SUPPLEMENTARY MATERIAL

Notations and conventions. For the sake of simplicity, with little abuse, we shall use the same
notations for a probability distribution and its associated probability density function. For n > 1, we
refer to the set of integers between 1 and n with the notation [n]. The d-multidimensional Gaussian
probability distribution with mean y € R? and covariance matrix ¥ € R?*9 is denoted by N(y, ¥).
Equations of the form (1) (resp. (S1)) refer to equations in the main paper (resp. in the supplement).

Denote by B(R?) the Borel o-field of R%, and for f : RY — R measurable, | f||,, = sup,cga |f(2)].
For 1 a probability measure on (R?, B(R?)) and f a u-integrable function, denote by u(f) the
integral of f w.r.t. u. For f : RY — R measurable, the V-norm of f is given by ||f||y =
sup,epa | f(z)|/V(x). Let € be a finite signed measure on (R, B(R?)). The V-total variation
distance of ¢ is defined as

I€llv = supy s, <1 | Jpa £2)dE(2)] -

If V = 1, then | - ||y is the total variation denoted by || - ||v. Let U be an open set of R?. We
denote by C*(U, RP) the set of RP-valued k-differentiable functions, respectively the set of compactly
supported RP-valued and k-differentiable functions. Let f : U — R, we denote by V f, the gradient
of f if it exists. f is said to me m-convex with m > 0 if for all 2,y € R? and ¢ € [0, 1],

fltw+ (1 —t)y) <tf()+ (1 —t)f(y) —mt(1—1t) |z —y|* /2.

For any a € R? and R > 0, denote B(a, R) the open ball centered at a with radius R. Let (X, X)
and (Y, ) be two measurable spaces. A Markov kernel P is a mapping K : X x Y — [0, 1] such
that for any € X, P(z,-) is a probability measure and for any A € Y, P(-,A) is measurable.
For any probability measure £ on (X, X') and measurable function f : Y — R we denote uP =
Jx P(z,-)du(z) and Pf = [, f(y)P(-,dy). In what follows the Dirac mass at z € R? by 5.
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S1 Theoretical analysis of FedSOUK

This section aims at recasting the proposed methodology into a stochastic approximation framework
and at stating the main assumptions required to show our theoretical results regarding FedSOUK,
which uses a general unadjusted Markov kernel. Then, we will use these general results to show
non-asymptotic convergence guarantees for FedSOUL, which considers an unadjusted Markov kernel
associated to overdamped Langevin dynamics.

S1.1 Preliminaries

We first show that FedSOUK (see Algorithm 1 in the main paper) can be cast into a general stochastic
approximation (SA) framework which corresponds to a federated variant of the stochastic optimization
via unadjusted kernel (SOUK) approach proposed in De Bortoli et al. [11]. Then, the convergence
guarantees for FedSOUK will follow by generalizing the proof techniques used to analyze SOUK.

Recall that 6 = (¢, ) € O corresponds to the parameter we are seeking to optimize where
© = ® x B C R, Define f : © — R of the form

b
FO)=b"">"1:(6), (S1)
=1

where for any ¢ € [b] and 6 € O,

where p(0) = p(¢, 8) = p(¢)p(B) and for any i € [b], p(D; | ¢, ) is defined in (1). Then, under
these notations, (2) can be written as

0* = argmin f(6). (S3)
0coO
In addition, based on (4) and (5), the gradient of f; defined in (S2) admits the form for i € [b],
Rde+ds _y Rde
sz . {9 . f]Rd H(gz) (Z(L)) Wéz) (dz(’)) , (54)

where, for any ¢ € [b] and € ©, ﬂ'éi) : 20 s p(z( | D;,0) and for any 6 € O, H;“ : 20
~Vglogp(0) — bV logp(D;, ") | ).

S1.2 Main Assumptions

We make the following assumption on © and the family of functions {f; : i € [b]}.
Al. O is a convex, closed subset of R% and © C B(0, Rg) for Re > 0.
A2. Forany i € [b), the following conditions hold.
(i) The function f; defined in (S1) is convex.
(ii) There exist an open set U € R9 and Ly > 0 such that © C U, f; € C1(U,R) and for any
01,02 € 6,
[V fi(02) = Vfi(01)]| < Ly 02— 04] -



Note that A2-(ii) implies that the objective function f defined in (S1) is gradient-Lipschitz with
Lipschitz constant L.

We now consider assumptions on the family of compression and partial participation operators

{6, Li}iew-

A3. There exists a probability measure vy on a measurable space (X1, X1) and a family of measurable
functions {€; : R%® x X; — Rde Yie[) such that the following conditions hold.

(i) Foranyv € R and anyi € | fx (v, 2M) vy (dz™) = w.

(ii) There exist {w; € Ry }icp), such thatfor any v € R% and any i € [b],

J,

In addition, recall that we consider the partial device participation context where at each communica-
tion round k > 1, each client has a probability p; € (0, 1] of participating, independently from other
clients.

2
@ (v, 2V) — vH v1(dzM) < w; ||v]®

Ad. Forany i € [b], the unbiased partial participation operator .7; : R x Xy — R is defined,
for any 6 € R% and ) = {I?)}ie[b] € Xy with Xo = [0,1]® by

3(0,2®) = Ya[? < p;}6/p;
where p; € (0,1].

Note that the assumption A4 is equivalent to H4 in the main paper.

LetV : ]Rd — [1, 00) a measurable function. We consider the following assumption on the family
(. 7") - 0 € 0. € [b]}.

AS. Forany i € [b), the following conditions hold.

(i) Forany6 € ©, ﬂ§i>(||H[gi>H) < ooand (0,29) Hgi)(z(i)) is measurable.
(ii) There exists Ly > 0 such that for any z € R and 01,6, € O,

HH(%) Hé?(,g)” < Ly |02 — 04| V'/2(2).

S1.3 Stochastic Approximation Framework

Let (X ,gi’l))keNyie[b] a sequence of independent an identically distributed (i.i.d.) random variables
with distribution v independent of the sequence (X (i.2) )ken,iep) Which is i.i.d. and with uniform dis-
tribution on [0, 1]. We consider a family of unadjusted Markov kernels {ny w17 €(0,7,0€0,i¢€
[B]}. Let (vk)ren- € (R%)N" a sequence of step-sizes which will be used to obtain approximate
samples from 77[5 ") using Q(z>

We now recast the proposed approach detailed in Algorithm 1 into a stochastic approximation
framework.

Starting from some initialization (Z(()1 0 A (0:0) ,00) € R® x ©, we define on a probability space
(Q2, F,P), the sequence ((Z,El"m)7 R Z,(cb ™) Jme[m]s Ox )ken via the recursion for k € N,

for any i € [b], given F_1, (Z,ii’m))me{o .M} is a Markov chain with Markov kernel Q% 0,

with Z{" = Z(A0- (S5)

Op+1 =1lg [G’k — Nkt1 © Ay, (Z151+11V1) X&)p Xlgi)l)} 5

where © denotes the Hadamard product and for any k € N, F, = (6o, {{Zl“’m)}me[M] S
{0,...,k},i € []})and F_y = o(6,{Z"" : i € [b]}). In addition, for any &k € N, ny4; =



(n,(cl_gl,n,(ﬁl) Z,(C:i]lw) = ([Z,(ci_’i:M)]T, R [Zlib’l:M)}T)T and for any 6 € ©, Z(M) ¢ RMd
(1) S X1 37(2) S X2 .

| A Z(l M) x(l) 72

(Zl ljﬂ % A(z)(z(le)) 2 1)) ’I(i,2)}

, S6
Zz 1y [A( (Z(le)) 12)} (86)

where {Ag), Ag)}ie[b] defined by

M
7 i, 1 i,m
A (20:1:0) —17 2 LA/D)Vsp(B) + Vslogp(=m) | 5)}
m=1
M
7 i 1 7,m
AQ (z(51:D) 7 ST {1/ Vep(d) + Vi log p(D; | 20, )} .

m=1

S1.4 Main Result

In order to show non-asymptotic convergence guarantees for FedSOUK detailed in Algorithm 1, we

need additional assumptions ensuring some stability of the sequence (Z, ,gi’m) :me{0,...,.M},i €
[b]) ken- These conditions are stated hereafter.

A6. For any i € [b), the following conditions hold.
(i) There exists Ay > 1 such that for any p,k € Nand m € {0,..., M},

B[ 0,V (2I™) | 280] < v (z{), B[V(250)] < o0,
where (Z(i’m> :m € {0,...,M},i € [b])ren is defined in (S5).
(u) There exists Ay, A3 > 1 p € [0,1) such that for any v € (0,7], 0 € ©, z € RYand k € N,

()

Q 0 admits M, g 4s stationary distribution and

[ (z)]k (ia9 ’V < Agpk’YV(Z)

(V) < As.
(iii) There exists ¥ : R — R such that for any v € (0,%] and 6 € O,
@) _ ()
)ﬁ,e T || yye <¥(y).
AT7. There exists a measurable function V : R* — [1,00), T'; : (R})? = Ry andT5 : (R} )? — Ry

such that for any 1,2 € (0,7] with vo < 1, 01,02 € ©, z € R%, a € [1/4,1/2], we have for any
i€ b,

We are now ready to show our main result. To ease the presentation, assume for any £ € N that
77121-21 = 771(«21 = 11 and, for any i € [b],fy,(ci)rl = Vit1-

Theorem S2. Assume Al, A2, A3, A4, A5, A6 and A7 and let for any k € [K], ni, € (0,1/Ly].
In addition, for any 0 € ©, z € R% and i € [b], assume that HH(gl)(z)H < VY4(2). Then, for any
K € N*, we have

< [T1(y1,72) + Ta(y1,72) |62 — 61][]V>(2) .

(1) (1)
52@72792 - 6ZQ’71,91 v

| S m A0 - (6 >}} . Bk
>t T Xiam
where, for any K € N*,

K b
. 1 .
Erx =2R% +2A;  sup {E [Vl/z(z mo)” n (8,)@% £y Wrﬂ%))
i€[b],me[M] Pt gt i



K K

Z|77k_77k s+ D mivety kv = m/n

(i,m)
+b sup o {03 } 2

i€[b],me

+0.A:C.p  sup {E [V(Z(gi’m))} } Z’ikvk_l [ {8 (v 70) + Ao (e, 30} + 7
i€[b],me[M] k=1

K

+0Y (1),
k=1

with {C’éi’m)}ie[b]ﬁme[M] defined in Lemma S5 and C, 5 defined in Lemma S6.

Proof. The proof follows by using the fact that (S23) is a (Fj—_1)ren+-martingale increment and by
combining Lemma S1-S7. O

S1.5 Supporting Lemmata

For convenience, we define the following quantities that will naturally appear in our derivations. For
any k € N*, let

€ = Ay, | (Z,S:M’,X,g”,x,?)) VS (O1), (S7)

where Ay is defined in (S6).

The following lemma first provides a non-asymptotic upper bound on Zle ne{f(0r) — f(6%)}
involving key quantities to control such as the Monte Carlo approximation error term (S7).

Lemma S1. Assume Al and A2, and let for any k € [K), n, € (0,1/Ly]. Then, for any K € N*,
we have

K
Zﬁk{f (6x) — f(67)} < 2R + an lexl* = mk (Mo (01 — MV F(0k—1)) — 0%, €x) ,
k=1
where {€x }<_| is defined in (S7).
Proof. Let k € N. Since © is closed and convex by A1, the indicator function g, defined for any

u € Rie+de by 16 (u) = 0if u € © and 1o (u) = oo otherwise, is lower semi-continuous and convex.
Therefore by Atchadé et al. [3, Lemma 7] we have

1
B(Br41) — B(By) < ——— <5k+1 — By Br41 — Br + 4188, ( ;(clﬁlw) X;(i)l)> , (88)
k41

1
13 (Pry1) — ta(Px) < ——— <¢k+1 = G, Qa1 — Ok + M1, ( ;Sr]lw) X,iﬁl,X,iil» ;

Nk+1
(59)
where 6% = (¢, B4) is defined in (S3). In addition by A2-(ii), we have for any i € [b],
L
FilBrr) = Fi(Bk) < (Vfi(Or), Buer — O0) + = 10h — 6] (810)
Using (S10) and the fact that for any k € N, ng41 < 1/L¢, we have
L
F(Bisr) = £(8) < (VS (0k). i — i) + 55 1B — B
+ (VoS (O0): Srrr — 1) + Hmﬂ i l?
1
< (VaS (0k), Brer = Br) + 5 | Bss = Bill®
Nk+1
1
+ (VoS (0), dri1 — 0k) + o lldmer — dl” (S11)
Nk+1



Finally, A2-(i) implies for any i € [b],
fi(0) — fi(07) < —(V fi(Ok), 0x — Ok) - (512)

Forany i € [b], let F; = f; + 1o and let F' = (1/b) Zle F;. Using this notation and combining
(S8), (S9), (S11) and (S12), we have

F(Ory1) — F(07)
= f(Ors1) = f(Ok) + f(Or) — F(OF) + ta(Pry1) — Lo (dx) + tB(Brs1) — te(Bx)
<— <ﬂk+1 — By, Ag, <Z£i11:NI)7X1(i)1) - vﬂf(ek’)> — {Brt+1 — B Brt1 — Br)
- <¢k+1 — 0x Ay, (Zéifi),X;£1+)17X;ii>1) - V¢f(9k)> —(Prt1 — buy Prr1 — D)

1 1
+ ——|1Brs1 = Bll” + I prs1 — ol

2741 2,
1:M 1 2
= = (O = 0.8 (2037 X010, X3,) = VI (00))
1 2 2 1 2 2
+ % [||¢k - ¢*H - H¢k+1 - (17*” } + % [Hﬂk - B*H - H5k+1 - 6*” ] . (813)

From (S13), it follows for any K € N* that

K
> m{F(0) — F(6*)}
k=1

K
<= > me (O =0 8g, (210 X0, X07) - VF0r-))
k=1

1 1 1 1
+ 5 160 = 6ul* = 5 6K = &ull” + 3 180 = Bll* = 5 18x = .

K
. 1
<= Ym0 =00 Ag, (21 X0 XD) V() + 5 100 07
k=1
K
== > e (0 — o (O = eV F(0r1)) . Aoy, (200, X0, XP) = V5 (011) )
k=1
K
- m <H® (Oc—1 =MV f(Or-1)) — 0", Ay, _, (Zzil'M)sz(cl)szgQ)) - Vf(‘9k—1)>
k=1
1 112
+5 1160 — 67

i - 2 1
<3 |Aa, (200X X)) Vi) + 5 00— 02
k=1

= (T Bkt = eV £(0s-1)) = 0%, Ag,, (20, X0, X)) = 9 f(6) )
k=1
where we used Atchadé et al. [3, Lemma 7] and the Cauchy-Schwarz inequality in the last inequality.
The proof is concluded using f < F', f(6*) = F(6*) since §* € ©, and by noting that under A1 we
have ||y — 0*]] < 2Re. O

Lemma SI involves two key quantities to upper bound namely |eg| and
(Ilg (Ox—1 — iV f(Ox—1)) — 0%, €x) for any k& € N*. Our next lemmata aim at controlling
the expectations of these two terms. In particular, Lemma S2 and Lemma S3 show that the impacts
of Monte Carlo approximation, partial participation and compression can be decoupled.

To this end, define for any k£ € N* and i € [b]

M
[ 1 i i,m
bk = M > Hg), (Z,(C )) = Vi fi(br-1),

m=1



ek = i Z Hf) ( zi m)) = Ve fi(Or-1),

e = e g)k,efm : (S14)

where, for any k € N* and i € [b], HY

S (z0my =l (20, S (2] is defined in
(S4).

Lemma S2 shows that ||e|| can be upper bounded by a quantity involving the norm of { H, ;“ Yicp-
Lemma S2. Assume Al, A2, A3 and A4. Then, for any k € N*, we have

b
wl+1+ 7 3 ,m 2
[\ekll ] Z pi { [HHé) (z0™) H ]}+8bL§R§,,

where {€x }<_| is defined in (S7).

Proof. Let k € N*. Then by using (S6), we have

2

E [lel’] = [f (M D Hal (B, ”) XD =V f(0)
2
; [ Z HY (Z™), X" | — Vaf(Or-1) (S15)
Using A3 and A4, it follows that
2
% ( Z HE) (2™, X" ”) XD = Vo f(05-1)

= [H Z{ { (M Z Hgk 1 Z(i’m)),X,gi’l)> 7X1£i’2)]
<M Z H((;k) 1 Z(Z m) X(z 1)) }H :|
(M 2 ol () ii’”) VoS (0r)

m=1

2
(S16)

In addition, by A3-(i) and A3-(ii), we obtain

M
e oo (& 35 mi canx) xe)

m=1

M

1 @ (glm)y x D
g )
Hy |: ( Z H( Z(Z m) X(l 1)) 7Xl(ci72):|
m=1

1 M
i i,m 7,1
%(M H(;B 1(z( )) X( )) H
m

b M 2




b M 2
1 —pi 1 (i (im)y - (1,0) () (im)
-y El|6 | S 7Y (20m), X} ZHW (2
i=1 Pi M m=1
(1-p 1 Q8 ) (i) :
+Z( i >E[ M Hyl (2 )]
=1 m=1

(S17)

E[5) ]

Similarly, by A3-(i) and A3-(ii), we have

2

i ( Z HS) (2 m)),X/Ei’l)> = Vo f(Ok-1)

b

=[)> {%( S ) < 3 )
3 m=1

+Z ZHgk 1 Z(lm) — Vs f(Or-1 H :|

m=1
=Z;E %( Z g (7)) X“”) ZH@LZ“”’)
=

2

2

ZH&)] Z8™) Z 4 f(0-1)

2

- (4) (i,m)
a7 2 HOL (2™

m—l

Z Z HY) (Z{"™) = V4 f(0x-1)

=1
2
M2 sz |: ]
ZHSZ (Z™) = Vo Or-1)

[

By plugging (S17) and (S18) into (S16), we finally obtain

<Zwl

S HY) (2™

m=1

2
] . (S18)

— Vo f(Or-1)

M
7 i,m 7,1 2,2
> [ (5 3 ax >),x,g>

m=1

- ( )
) (i,m
Z Helcfl (Zk )

m=1

+-j£:1E U

’] . (S19)

€¢>k

b
1 (wi +1-— pi)
<qEY Mg
1=1




Finally, using the same arguments, we have under H4,

2
b
- 27[ ZHé?lZ(”” X2 | = Vsl 0r)
=1
L~ (1-pi 20y
<sr X (S52) e H
=1
b oM _ 2
+E D57 D HE(Z™) = Vsl (0r)
=1 m=1
b
1 i (glim)
S ( ) ﬁ“Z
1=1

b
+ZE {Hegl ’ } .

i=1
Combining (S15) and (S19) and using (S14), lead to

E [lenl] < 173

wz+1 (z m))

Mo

9k1

1o se ]

1=1
b
1 le{zﬁwﬂg; | ”+azsup|wz< &
1 Q- (wi + 1+ p; 0 2 B
SM;W{;EU)Hék)l(Zi >)H ”JFZLQZ%BH@_G @

where we used A2 for the last inequality and 6* (9 is a minimizer of f;. The proof is concluded using
forany i € [b] that ||§ — 6*(|| < 2Re by Al O

We now control the quantity (Il (0x—1 — 7V f(0k—1)) — 0%, €) which appears in Lemma S1.
Lemma S3. Assume Al, A3 and A4. Then, for any k € N*, we have

b
B{{llo (Bt = 0V £(61)) = 0", 0] < 3B [(1o (s —meF F(00-r)) = %))
where {6k}k=1 is defined in (S7).

Proof. Let ap = H@ ((9]@,1 — nka(Gk,l)) - 9*, a,(f) = Hq> (¢k71 — nkV¢f(6k,1)) — gb* and
al” =TIg (Bi_1 — VS (6k_1)) — Bs. We have

b M
i,m 7,1 7,2 1 ) i,m
<ak7€k> _ <al(€<l5)7 { |: ( Z H¢k ) ( ))VXIE )) 7 ( ):| Z H 1 ( )

i=1 m=1 m:l
b
+ Z <al(€¢)’ Z H(E:k 1 (l m)) - v¢fl(9k—1)>
i=1 m=1
b
+ <a§cﬁ)’ M Z Hy) (Z"™) Vﬁfi(9k1)>
i=1 m=1

_ <aé¢>’zy { (M Z H (70 X}gz‘,n) X0 2)} Z HO (70



+ Z (arefh) ($20)

where the last line follows from (S14). Using A3 and H4, we have

() (@) (Z m) (4,1) (4,2) (@) (i,m)
e (a3 (g 30 ) ) x| - S )
(#) F (i (é,m) (4,1) (4,2) (@ (i,m)
[<ak 7ZE“ { <MZH¢“Z ), Xk ),Xk } MZH(;S“Z )

m=1 m=1

=0.

The proof is concluded by taking the expectation in (S20) and using the previous result. O

Similar to De Bortoli et al. [11, Appendix C.3], we now decompose the Monte Carlo error terms
{Eél,)k}ie[b],ke[K] in order to end up with an upper bound on Zszl ne{f(0k) — J"(@*)}/(Zsz1 M)
which vanishes when limy_, o, 7 = 04 and limy_, 00 7% = 0.

For any § € © and v € (0,7], let for any i € [b], a function % : R — R% defined for any
z € R?by
i) = S { [RD) 10 - )
JEN
where R(i p is the Markov kernel associated with the discretized overdamped Langevin dynamics
targetting ﬂ’é ), and where 7(° )9 denotes the invariant distribution of R( . By A5 and A6-(i)-(ii), for

any § € ©,v € (0,7] and i € [b], H (@ )9 is solution of the Poisson equatlon defined by
(1d — RV, ') = Hy — '} (Hy). (S21)

In addition, note that using A6-(i) and De Bortoli et al. [11, Lemma 10], it follows for any 6 € ©,
i € [b] and z € RY that

1B < car Vi), (522)
where Cy; = 84, log™(1/p)p~7/4.
Using (S21), we can decompose the Monte Carlo error terms, for any ¢ € [b], k € [K] as 55,1)16 =
i,a i,b i,c
(1/M) e + 6 + 0 + €0} With, for any m € [M],

E‘(;kazn - H’(Y? 1,0k—1 (Z]E“m)) R’(YZk) 1,0k — 1H’§7k) 1,0k-1 (Z’EZ*’T)) (S23)
(4,b) (4) (4) (i,m) @ g (i,m)

E9yk,m - R’Yk 1,0k 1H’7L~,7179k 1(Z ) R"rk Ok ’Yk O (Zk )
(i,c) @ g® (i,m) (4) () (i,m)

€6,k,m R’Yk O 'Yk 9k(Z ) R’Yk 1,0k 1H’Yk7179k71 (Zk )

i,d i i i
Eé7ka?'n - 7T’(Yk>—176k—1( 6('k) 1) ék) I(Hék)—l) :

The following lemmata aim at upper bounding these four error terms.
Lemma S4. Assume Al, A2, A5 and A6, and for any § € ©, z € R and i € [b], assume that
||H6(L>(z)\| < VY4(2). Then, for any i € [b), m € [M], k € N*, we have

E {Heé’,j)m 1 < ACEy 2 E [Vl/z (Zéivm))ﬂ 7

where C, is defined in (S22).

Proof. The proof follows from De Bortoli et al. [11, Lemma 14]. O

10




Lemma S5. Assume Al, A2, A6 and for any 6 € ©, z € R? and i € [b], assume that ||Hél)(z)|\ <
VY/4(2). Then, for any i € [b], m € [M], k € N*, we have

K
E
) K K
<oy {Z k= 1Py ty + DMty + /v — m/%] :
k=1 k=1

S (e By — mVf (B1)) — 0%, €5,
k=1

where, for any i € [b] and m € [M],

Ci™ = MC(2Re(2+ Ly) + 1+ mLyE [VV/4(Z5™)] .

Proof. The proof follows from De Bortoli et al. [11, Lemma 15]. |
Lemma S6. Assume Al, A2, A5, A6 and A7. In addition, for any @ € ©, z € R% and i € [b], assume
that ||H9(Z>(z)|| < VY4(2). Then, for any i € [b], m € [M], k € N*, we have
E H Eélkl;)'rn‘H <AE [V(Z(()i’m))} Ceovie " [ AT (k=15 78) + Ta(yh—1, v )} + mk ]
where
Cen =4A310g7 (1/p)p~ 7/ ? max{LyC.1 + 245 log  (1/p)p~7/?},
Cen = 4414z log™ (1/p)p 7 PE [V (25™)] .

Proof. The proof follows from De Bortoli et al. [11, Lemma 16]. O

Lemma S7. Assume Al, A2, A6 and for any 0 € ©, z € R? and i € [b], assume that ||Héz)(z)|\ <
VY4(2). Then, for any i € [b], m € [M], k € N*, we have

B [||5i ] < om0

Proof. The proof follows from De Bortoli et al. [11, Lemma 17].

S2 Application to FedSOUL

We now apply Theorem S2 to FedSOUL where for any i € [b], v € (0,7%] and 6 € O, the Markov

kernel QEZ)Q is associated with a Gaussian probability density function q(i) (z(i>, -) with mean 2 —

. 7,0
V. log p(2¥) | D;, #) and variance 2714. To this end, we show explicit conditions on the family of

posterior distributions {ﬂéi>}7~,e[b] such that A6 and A7 are satisfied.

S2.1 Assumptions

For any i € [b], let Uem : R? — R such that for any 2(?) € RY, Wéi)(z(i)) o exp{—Uéi)(z(i))}. In
our case, this boils down to set Uem (D) = —logp(z® | Dy, ¢, B) for any () € R4,
A8. For any i € [b), the following conditions hold.

(i) Assume that (0,29)) s Uy(2?)) is continuous, 2 Uem(z”)) is differentiable for any
01,0 € © and there exists L > 0 such that for any z1, zp € RY,

sup (V.07 (22) = VU )| < L1 —0nl]
S

and {VZUei)(O) : 0 € ©} is bounded.

11



(ii) There exist my,my > 0 and ¢, R > 0 such that for any € © and z € R,

2
— C.

<VZUéz)(Z),Z> >m HZH 1B(O,R)C(Z) + m HVZUQ(Z)(Z)

(iii) There exists Ly > 0 such that z € R% and 6,1, 65 € O,

|V-05) () - V.U )| < Lo 62 - 81 V)2,

where V : R? — R is defined under AS8-(ii), for any z € R?, as
V(z) = exp {ml 1+ Hz||2/4} . (S24)

S2.2 Verification of A6 and A7

Lemma S8. Assume AS. Then, A6 and A7 are satisfied with V defined in (S24) and
7 < min{1,2ms},

ﬁ'll = m1/4 N

b= (d+ ¢+ v2m;) exp(@{(d + c + @5 + 1 +1r2}),

A= exp(—a7[V2 1)),

r = max{1,2(d + ¢)/m, R},

Fl : (717’72) = rYl/rYQ - 15

1/2
F2 : (71772) = 72/ 9

1/2
~ . 2\ .
Wy 20(1— ) W2Dy2 (14 4)/2 {d+2ﬁ <L2MV+ sup HVZUQ“)(O)H >D1} L,

0€0O,ic[b]
. o iy /1 L RY?2)(1 + o
b, — V21 exp(fiy \/ +ma>§~£2 R}?)(1+ 11 + c +d) A Tlog (1)),
1y

with My = sup,cga{(1+ ||z])2/V(2)}, C > 0, € € (0,1).

Proof. The proof follows from De Bortoli et al. [11, Theorem 5]. O

12
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Figure S1: Small data sets - synthetic data. b = 50 clients.
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Figure S2: Small data sets - synthetic data. b = 200 clients.
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Figure S3: Small data sets - synthetic data. Raw data dimensionality is & = 50.
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Figure S4: Small data sets - synthetic data. Raw data dimensionality is k = 5.

S3 Additional Experiments

S3.1 Synthetic datasets

In this section, following the experiments from the main paper, we will show additional configurations
of the toy example. We still use the same model (see Section 5 and Singhal et al. [47], Collins et al.
[8]), but we choose different values of (d, k, b). First, let us test, how the total number of clients b
impacts the performances of the different approaches. Figure S1 and Figure S2 depict our results for
b € {50,200}, with the size of the minimal dataset being 5 and the share of clients with the minimal
dataset 90%. We can see that in both cases, FedSOUL outperforms its competitors.

Second, we test, how the dimensionality of raw data impacts the result. Figure S3 and Figure S4
show our results with & € {5, 50}. All others parameters are the same as before.

One more experiment we conducted is the dependence on latent dimensionality d. We test two
options d = 2 (as in original experiments) and d = 5 in Figure S5 and Figure S6. Again, the more
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Figure S5: Small data sets - synthetic data. Latent space dimensionality is d = 5.
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Figure S6: Small data sets - synthetic data. Latent space dimensionality is d = 2.
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Figure S7: Small image datasets. The minimal local dataset size is 2 (top) or 5 (bottom).

parameters we have to learn (given the same small data budget), the better Bayesian methods (i.e.
FedS0OUL) are better.

S3.2 Image datasets classification

In this section, we provide an additional baseline for the experiments with personalization, in case
we have only a few heterogeneous data. Specifically, we consider APFL [13] which is another
personalized federated learning approach. We consider the CIFAR-10 dataset with 100 clients.
Among these clients, there are 10, 50, or 90 which have a local dataset of either 5 (one setup) or 10
(another setup). Else of size 25.

We see in Figure S7 that FedSOUL typically performs better than FedRep, but on par with APFL. It
is surprising, that APFL is a very good baseline in this type of problem, which it was not specially
designed for.

S3.3 Image datasets uncertainty quantification

In this section, we provide additional experiments on image uncertainty with CIFAR-10 (in distribu-
tion) and SVHN (out of distribution) datasets. As a measure of uncertainty, we will use predictive
entropy. On Figure S8, we present 4 different models among 100. In the left part of the figure, we see
the distribution of entropy, assigned to the in-distribution objects (validation split, but same domain
as training data). In the right part, we see the distribution for out-of-distribution (SVHN in our case).
Contrary to MNIST vs Fashion-MNIST example, here it is not that clear that FedSOUL captures
uncertainty well.

We also provide additional plots for calibration on CIFAR-10 again for two cases, when each client
had 2 classes to predict or 5.
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Figure S9: Reliability diagram for CIFAR10. 2 classes for model (top) and 5 (bottom).
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