A Notation and Auxiliary Results

This section gives an overview of the notations used in the paper and summarizes some basic results
in partial differential equation and functional analysis.

A.1 Basic notations

For n € N, we denote {1,2,...n} by [n] for simplicity in the paper.

For two Banach spaces X, Y, Z(X,Y) refers to the set of continuous linear operator mapping from
XtoY.

For a mapping f : X — Y, and u,v € X, df (u,v) denotes Gateaux differential of f at u in the
direction of v, and f’(u) denotes Fréchet derivative of f at u.

For r > 0, and zy € X, where X is a Banach space equipped with norm || - || x, B,(z¢) refers to
{r e X ||z —zolx <r}

For a function f : X — R, where X is a measurable space. We denote by suppf the support set of
f»ie. the closure of {x € X : f(x) # 0}.

For a measurable set 2 C R™, define the parabolic region Q; = Q+(£2) as Q x [0, ¢].
The parabolic boundary 9,Q); is then defined as € x {0} U 9Q x [0,1].

For R > 0, the parabolic neighborhood of 0 (denoted by Q(R)) is defined as {(z,t) € R™ x R> :
lr| < R, t < R%}.

Its parabolic boundary 9,(Q(R)) is defined as {(z.t) : |z| < R, t =0or|z| = R, t € [0, R?]}.

A.2 Multi-index notations

For n € N, we call an n—tuple of non-negative integers v € N™ a multi-index. We use the notation
la| = 2 04, al = I !, For z = (1,22, ...x,) € R", we denote by z* = I ;z;" the
corresponding multinomial. Given two multi-indices o, 3 € N?, we say a < f if and only if
a; < B;, Vi € [n].

For an open set  C R", T € R* and a function f(z) : @ — Ror f(z,t) : @ x [0,T] = R, we
denote by
14

the classical or weak derivative of f.

For k € R™, we denote by D* f (or V* f) the vector whose components are D f for all || = k, and
we abbreviate D! f as Df.

A.3 Norm notations

Letn e N*, me N, T € R*,and Q C R", Q C R"™ x [0, 7] be open sets.We denote by LP()
and L?(Q) the usual Lebesgue space.

The Sobolev space WP ((1) is defined as

{f(z) € LP(Q) : D*f € LP(Q), Yo € N" with |a] < m}. (15)
And we define W™?(Q) as
{f(x) € LP(Q) : D*f € LP(Q), Yo € N"™ with |a| < m}. (16)
We define
Wlhwer@ = | 3 1012, @ an
la|<m
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for 1 < p < oo, and

Lf llwm. () = max 1D fll Lo ) (18)

for p = oo.
We define || f || yym.»(q) for p € [1, o] similarly.

We will use simplified notations || f||, and || f||m,p for L”—norm and WP —norm when the domain
is whole space (R™, R™ x [0, 7] or R™ x Rx() or when it is clear to the reader.

WP (Q) is defined as the completion of C§° () under || - ||, norm. In the similar way we define
WP (Qr)-

A.4 Auxiliary results

In this section, we list out several fundamental yet important results in the field of PDE and functional
analysis.

To begin with, we would like to recall three useful inequalities in real analysis.

Lemma A.1 (Young’s convolution inequality). In R™, we define the convolution of two functions f
and g as (f*g)(x) := [pn f(Y)g(x —y)dy. Suppose f € LP(R™), g € LY(R"), and !l) + % = 71 +1
with p, ¢, 1 € [1, 00}, then|| f * g[l» <[ flpllgllq-

Lemma A.2 (Sobolev embedding theorem). Let {2 be an open set in R™, p € [1,00], and m < k be
a non-negative integer.

(i) If% — % > 0, and set q = n—f‘;—k then W™P C W™=%4 and the embedding is continuous, i.e.

there exists a constant ¢ > 0 such that ||| m—r.q < c||t|lm,p, Yu € W™P.

(ii) lfé - % < 0, then for any q € [1,00), W™P C W™ 4 and the embedding is continuous.

Lemma A.3 (A special case of Gagliardo-Nirenberg inequality). 2 is an open set in R™, Let
q € [1,00] and j,k € N, and suppose j # 0 and

l1<r<oo
k—j—2¢N
<6<
If we set
1 j 1 k 1-40
—:l+0<———>+—, (19)
p n roon q
then there exists a constant C' independent of u such that
IV7ull, < CIVFRulPflully™?, Yu € LI(Q) NWHT(Q). (20)

Next, we list out several basic results in second order parabolic equations, which will be of great use
in Appendix C.

In the following lemmas, we denote by £ the operator % —A.
Lemma A.4. Suppose () is bounded, and Qr = Q x [0, T].
Let u € W22(Qr) be the solution to

{,Cou = f(z,t), (x,t) € Qr 1)

u=0, (x,t) € 0pQr,

then for 2 < p < oo, if f € LP(Q7), we have v € W2P(Qr) and there exists a constant C such
that ||ull2.p < C[[f]lp-



Proof. Since 2 is bounded, we can choose an Ry > 1 such that Qr C Q(Ry). Set u(x,t) =
u(z,t)lg, and f(x,t) = f(z,t)1g,, which are extensions of v and f in R™ x R>¢, respectively.
The boundary condition in Eq. (21) implies that & € W2P(R™ x Rxq).

Furthermore, for any R > R, it holds that,

{coa = f(z,1), (z.t) € Q(R)
@=0, (z,t) € 3,Q(R).

From proposition 7.18 in [19], and in light of the fact that both @ and f are supported on Qr, we
obtain that || D%al|, < C(||f]l, + +1Dill, + 7=zl ») holds for VR > Ry. Additionally, Poincaré
inequality guarantees that there exists a constant C’ > 0 depending only on €2 and n, such that
lall2p < C'|| D%l

Therefore we have

1. A 1. 1. 2 2.
Grlilly <€ (17l + Fhilley + gelilen) <0 (171 + Flily) @2
1 20, . )
(- %) tall < il e3)
Let R = o and we derive [l < CC'|[fl Since il (arsis) = [ullwsr(gr) and
I fll e r x®s o) = | fllr(@r)» We completes the proof. 0

Lemma A.5. Ler u be the solution to
Lou(z,t) =0, (z,t) € R" x [0,T]
u(z,0) =g(z), x€R"

For any compact set Q C R™ x [0,T) andp > 1, letr < (T;;fp)p, then

(i) there exists a constant C such that ||ulw1.-q) < C|lg|lLr@n),

(it) there exists a constant C" such that ||ul|y2. gy < C'||g|lw . @n).-

Proof. u have the explicit form

a _pla—yl®
uw.t) = [ et gy 4
Rn U2

where a = (47)~ % and b = 1.

s 2
= and g(x), with Lemma

B

Note that u is the convolution between heat kernel K (z,t) := -%e~°

A.1, we derive '

I3

Hu('vt)HTo < ||g||P0||K('at)||qo (25)
for po, qo, 70 € [1, 00] satisfying pio + ql—n = % +1.

Due to the uniform convergence of (24), we have 2% = (2 K (z,t)) * g(z) for all i € [n]. Thus
we have

Ou(-,t) o
1=l < gl 5= K (@ 1)l o6
forp', ¢, 7" € [1, 00] satisfying ; + & = & + 1.

It is enough to decide appropriate tuples of (po, go,70), (p', ¢, 7).
Forq > 1,

al Iz 2 a4 2 1
K(,t)|?= T/ e b dy = — / e ballvli®g = —ux). 27
1K= [ == vow=gm @
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Thus || K(-,t)|lq = nq —e=, where C' is a constant.
As aresult, for any p, ¢, € [1, 00| satisfying 2 S+ 5 =141,
T T Ty
Il oy = [ 0l < ol [N ol = ol [ 2 @

Here we have |lul|, < Cil|g||, for a constant C; <= the integral in the R.H.S. of Eq. (28)

converges < ”‘12;"7' < 1 Then we could decide appropriate tuple (pg, o, 7o) for (25): tuples

that satisfy -2 pn TO < p . (The second inequality comes from the constraint gy € [1,00]. It
could be removed when these LP—norms are calculated in a bounded domain).

We handle ( '.¢',r") in (26) with exactly the same method and find that tuples which satisfy

D)
1 1
n+2 p’ + n+2 < r! S p’ glVCb

|5

%

< Caollgllprs (29)

r

where Cj is a constant.
Finally, note that for any bounded set €2, and 1 < ¢ < p, there is a constant C' such that ||v|| 4 (o) <
Cllv|| v (o) forall v € LP(£2). Together with the inequalities (28) and (29), this means that for any

compactset Q C R" x [0,7],p > 1,and r < (7;:-2;31)’

. " ou 1
ullwa.r@) = (lullpr () + Z ||%Hy(@))r (30)
- 1
< (Cslullzroq) +C4Z|| @) 31
. ou |, 1
< (Csllullzro@nxjo.y) + Ca Zl 152, 12 @ xi0.p)” (32)
< (Cslglmm + Co 3 19l qany)? 33)
i=1
= CrllgllLr (rmy, (34)
where 7o, 7’ € [p, (T;’;fgp ) N [r, +00) and all C; are constants.
This gives the first statement.
Next, we prove the second statement.
Note that 22 = (2K (x, 1)) + 2, Vi, j € [n].
With the same argument for (29), we obtain that for any 7"/, p” satisfying nLHI% + n+r2 <4< #,
0? 0
H K < Hﬂ . Vi.j € nl, (35)
Oij || L (o x [0,7)) Oz || Lo gy

where C is a constant.



(n+2)p

Therefore, for any compact set @ C R"™ x [0,7],p > 1,and r <

n+p °’

lullw=.r (@) (36)

n 8u ™ n 82u T r
ol LR el DS 37

i=1 9z; L™(Q) =1 9ziz; L™(Q)
1
, n au T n aQU T
< | Cullullyroq) + CQZ ur| TG Z sl I (38)
=1 L™ (Q) 3,7=1 JHL™(Q)
1
n au T n 821,( T !
< | Cillullzro mexo. 17y + Co2 = + C3
o (R x[0,T71) ; ox; L (7 x[0,T]) 7;Z=1 Ox;x; L (B x[0.T))
(39)
l,
, n , n ag T
< | Callgllzo@ny + Cs Y Mgl + Co Y o (40)
i=1 ij=1 J WLP(R™)
<Crllgllwremn), (41)
where 7o, 7', 7" € [p, %) N [r, +00) and all C; are constants.

This completes the proof. O

At last, we present it here a well-known result in functional analysis.

Lemma A.6 (Inverse function theorem in Banach space). Let X,Y be two Banach spaces, V C X
be an open set, and g € C*(V,Y) be a mapping. Assume xo € V, yo = g(x¢) and the inverse
of the Fréchet derivative (¢'(z0))"* € L(Y,X). Then there exists 1 > 0 and s > 0 such that
B, (y0) C g(V), Bs(zo) CV and g : Bs(xo) — g(Bs(x0)) is a differmorphism.

B Derivation of a Class of Hamilton-Jacobi-Bellman (HJB) Equations

For the sake of completeness of the paper, we give the derivation of a class of Hamilton-Jacobi-
Bellman (HJB) Equations as below.

To start with, we derive the general form of HIB Equation in stochastic control problem.

In stochastic control, the state function {X:}o<:<7 is a stochastic process, where T is the time
horizon of the control problem. The evolution of the state function is governed by the following
stochastic differential equation:

dX; =m(s, X;)ds +odW, s e [t,T|
{ X, ==z ; (42)

where m : [t, T] x R™ — R™ is the control function and {W} is a standard n-dimensional Brownian
motion.
Given a control function m = (m1(s,y), m2(s,v), ..mx(s,y)), s € [t,T], y € R", its total cost

is defined as J, ;(m) = EftTr(Xs,m(s,Xs), s)ds + g(Xr), where r : R" x R" x [0,7] — R
measures the cost rate during the process and ¢ : R™ — R measures the final cost at the terminal
state. The expectation is taken over the randomness of the trajectories.

We are interested in finding a control function that minimizes the total cost for a given initial
state. Formally speaking, we define the value function of the control problem (42) as u(x,t) =
rni/r\l/l Jz,+(m), where M denotes the set of possible control functions that we take into consideration.
me

It is obvious that u satisfies u(x,T) = g(z). In addition, according to dynamical programming
principle, we have

me

t+h
u(x,t) = min E(/ r(Xs,m(s, Xs), s)ds + u(Xyin, t + h)), (43)
t
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With Ito’s formula, we derive

w(Xgyn,t +h) = u(z,t) + (u + %O’QAU)h + Vu - (m(t,z)h + (W — Wy)) +o(h) (44)
After taking expectation and some calculation, we derive from (44),

0= (Ou+ %UQAu)h + mmeljl\l/l ]E(/tHh r(Xs,m(s,Xs),s)ds + Vu-m(t,z)h) + o(h) (45)

0 = Opu(z,t) + %O'QA’IL(.T,t> + JLréi/r\l/l(r(m, m(t,z),t) + Vu-m(t,z)) (46)

Then we get HIB equation
Oyu(z,t) + 10?2 Au(x, t i ,m(t,z),t) +Vu-m(t,z)) =0
{tu(:v )+ 50°Au(x )+mné1/r\14(r(m m(t,z),t) + Vu-m(t, z)) “n
w(z,T) = g(x).

Next, we further simplify this equation in some special cases.

In practice, different components of the state have different meanings, and thus the effects of
controlling corresponding components have different significance. Therefore, the cost function’s
dependence on each component of m, takes a very different form.

Based on this argument, we consider the case when r(z, y) takes the form
r(z,yt) = > ailyl|* — oz, 1) (48)
i=1
for some appropriate function ¢ and a; > 0,; > 1 (if a; < 1, the minimizing term might be
—00).Vi € [n].

Denote m(t,z) = (m1(t,x), ma(t, x),...mu(t,z)) asy € R™, and % as O;u, and suppose that
M is so large that it includes the global minimizor of (43), then the third term in HIB equation (47)
could be written as

n
] _ 7t . .
min (—p( )+;(az|yz

n

¥4y 0iu)) = p(z,t) + Zf,né%(al‘ylwl + y;0;u). (49)
i=1""

With some simple computation, we get

i 1
'+ yi0u) = < - T ) |0;u

(azal)ﬁ (az0u) =T

T, (50)

min (aly;

As aresult, HIB equation in this case is

Ou(z,t) + 0% Au(z,t) — p(z,t) — S0, Aidiul =0
i= (51)
u(w,T) = g(a),
where A; = (aiai)_ﬁ - ai(aiai)_% € (0, +oc) and ¢; = ;M7 € (1, +00).
Remark B.1. After taking the transform v(x,t) := u(x, T — t), the equation above becomes
{8,51)(1‘,75) — 2% Av(z, t) + 31, Ailow|e = —p(x, T — t) (52)
v(x,0) = g().

We will study this equation in the rest of the paper instead.

Remark B.2. The minimizer of (49) is y; = (%) =1 and this gives the i-th component of the
optimal control m*. Based on the fact that both the value function u and the optimal control m* are
of interest in applications, it is necessary to study this equation in WP space.

Moreover, in most cases, only a bounded domain Q3 C R" is taken into consideration in both
real applications and numerical experiments. Therefore, we study this equation in the space of
WLP(Q x [0,T)) for a bounded domain (), instead of WP (R™ x [0, T]).
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Remark B.3. The form of cost function (48) we investigate in the paper is a generalization of the
widely-used power-law cost (or utility) function, which is representative in optimal control. For
example, in financial markets, we often face power-law trading cost in optimal execution problems
[10, 30]. The cost function in Linear—Quadratic—Gaussian control and Merton’s portfolio model
(constant relative risk aversion utility function in [22]) is also of this form. Therefore, we believe our
theoretical analysis for this class of HIB equation is relevant for practical applications.

C Proof of Theorem 4.3

In this section, we give the proof of an equivalent statement of Theorem 4.3.

In light of remark B.1, it is equivalent to consider the stability property (as is defined in Definition
4.1) for the following equation:

{&u(:r,t — 2% Au(z, 1) + Y1 | Ai|0u
u(z,0) = g(z),

“=h(a,1) (2,0) €R" x [0,T] (53)

where A; > 0, ¢; € (1,00), and h(z,t) corresponds to —p(xz, T — t) in Eq. (52). Without loss of
generality, we assume o = /2 for simplicity in the discussion below.

We define operators Lo := % — A, Lygpu = Lou + Z?:l A;|0;ul¢ and BHJBu(x, t) := u(z,0)

for clarity. We define ¢ as max c;.
i€[n]

We start with the proof of some auxiliary results.

Lemma C.1. Forevery ¢ > 1, there exist k € N, {ti}le satisfying 1 <ty < tg < ... <ty <c and
k power functions f1, ... fi, whose orders are strictly less than c and no smaller than 0, such that

k
(b+w)® = b —w <> fi(b)w', Vb,w > 0. (54)
i=1

Proof. Obviously, the inequality holds when ¢ € N because of the binomial expansion. We will only
consider the case when ¢ ¢ N.

Step 1.We prove that for any b, w > 0 such that max{b,z} > 1, Fy,(c) := (b+ w)® — b — w’is
monotone increasing.

Without loss of generality, suppose b > w. Then

F'ie)=(b+w)nb+w)—bInb—wlnw (55)
=b+n) 14 cnb+n)w—wlnw (56)
holds for an 7 € (0, w) (mean value theorem).

Thus
F'c)>w(1+clnb+7)) —w'hw>w(l+Inb+n)—Inw) >w > 0. (57)

The inequalities rely on the assumption b > 1, which means In(b + ) > 0, and the first inequality
comes from b > w.

This completes the proof in this step.
Step 2. We then construct k, {t; }¥_,, {f;}}_; stated in the lemma.

Set n = [c]. By virtue of the increasing property of F'(¢) when max{b, w} > 1, we get
n—1 n
Fyw(c) < Fyu(n) = Zl ( i)b”" ‘', (58)
1=

When b, w satisfies max{b, w} < 1,
Fyaw(c) < (b+w) — b =c(b+n)"tw < 2 tw (59)
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holds for an € (0,w). The equality is an application of mean value theorem, and the second
inequality comes from the fact that ) € (0, w).

To conclude, (b + w)® — b¢ — w® < 2 tw + 2?2—11 (M)~ - w', Vb, w > 0. Since ¢ ¢ N, which

2

means n — 1 < ¢, this completes the proof. O
Lemma C.2. Suppose u* is the exact solution to

{ZHJBu =h (x,t) €R" x[0,T]
Buju =g

Fix a bounded open set Q) C R™. Suppose w1 satisfies BH,]BU* = BHJBUl and that supp(u; —u*) C

Q1 (). Recall ¢; are parameters in the operator Lyjp. Let p € [2,00).

Ifp=n- mé[u]( &=l = (1 — & Y)n, then there exists 5y > 0 such that, when || Lyypui — hl|, < o,
i€ln i

we have ||u* —uq||2p < CHZHJBUl — hl|p for a constant C' independent of u,.

Proof. Define w = w,, := u; — u*, then supp(w) is compact and w(z, 0) = 0. We further define
f = ful = EHJBul — h. Since uy = u* in R™ x [O,T]\QT(Q) and f = EHJBul — EHJBU*, we
have supp(f) C Qr(€2). The WP and LP norm in the rest of the proof is defined on the domain
Qr(Q
Compute
n
f = Luspur — Lygpu* = Low + Z A;|0;(u* 4 w)

i=1

“ (60)

G — Al ‘aﬂL*

Thus, for any (z,t),

[Low(z, t)] = |f =Y (Al (u +w)|* — A;|0u”|*) (61)
i=1 (z,t)
<)+ A0 (u* + w)|* — [Du*|| (62)
i=1 (x,t)
<|f( )]+ Y Ai(|0wu”| + [Biw]) — [Du*|) (63)
(z,t)

i=1

where the second inequality could be derived from the fact that (a + b)¢ — a® > a® — (a — b)* for
a>b>0andc > 1.

For i € [n], apply Lemma C.1 for ¢ = ¢; and we obtain k; and {¢;; }fi:l, {fij}f"zl satisfying
corresponding properties.

We have
n ki
[Cow(a, )] < [Fa,t)] + Y Ai(|0iw| + Y fij (|0 [)|0sw]') (64)
i=1 j=1 (,t)
With Lemma A.4 and triangle inequality, we obtain
n ki
lwllep < CllLowlly < CULF Ny + Y Aulldsw|™ |l + D 1 fis (0" DIDswl 1)) (65)
i=1 j=1
We will handle each term respectively.
Using Lemma A.2, we have
l10i0| I, = 9wllEi, < wlfe,p < Cillwlly nce - (66)

ntcp
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for constants C‘i.
Using Lemma A.2 and Holder inequality, we have
11fi5 (195u* DIdiw]" ||, < |1 i (10:u™]) [l oo 19520
= [1fi; (10" D oo ll0s20]l7i2,, < Cigllw]l e,

ijP — ijP "
Ynttsp

tij

P (67)
(68)

for constants C;; (Since Qr(€) is compact, we can tell that || fi; (|0;u*|)[| o < oo and thus Cj; are
well-defined).

. cci—l . ) ne;p nti;p A
Whenp > n ?61?5]; —— because of t;; < ¢;, we have 2B <p, nttp =P for all 4, 5.

Note that €2 is bounded, so for 1 < ¢ < p,there is a constant C' such that [|v|| a(q) < [|v]|Lr(q) for
all v € LP(Q2).

As a consequence, we can derive from Eq. (65,66,68) that M := ||w||2,, satisfies the inequality
KoM =Y (KM% + Y KiM%) <[], (69)
i=1 1<j<k;,t;;>1

where all K; and K;; are positive constants depending only on p, n, v* and 2.
For clarity, We define the L.H.S. of (69) as a function F' with variable M.

With the observations (i)F'(0) = 0, (ii) F'(0) > 0, (ii)F"'(M) < 0, (iv)F'(+o0) = —o0, we could
tell that (M) has a unique zero mg in R*. We could further tell that for any non-negative number

C< Mrr[lax ]F(M’), solving F'(M) < C (M > 0) derives M € [0,a] N [b, c0] for some 0 < a < b
€[0,mo

depending on C and that a — 0,b — my monotonously as C' decreases to 0. Note that there exists
6 > O such thata < I%C’ for VC € [0, d]. In order to prove ||w||2, = O(|| ). it suffices to show

that ||w||2,, (i.e. M in the discussion above) would not fall in the second interval providing C' (or
I f]|,5» correspondingly) is sufficiently small. We will prove by contradiction.

Note that Ly is a continuous injection from W (Q7(f2)) to LP(Qr(Q2)), and that there exists
rg > 0 such that Ly is a differmorphism from B, (u*) (in WOQ’p(QT(Q))) to Ly (Br,(u*)) D
B, (h) (in LP(Q7(£2))) for any 79 € (0,7¢) and any r € (0,r]) with r] depending on r¢ (this
comes from an application of Lemma A.6).

Select 79 < 7% and determine the corresponding 77. By the property of b, there exists dp €

(0, min{%, d}) such that for any C' < 4y, the corresponding b is larger than %mo. If there exists
w e Wy (Qr(Q)) satistying || fll, = || Lays (v +w) — Lagpu*||p = C < do while [[w|[2, > b
(b depends on (), then there will also be a w’ € B, (0) such that Lyyp(v* + w’) — Lyjpu* = f.

We could tell from the difference between their norm that w # w’. This contradicts the property of
injection.

The proof is completed. O

Lemma C.3. Suppose u* follows Lemma C.2, and (Y is a fixed bounded open set in R". Suppose u;
satisfies Luypu* = Luypuy and that supp(u; — u*) C Qr (). Let g € [1, 00).

Ife <2andq > %, there exists &g > 0 such that when || Byypui — BHJBU*”q < 6o, we have
< (nt2)q

lu* — w1, < C'HBHJBul — Bupu* |lq for a constant C independent of wy, where e
Proof. Define w = w,, :=u; —u*and f = f,, := Brsuy — Buypu*. Let wy be the solution to
{Eou =0, (z,t)€R" x[0,T]
Brujsu = f.
The WP and L” norm in the rest of the proof is defined on the domain Q7 ().

Since the conditions ¢ < 2 and ¢ > ((57;)”2 hold, we have [(¢ — 1)n, %) # &. Thus we could

2—c)n+2
choose ' € [(¢ — 1)n, %) N [r, 00). Since Q7 () is bounded, it suffices to bound ||u; — w*||,.
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To start with, from Lemma A.5, we have |jw1 |1, < C|| f||4-
Then we bound the difference between w; and w. Define v = w; — w, then v satisfies

Lov =371 Aildi(u* +w)|* —
Buajsv = 0.

By Lemma A.2 and Lemma A.4 , we get |[v||1,, < Cl[v]l, nrw < C'||Lov|| nrv .
*ntr! ntr’

Therefore we have ||w||1,, < |wi|l1,r + |V]l1,0r < Cllfllg + C'|Lov

nr! .
n+r’

nr!
7

ntr

Next, we give an estimation for || Lov

Following from the proof in Lemma C.2, we obtain {k;}?; C N, {t;; }i<i<n,1<j<k, C R, and
power functions { fi; }1<i<n,1<j<ki-

With similar computations, we have

0l s, <3 A0l s o+ 3 U0 Yo ) (0)
1=1 Jj=1
<ZA 0w . +Z||fu |0 |sc 05wl ). (71)
n+T n+1

_ ! tiir! ..
Because of 7/ > (¢ — 1)nand t;; < ¢;, we have 26 <4/, Niul < 4/ for all 4, j.

n+r’
Thus, due to the fact that Q7 (£2) is bounded, all ||0;w|| ¢;n and ||O;w|| n¢,,~ could be bounded by
ntr’ Py

C; jllwll1 », where C; ; are constants.

With similar methods applied in Lemma C.2, we could prove this lemma. O
Lemma C.4. We denote by u* the exact solution to

EHJB'U(w7t) = h((]),t) ('L7t) € R" x [O7T]a
Bujpu(x,t) = g(z) x € R™

Fix Q, which is an arbitrary bounded open set in R™. For two functions fl (z,1), fg (z), denote by uq
the solution to

Lrgpu(e,t) = h(z,t) + fi(e,1), in R" x [0, 7]
Buypu(a,t) = g(w) + fo(x), inR™

(n+2)(
Forp,g> 1, letrg = g 1. Assume the following inequalities hold for p, q and rq:
1 c—1m? 1 _1 1
permax{a (1-)aligs G20 111 72)
¢ 2-¢m+2"r —p n

Further assume that ¢ < 2 and supp(u; — u*) C Qr ().

Then for Nr € [1,10), there exists 69 > 0 such that, when ||f1Hp < o and ||f2||q < do,
u*||1. < C(|filly + || f2ll4) for a constant C' independent of u,.

Uy —

Proof. 1t is straight-forward to define us as the solution to

Luysu(@,t) = h(z,t) + fi(z,t) (z,t) € R" x [0, 7]
Bujpu(z,t) = g(z) xR

and bound |lu* — ual|1,r, ||ua — u1]1,» respectively.
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From Lemma C.2, there exists §; > 0,C; > 0 such that || f1]|, < & implies [[u* — ua|l2, <
Cillfill,- And from Lemma C.3, there exists d; > 0,C3 > 0 such that || f2]|, < 2 implies

Uy — U1, < Co Ag . By virtue of the condition £ > + > 1 — L wijth Lemma A.2 and the fact
, q- BY

~ r ro = p n’
that we are considering ||u* — uz||1,r, ||u2 — u1]/1,» on a compact domain, providing || f1|| < d; and

||f2 | < 62, we derive

o =il < lu* = uzllye + llus — s ly,r 73)
< Cllu® = uzll2p + [Juz — w1, (74)
< CCillfilly + Call folla. (75)

where C'is a constant.

This concludes the proof. O

Finally, we give the proof of an equivalent statement of Theorem 4.3.

Theorem C.5. Let fh fz, u* and uy follow from Lemma C.4. Let p,q,ry satisfy the conditions
in Lemma C.A4. Assume ¢ < 2. For any bounded open set Q@ C R™ x [0,T), it holds that

for any r € [1,1y), there exists 6 > 0 and a constant C independent of u;, fl and fg, such
that wax{|| f1| Lo @n x (0.7, | f2l| Lagem)} < 0 implies |1 —u*[wrr @) < C(|fillLo@nxjor)) +
| f2ll La(n))-

Proof. Since @ is bounded, there exists R > 0 such that Q C Q(R).

Let 4y be the constraint of u; in Q(R). Construct an extension v of 4y to R” x Rx>¢ such that

(i) v=u"in (R™ x R>()\Q(2R),
i) A, < C’|\f1||Lp£Q) and ||f2||§C”Hfg||Lq(BR(O)> for a constant C’ depending only on
n, R,p,q,Q, where fi := Lugpv — f1, f2:= Bruypv — f.

Note that supp(fl) C Q(2R) and supp(f2) C Bsr(0), the existence of v is obvious.

From Lemma C.4, there exists C' > 0 and § > 0 such that ||fi||, < 6 and | fa]l, < & imply
o = w1 < C(Lf1llp + [l f2]lq)- Thus

ur — u*llwir @) = v — u* wrr@) < v — w1 < CUAlp + 1 f2]lq) (76)
< CC'(Ifillr @) + 12l aBrioy) < CC' (I fillp + If2llq)- 7
The proof is completed. O

D Proof of Theorem 4.4

In this section, we give the proof of Theorem 4.4.

Based on remark B.1, it is equivalent to consider Eq. (53). We will show that the following equation
satisfies the properties stated in Theorem 4.4,

{@u — Au+ |Dul? =0 inR™ x [0, 7]

u(z,0) = g(x). 78

This equation is a special case for Eq. (53) with A; =1, ¢; = 2, Vi € [n] and h(z,t) = 0.

Denote by u* the exact solution to the equation above. The notations Ly, [ZH IB, Z’S'H B in the following
discussion have the same meaning as in section C.

We prove some auxiliary results first.
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Lemma D.1. For p € [2,2n), and an open set or a parabolic region 2, we denote the func-
tion space W*P(A) as X and L= 7(A) as Y. For any u € X, we have |u — | x >

A\/HZHJBU - EHJBU,’||Y + B — C holds for Yu' € X, where A, B,C are positive constants
depending on u.
Proof. We divide the proof into two steps.
Step 1. We check that Ly g as an operator mapping from X to Y is Fréchet-differentiable.
For any u,v € X, t € R, since v € X, which means |Dv|?> € W% C Y, we have
| £ays(u +tv) — Lagsu — t - (Lov + 2Du - D)y = ||| Du)?|ly = o(t) (t—0).  (79)
Therefore, dﬁHJB(u, v) = Lov + 2Dwu - Dv by definition.
Define operator A(u) € £ (X,Y) as A(u)v = dL(u,v). For u,u’ € X and any v € X, note that
AW Yo — A(u)|ly =2||DW —u) - Dv|ly < Col|D(w' —u) - Dul|; = (80)
< Col[ D = w)[[1,p1Dv]l1p < Collu’ — ullx]v]lx (81)

for a constant Cjp, where the second inequality comes from Cauchy-Schwarz inequality. Thus
we have [|A(u) — A(v')|| #(x,v) < Collu — u'||x, which means A is continuous with regard

to u. As a result, Ly is Fréchet-differentiable and £f;;5(u) = A(u). Moreover, we derive
I (W)l < IL7O)] + 1 L7(0) = L'(w)]| < Collullx + Ch.

Step 2. For any u,u’ € X, lety = Lyjpu, y' = Lupu’.

Define u,, = (1 — n)u+nu’ and y, = Lyspu, for 1 € [0, 1]. Fix a number m € N.

From the property proved in step 1, for any 7 € [0, 1], there exists r,, € (0, %) such that

1€a3Bv = Lugpug || < 2L ()|l - luy = vll < 2(Collugll + Cllv = uyll, Yo € By, (uy)-
(82)
Note that {B% (uy) : m € [0,1]} 18 an open cover of {u,, : n € [0, 1]}. Because of the compactness

of {uy, : n € [0,1]}, we obtain an increasing finite sequence {n; }, with o = 0,7y = 1 such that
either uy, € By, (uy, ,)oruy,, , € B, (uy,) for Vi € [N]. This means that

||y777‘ —Yni_y || < Q(COHU’TIJ‘ H + Cl)”“’m — Unp;_y H* 7 S {7’ - 132} (83)
holds for Vi € [N].
Therefore
N N
' =9l <D ym = vl <D 2(Collun, || + C)lfug, = ug, || (84)
i=1 i=1
Note that this inequality holds for every m. As m — oo, R.H.S. of (84) converges to
1
||u—u/\|/ 2(Collu+ s(u" —u)|| + C1)ds. (85)
0
=llu = @[[(Collu +6(u = w)[[+ C1), (0 € (0,1)) (86)
<[lu = W (Co(llull + [lv" —ull) + C1). (87)

The equality comes from mean value theorem for integral, and the inequality comes from triangular
inequality.

Combining Eq. (84) and (87) together completes the proof. O

Lemma D.2. Let uq satisfies BHJBU* = BHJBUl and that supp(uy — u*) is compact in R" x R™,
Define f(x,t) := Lujpuy. Let p € [2,00),m € N. If p > 5 then there exists 5g > 0 such that
[/ llm.p < 00 implies |[u* — uillm+2,p = O(|f[lm,p)-

25



Proof. When m = 0, this statement is a direct consequence of Lemma C.2.

When m > 0, for every multi-index « with || < m, operate D® on both sides of Luipu = f and
Lgisu® = 0. We then obtain

LoD“uy + D¥|Du,y |? = D*f (88)
LoD%u* + DY Du*|* = 0. (89)

Define w := u; — u*, and compute the difference between (88) and (89), we get
LoD%w = D*f — > (2D*(9;u*diw) + D*(diw)?). (90)
i=1

With similar methods used in Lemma C.2, we could bound || D%w||2 ,, with || D f||,, based on which
we complete the proof.

Finally, we show that Eq. (78) satisfies the properties stated in Theorem 4.4, which will conclude the
proof for Theorem 4.4.

Theorem D.3. Foranye > 0,A > 0,r > 1,m € Nand p € [1, %] there exists a function
u € C°°(R™ x (0,T]) which satisfies the following conditions:

. HEH.]BU”L})(RHX[O,T]) < &, Bujgu = Byysu*, and supp(u — u*) is compact.

* =l ooy > A

Proof. Since L' () has the weakest topology in function spaces W (§2) when € is bounded, it is
enough to consider the case forr = 1, m = 0.

-
Setpy = gn, p1 = %n and p, = 1—71n.

Step 1. We construct two families of functions {v ¢}, { Fu,c} as the basis of proof.

For any a,c > 0, define f, .(z) = c|lz|=*7, 2 € B1(0)\B,(0) in R". We could extend it to a C*°

function f, .(z) defined on R” such that (i) fa.c|lco < || fa.clloo + min{1,c} and (ii)supp(fa.c) C
B11(0).

We could further construct a C'* function f, .(, ) such that
(@) supp(fa,c) C B11(0) x (0,71,
(i) foelw,t) = foele),Vt €[, T),

(iii) ||fa,c(37» )| oo mryx 0,17 < ||fa,c||L°°(R")~

Define u, . as the solution to

Erugp = foo in R x (0,7
Bupu = g.

Select a function w, . € C*°(R™ x R) with compact support supp(wg,.) C R™ x (0, T}, such that
[t — u* — wael < e in W3APO(R™ x [0, T]), W4P1(R™ x [0,T]) and W24P(R" x [0,T]),
where €. is an small value depending on c and is to be decided later.

We define v, . = u* + wq, and Fy, o = EHJB’UQVC.
Step 2. We show that{v, .} and {F}, .} have following properties:

(i) supp(vq,c — u*) is compact in R™ x (0, T7.
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(i) Brypva,c = Buypu’.
(iii) supp(Fy,c) is compact in R™ x (0, T.
(iv) There exists a constant M < oo such that ||F, .||, < ¢M and ||F, c||1,p, < M.

(v) Forany ¢ > 0, || Fycllp, — o0 asa — 0.

(1) and (ii) comes directly from the construction of v, ..

Because supp(v, . — u*) is close, for any (x,t) € (R" x [0, T1)\supp(vq,c — u*), there exists r > 0
such that (B,-(z,t) N (R™ x [0,77)) C (R™ x [0, T])\supp(vg,c — u*) , which means v, . = u* in
B (z,t) N (R™ x [0,T)) and thus Lyypve,c = Luypu* = 0. This gives (iii).

Due to the fact that the function |2|~%7 € LP(B5(0)) N W1Po(B5(0)), there exists a constant
M < cosuchthat || f 1|l < M —1and || fo,1]l1,p, < M — 1 holds for any a and any construction
of fa,l based on f, 1. Due to the linearity of norms, we derive ||fa,ch < ¢(M—1)and ||fa,c||17pO <
(M —1).

It is easy to check that L is a continuous mapping from 3470 (€2) to W1Po (Q), from 12471 ()
to LP2(€2) and from W24 (Q) to L?(£) for any compact set 2 C R™ x [0, T']. Therefore, || F, . —
Ja.cl| is small in WHPo(R™ x [0, TY]), LP2(R™ x [0,T]), and LP(R™ x [0,T).

Since ||| ~%7|| r2 (B, (0)) = +0o0, by the construction of fa.e we have || fa.cllp, — +00 asa — 0.

As a result of the continuity of L5, we could guarantee | Eacllp < M, ||Faclli,p, < ¢M and
| Facllp, > %Hfaycﬂp2 by choosing e, sufficiently small previously. This gives (iv) and (v).

Step 3. We give an estimation for ||v, . — u*[|1, 1.e., ||wa,c|1)-
We mention at the beginning of this part that all C; appeared below are positive constants.

For any € > 0, set c to ﬁ min{e, dy }, where Jy follows from an application of Lemma D.2 for the
case p = pg. Then forany a > 0, || F,.c||, < € and we obtain ||wg,c|/5,p, < CollFa.cll1,p0-

13
In Lemma A.3, we choose j = 2, k = 3, 0 = 7;1191, r=mp,q=1p= %n and derive

5
||V2wa,c |p1 < Cluvswa,cugg||wa,0||}79~ Since ||V3wa,c

V2w e V2w = C -
el = Sl ) s o (D tacl ) s gy, 5 o
0l e I BT

where the last inequality comes from property (iv) in Step 2.

po < Hwa,cHg,pO, we get

By virtue of property (i) in Step 2, we have || VZwq ¢||lp, > Cul|wa,c|2,p,» Which is an application of
Poincaré inequality. Together with Lemma D.1,

C) s s ™
el 2 g V0 27 2 Colloach] 2 s (CoyfIFuclh, —0r) ™ 02
3

Since R.H.S. above goes to +00 as a — 0 due to property (v), for any A > 0, there exists ag > 0
such that ||wg, |1 > A.

Setting u = Vq,,c = U* 4 Wq,,. completes the proof. O

E Improved Theorem 4.3

In this section, we give the stability result for Eq. (53) (Theorem E.3). Different from Theorem C.5,
the constraint ¢ < 2 is released here.
The notations u*, ¢, Lo, iH,IB, BHJB in the following discussion come from C.

The proof of Theorem E.3 is quite similar to that of Theorem C.5.
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We begin with some auxiliary results.

Lemma E.1. Suppose € is a fixed bounded open set in R™. Suppose u, satisfies £~H ju* = ZH JBU1
and that supp(u1 — u*) C Qr (). Let q € [1, c0).

= 2 ~ ~
Ifq > C=Un” then there exists 5o > 0 such that when IBrssur — Buysu*|l1,4 < do, we have

n+2¢
[lu* — ui]l2,r < C||Buysur — Buysu*||1,q for a constant C independent of w1, where r < %.

Proof. The proof is almost the same as that for Lemma C.3.

Following its proof, we define w, f, w; and v similarly. And the W™ P and LP norm in the rest of
the proof will also be defined on the domain Q7 (2).

. z—1)n? — n+2
Since g > (n+%5 ,wehave [(1—¢ 1)n,%)7é®.

Thus we could choose 1’ € [(1 — & )n, %) N [r,00).

Since Q7 () is bounded, it suffices to bound |lu; — u*||, .

From Lemma A.5, we have |will2,» < C| f]l1,4- And from Lemma A.4 , we get |[v]|2,,» <
C[Lov]lr-

Therefore we have ||w||2,, < [|wi||2, + |||

2,1/ < OHf

1,q + Lol

Next, we give an estimation for ||Lov]|,.

SN, LTS

With similar computations, we have

n ki
I£ovllr <> Ai(ll0sw]ll + Y [1fij (D) D] ) (93)
i=1 j=1
n ki
¢ * tij
<3 Alowwlle s + S N (0 DllcllOnll) ). (94)
i=1 j=1

Due to the fact that Q7 (Q2) is bounded, all ||9;w||c,, and [|O;w||,,» could be bounded by
Ciillwll1 e, where C; ; are constants.

Moreover, since 7/ > (1 — = 1)n, we could tell from Lemma A.2 that

[l < Cllwlly s < Clwlz, (95)

cr
where C and C" are constants.

With similar methods applied in Lemma C.2, we could prove this lemma. O

Lemma E.2. Fix ), which is an arbitrary bounded open set in R™. For two functions f; (z,t), fo (),
denote by u, the solution to

Lrgpu(e,t) = h(z,t) + fi(e, 1), in R" x [0, ]
Buypu(z,t) = g(x) + fo(z), in R™.

_ (n+2)q

Forp,qg> 1, letrg = s Assume the following inequalities hold for p, q and ry:
1 c—1)n?
p>max<q2,(1—=|n ;q>u. (96)
c n+2¢

Further assume supp(ul - U/*) C QT(Q)

Then for ¥r € [1,min{rg,p}), there exists 6y > 0 such that, when ||f1||p < dp and ||f2Hq < o,
lur —u*|l2,, < C(|f1llp + If2ll1,q) for a constant C independent of uy.
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Proof. The proof follows as in Lemma C.4 by replacing the use of Lemma C.3 with Lemma E.1. O

(n+2)q

e Assume

Theorem E.3. Let fl, fg and uy follow from Lemma E.2. Forp,q,r > 1, let rg =
the following inequalities hold for p, q,r and ry:

=_ 2
pZmax{27<1—i>n};q>w:1>; l 97)
c

n+2¢ " r~ min{ro,p} n

Then for any bounded open set Q C R™ x [0, T, there exists § > 0 and a constant C independent of
Ui, fl and f, such that}nax{HflHLMRW[O’T]), | follwra@ny} < & implies |ur — u*||lwir @) <
C( fllLe@n o, + 1f2llwra@ny).

Proof. By replacing the use of Lemma C.4 in the proof for Theorem C.5 with Lemma E.2, we can
bound [[u1 — w*{|yyr2. () With || f1l| e x[0,77) and || f2lw1.e(rn) for any 7" € [1, min{ro. p}).

We could further bound ||ty — u*|[yy1.- () with the help of Lemma A.2.
This concludes the proof. O

F Experimental Settings

Hyperparameters. The hyperparameters used in our experiment is described in Table 3.

Table 3: Derailed experimental settings of Section 6.

n =100 n =250

Model Configuration

Layers 4
Hidden dimension 4096
Activation tanh
Hyperparameters

Toal iterations 5000 10000
Domain Batch Size NV; 100 50
Boundary Batch Size N, 100 50
Inner Loop Iterations /X 20
Inner Loop Step Size 7 0.05
Learning Rate Te — 4
Learning Rate Decay Linear
Adam ¢ le—8
Adam(5y, 52) (0.9, 0.999)

Training data. In all the experiments, the training data is sampled online. Specifically, in each
iteration, we sample N, i.i.d. data points, (z(1),t(), ... (z(N1) +(N1)) from the domain R™ x
[0,T], and Ny i.i.d. data points, (1), T),--- , (#(V2), T), from the boundary R" x {T'}, where
(2@, t®) ~ N(0,1,,) x U(0,1) and 7) ~ N (0, I,,).

Evaluation metrics. We use L', L2, and W!! relative errors to evaluate the quality of the learned
solution.

L' and L? relative errors are two popular evaluation metrics, which are defined as

Sy () = wa ()P

S ut (a) e

y p=12, (98)
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where uyg is the learned approximate solution, u* is the exact solution and {z; }3521 are S'i.i.d. uniform
samples from the domain [0, 1] x [0, T.

Since the gradient of the solution to HIB equations plays an important role in applications, we also
evaluate the solution using WL relative error, which is defined as

S (fu () = wg ()] + 0y 10s, 0 (25) = Duyuto(ry)) '

— - - (99)
> i (@) 4 320 100, u* (5)])
G More experiments and visualizations
G.1 More instance of HJB Equations
Exact solution u* 10 Learned solution u (Ours) 10 Error |u-u*| (Ours)
. . 0.65
1005 101.0 0.8 0.60
0.6 0.55
100.0 100.5
0.4 0.50
100.0
99.5 02 0.45
0.40
99.0 99:5 0
02 04 06 08 1.0 02 04 06 08 1.0 0 02 04 06 08 1.0
Figure 3: Visualization for the solution snapshot of Eq. (100). c is set to 1.25.
Exact solution u* 10 Learned solution u (Ours) 10 Error |u-u*| (Ours) 0.66
1005 0.8 100.0 0.8 0.64
0.6 0.6 0.62
100.0 99.5
0.4 0.4 0.60
995 0.2 - %90 02 0.58
98,5 0.56
02 04 06 08 Lo >° % 02 04 06 08 Lo % 02 04 06 08 L0
Figure 4: Visualization for the solution snapshot of Eq. (100). cis set to 1.5.
Exact solution u* 10 Learned solution u (Ours) 10 Error |u-u*| (Ours)
1005 0.8 104.0 0.8 3.525
3.500
0.6 0.6
100.0 103.5 3.475
0.4 0.4 2450
103.0 :
99.5
0.2 0.2 3.425
102.5
02 04 06 08 1o >0 % 02 04 06 08 L0 % 02 04 06 08 1.0

Figure 5: Visualization for the solution snapshot of Eq. (100). cis set to 1.75.

To demonstrate the power of our method in solving general HIB Equations beyond classical LQG
problems, we consider a more complicated HIB Equation as below:

Byu(w, ) + Aulz, 1) — %Z 1On,ulc = =2 (2,1) € R x [0,T]
n =t , (100)

u(m,T)szi zeR"
=1

Eq. (100) has a unique solution u(x,t) = &1 + - - - + 2, + T — t. We consider to solve Eq. (100) for
different valued of c using our method. We choose ¢ = 1.25, 1.5 and 1.75 in the experiment. The
neural network used for training is a 5-layer MLP with 4096 neurons and ReLU activation in each
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Table 4. Experimental results of solving the high dimensional HJB equations. c is the parameter
in Eq. (100). The dimensionality 7 is 100. Performances are measured by the L' relative error in the
domain [0, 1]™ x [0, T']. Best performances are indicated in bold.

Method c=125 c¢c=15 ¢=1.75

Original PINN [28] 1.11% 3.82% 2.73%
Adaptive time sampling [35] 1.18% 2.34% 7.94%
Learning rate annealing [34] 0.98% 1.13% 1.06%

Curriculum regularization [17] 6.27% 0.37% 3.51%

Adversarial training (ours) 0.61% 0.15% 0.29%

hidden layer. The training recipe, including the optimizer, learning rate, batch size, and the total
iterations are the same as those in Appendix F. The number of inner-loop iterations K is set to 5, and
the inner-loop step size 7 is searched from {2e — 1,2e — 2, 2e — 3}.

Again, we examine the quality of the learned solution u(z, t) by visualizing its snapshot on a two-
dimensional space. Specifically, we consider the bivariate function w(x1, z2, 1,1, -+, 1;0) and use
a heatmap to show its function value given different z; and z5. Figure 3-5 shows the ground truth
u*, the learned solutions u of our method, and the point-wise absolute error |u — u*| given different
values of c.

From the above visualization, we can see that our method can solve Eq. (100) for different values of
c effectively. Specifically, when ¢ = 1.25 or 1.5, the point-wise absolute error is less than 0.5 for
most of the area shown in the figures. When ¢ = 1.75, the point-wise absolute error seems slightly
larger, but it’s still negligible compared with the scale of the learned solution. Thus, PINNSs trained
with our method fit the solution of Eq. (100) well, given different values of c.

We also compare our models with other baselines on these equations. The evaluation metric is L'
relative error in the domain [0, 1]™ x [0, 1]. The results are shown in Table 4. It’s clear that our models
outperform all the baselines on all these equations, showing the efficacy of our approach.

G.2 Tracing loss and error during the training

To give a more comprehensive comparison between original PINN and our method, we trace the loss
and error during the training.

Table 5: Error/loss-vs-time result of original PINN for Eq. (12).

Iteration 1000 2000 3000 4000 5000

L? Loss 0.098 0.088 0.070 0.584 0.041
L! Relative Error 6.18%  536% 3.86% 394% 347%
W11 Relative Brror  17.53% 17.67% 14.83% 14.40% 11.31%

Table 6: Error/loss-vs-time result of our method for Eq. (12).

Iteration 1000 2000 3000 4000 5000

L Loss 11.841 9.352 2404 1.605 0.711
L' Relative Error 15.22% 426% 097% 1.10% 0.27%
WL Relative Error  21.91% 18.62% 5.14% 4.96% 2.22%

It is clear that for the original PINN approach, the .2 loss drops very quickly during training, while
its W! relative error remains high. This result indicates the optimization is successful in this
experiment, and that the stability property of the PDE leads to the high test error. By contrast, our
proposed training approach enables the test error goes down steadily during training, which aligns
with the theoretical claims.
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H Discussions on training with L” loss

As is shown in the left panel of Table 2, directly optimizing L” loss with large p fails to achieve a
good approximator. This might seem to contradict our theoretical analysis in section 4. However,
there is actually no contradiction between our theorems and empirical results. Theorem 4.3
focuses on the approximation ability, which indicates that if we have a model whose LP loss is
small, it will approximate the true solution well. The empirical results in Table 2 demonstrate the
optimization difficulty of learning such a model.

Intuitively, we randomly sample points in each training iteration in the domain/boundary to calculate
the loss. When p is large, most sampled points will hardly contribute to the loss, which leads to
inefficiency and makes the training hard to converge. In Algorithm 1, we adversarially learn the
points with large loss values, making all of them contribute to the model update (Step 8), significantly
improving the model training.

Technically, directly applying Monte Carlo to compute L? loss in experiments will lead to large
variance estimations. For a function f,

Jiure =g e o (\/ —V“fv(x)"’)

where {X;} ¥ are i.i.d. samplings in the domain.
Thus, || f||, suffers from an O((Var|f(X)[?/N)'/?P) error.

As p — oo, Var|f(X)[P ~ ||f||?2. Therefore, the errors for estimating both Eq.(2,3) and the L?
norm of the residual are very large when p is large.
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