to an action-belief that would land near goal 3. Similarly, an action-belief
landing near goal 2 would follow from an action-belief that would land near goal 3, and would almost
certainly lead to an action-belief that would land near goal 1 (with less than 10�6 probability of
deviating). This behavior is summarized from visualizing the relative transition matrices following
the described quantization in Figure 12.

F.2 Reasoning with fixed action beliefs

Figure 13: Performance from performing reasoning with alternative fixed number of steps in different
tasks. The average number of reasoning steps until convergence with SSPG for Humanoid-v2
quadruped_run is around 10, while for Ant-v2 and cheetah_run is around 5.

We provide further results in support of our Policy adaptivity analysis by comparing the performance
of our adaptive SSPG with performing alternative fixed numbers of reasoning steps in 4 different
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tasks with diverse average reasoning costs (see Figure 4 B). As shown in Figure 13 and also Figure 4
C, increasing the number of reasoning steps monotonically improves performance. Yet, we did not
observe any case where our adaptive strategy underperforms as compared to any fixed number of
steps. We believe this is further empirical evidence of how a framework that can adaptively dedicates
different amounts of computation to different action-selection problem can provide great efficiency
and scaling benefits.

F.3 Effects of short-term action memory buffer

Figure 14: Performance and reasoning steps with and without reusing recent actions as initial action-
beliefs.

As stated in the Solution reuse analysis, and shown in Figure 14, re-initializing randomly a0 hurts
efficiency but not performance. We believe this is an indication that the BT-policy effectively learns
to bootstrap information in each previous action-belief while reasoning. Intuitively, starting from an
initial action-belief that contains no information about optimal behavior makes the relative action-
selection problem harder. Yet, SSPG still successfully enables to recover very similar performance
via adaptively performing additional reasoning steps to compensate.

G Societal impact

We proposed a new framework for modeling autonomous decision-making in reinforcement learning.
Thus, the societal impact of our work is tightly related to the impact of the reinforcement learning
field. While autonomous systems can offer many benefits, as they become more commonplace, they
might introduce ethical issues such as privacy, surveillance, and bias. If unregulated, automation
might also accentuate economic inequalities and have non-trivial environment impact. Policy making
strategies and regulations are increasingly needed to mitigate these risks, which we believe should
not compromise the field’s advancements given its countless potential positive implications.
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