
Supplementary materials for
Improving Neural Ordinary Differential Equations

with Nesterov’s Accelerated Gradient Method

A Review of the adjoint equation and the gradient for the first-order NODEs
A NODE for a hidden feature z : R ! RN takes of the form

z0(t) = g(z(t), t, ✓), z(0) = z0, (18)
where g(z(t), t, ✓) 2 RN is a neural network with learnable parameters ✓. For a scalar loss function
L, the adjoint state a(t) := @L

@z(t) satisfies the following differential equation

a0(t) = �a(t)
@g(z(t), t, ✓)

@z
, a(T ) =

@L

@z(T )
. (19)

B The adjoint equations for the NesterovNODEs and GNesterovNODEs
The adjoint equation for the NesterovNODEs (Proposition 1) is an implication of [37, Proposition 3.1]
for Nesterov differential equations. In this section, we give the proofs for Proposition 2. The proofs
will be intrinsically based on Eq. (19).

Proof of Proposition 2 - the adjoint equation for GNesterovNODE
The GNesterovNODE is formulated as the following differential-algebraic system:

8
><

>:

h(t) = �(k(t))x(t),

x0(t) = �(m(t)),

m0(t) = �m(t)� �(f(h(t), t))� ⇠h(t),

(20)

where k(t) = t
�3
2 e

t
2 . The adjoints of this system are given by ah(t) :=

@L
@h(t) , ax(t) := @L

@x(t) and
am(t) := @L

@m(t) . From the first equation in the system, we have

ah(t) =
@L

@x(t)

@x(t)

@h(t)
=

1

�(k(t))
ax(t). (21)

To determine the dynamics of ax(t) and am(t), we rewrite the last two equations in system (20) as
the first-order system

⇢
x0(t) = �(m(t)),

m0(t) = �m(t)� �(f(k(t)x(t), t))� ⇠k(t)x(t).

Set z(t) = [x(t) m(t)]T and

g(z(t), t, ✓) =


g1

g2

�
=


�(m(t))

�m(t)� �(f(k(t)x(t), t))� ⇠k(t)x(t)

�
,

then the first-order NesterovNODE can be rewritten as
z0(t) = g(z(t), t, ✓).

In this case, we have
@g(z(t), t, ✓)

@z
=

@g1
@x

@g1
@m

@g2
@x

@g2
@m

�

=


0 �

0(m(t))

�k(t)@�[f(h(t),t,✓)]@h � ⇠k(t)I �I

�
.

Thus, by using Eq. (19), we obtain the first-order differential system for the adjoints ax and am as
8
<

:
a0x(t) = am(t)


k(t)

@�(f(h(t), t, ✓))

@h
+ ⇠k(t)I

�
,

a0m(t) = �ax(t)�
0(m(t)) + am(t).

(22)

Together with Eq. (21), we obtain the differential-algebraic system for the adjoints of the GNes-
terovNODE in Proposition 2.

15



C Proof of Proposition 3 - the nonvanishing gradient for GNesterovNODEs
Following the lines in [60], for a NODE given by z0(t) = g(z(t), t, ✓), we have

@L

@zt
=

@L

@zT
exp

8
<

:�

tZ

T

@g(z(s), s, ✓)

@z
ds

9
=

; . (23)

For the GNesterovNODE given in Eq. (15), the gradient @L
@ht

can be determined from @L
@xt

via the
algebraic relation:

@L

@ht
=

@L

@xt

@xt

@ht
= �(t

�3
2 e

t
2 )�1 @L

@xt
.

While the gradients @L
@xt

and @L
@mt

can be determined by using Eq. (23) as

@L

@xt

@L

@mt

�
=


@L

@xT

@L

@mT

�
· exp(M), (24)

where

M = �

tZ

T


0 �

0(m(s))
@�(f)
@x � ⇠t

� 3
2 e

t
2 I �I

�
ds.

Let M = QUQ
> be a Schur decomposition of M where Q is an orthogonal matrix and U is an

upper triangular matrix with eigenvalues of M in the diagonal. Then from Eq. (24), we have
����


@L

@xt

@L

@mt

�����
2

=

����


@L

@xT

@L

@mT

�
Q exp(U)Q>

����
2

.

Set v = 1���
h

@L
@xT

@L
@mT

i���
2

·

h
@L
@xT

@L
@mT

i
Q, then v is a unit length vector and

����


@L

@xt

@L

@mt

�����
2

= kv exp(U)k2

����


@L

@xT

@L

@mT

�����
2

.

To finish the proof of Proposition 3, we need to prove that at least half of complex numbers in the
diagonal of U have the real parts greater than or equal to t�T

2 .

We first claim that the eigenvalues of M can be paired in such a way that each pair has the sum t� T .

To prove the claim, we write M =


0 A

B (t� T )I

�
, where

A = �

tZ

T

�
0(m(s))ds, and B = �

tZ

T


@�(f)

@x
� ⇠t

� 3
2 e

t
2 I

�
ds.

Since the matrices (t� T )I and A commute, the characteristic polynomial of M can be determined
as

det(�I�M) = det(�(�� t+ T )I�BA)

which is the value of the characteristic polynomial of the matrix BA at �(�� t+ T ). Over the field
of complex numbers, the characteristic polynomial of BA is splitted completely and it has the form

det(�I�BA) =
NY

i=1

(�� �BA,i),

where �BA,i are the eigenvalues of BA. Then the characteristic polynomial of M has the form

det(�I�M) =
NY

i=1

(�(�� t+ T )� �BA,i).

16



Thus the eigenvalues of M can be paired in such a way that each pair is the roots of the quadratic
equation

�(�� t+ T )� �BA,i.

Such pairs always have the sum t� T . The claim is proved.

Since the diagonal of U are exactly the eigenvalues of M , the claim implies that at least half of
complex numbers in the diagonal of U are greater than or equal to t�T

2 . The proposition is then
proved.

D Implementation details

Table 3: The hyperparameters for the models.

Model NODE ANODE SONODE (G)HBNODE (G)NesterovNODE

n (Initialization) 1 2 1 1 1
n (Point Cloud) 2 3 2 2 2
h (Point Cloud) 20 20 13 14 14

p (MNIST) 0 5 4 4 4
n (MNIST) 1 6 5 5 5
h (MNIST) 92 64 50 50 50

p (CIFAR10) 0 10 9 9 9
n (CIFAR10) 3 13 12 12 12
h (CIFAR10) 125 64 50 51 51

Table 4: The hyperparameters for ODE-RNN integration models.

Model NODE ANODE SONODE (G)HBNODE (G)NesterovNODE

d 1 1 2 2 2
n (Walker2D) 24 24 23 24 24
h1 (Walker2D) 72 72 46 48 48
h2 (Walker2D) 48 48 46 48 48

Table 5: The ⇠ hyperparameters for GHBNODE and GNesterovNODE.

Model ⇠

Initialization learnable
MNIST learnable
CIFAR 1.5

Point Cloud 2
Walker 2D learnable

To solve the NesterovNODE in Eq. (9), we rewrite it in the differential-algebraic form given
by Eq. (15). We solve Eq. (15) as follows. First, given h(t0), we compute x(t0). Using the
computed x(t0), we solve the ODE given by the last two equations in Eq. (15), x0(t) = m(t) and
m

0(t) = �m(t) � f(h(t), t, ✓) by using an ODE solver. To get h(t) for the second differential
equation, we compute h(t) from x(t). Alternatively, the second differential equation can be expressed
as m0(t) = �m(t)�f(x(t), t, ✓), which we can think of applying a composite function f(g(h(t), t, ✓)
to h(t). Finally, we compute h(tn) from x(tn).

We list some experimental details that are common to all experiments before presenting more details
for each experiment. For ODE solvers in the experiments (dopri5, euler, rk4, explicit adams),
we use the implementation provided by torchdiffeq 1.

• fcn is a fully-connected layer with the output dimension of size n.

1https://github.com/rtqichen/torchdiffeq

17

https://github.com/rtqichen/torchdiffeq


• HTanh: HardTanh(�5, 5).
• LReLU: LeakyRELU(0.3).
• tpad: Padding a set of features with the value of the time t. Specifically, this is equivalent

to augmenting the feature tensor with shape c ⇥ x ⇥ y to with a time tensor with shape
1 ⇥ x ⇥ y filled with the value of t, creating a time-augmented feature tensor with shape
(c+ 1)⇥ x⇥ y.

• We use a learnable � with for HBNODE/GHBNODE for all tasks.
• The values of ⇠ used for GHBNODE and GNesterovNODE used in all tasks are in Table 5.
• Except for the experiments in Section 6 where we investigate the effect of the variation of

the Nesterov factor r, we choose r = 3 for the remaining experiments.
• n

⇤ = n for all models except for SONODE where n
⇤ = 2n. The bounded activation

function � is chosen to be either tanh or hardtanh in PyTorch.
• The tolerance (for adaptive solvers) and step sizes (for fixed step-size solvers) used in the

experiments are in Table 6.
• Other hyperparameters are in Table 3 and Table 4. The difference in the architecture between

first-order NeuralODE methods (NODE, ANODE) and second-order NeuralODE methods
(SONODE, HBNODE/GHBNODE, NesterovNODE/GNesterovNODE) happens because of
the structural difference in their dynamics function. In particular, second-order NeuralODE
methods use extra states to model the momentum of the original hidden states. To get
roughly similar numbers of parameters for first-order NeuralODE methods and second-
order NeuralODE methods, there must be differences in their architecture. In choosing the
architecture for our method, we have made sure that there is no meaningful architecture
difference in our methods compared to the baseline second-order Neural ODE methods
(SONODE and HBNODE/GHBNODE).

D.1 Experimental details used in Section 3 Silverbox Initialization Test
The Silverbox dataset [58] is as follows: Given the input voltage V 1(t), the models must predict the
output voltage V 2(t) and the experiment is evaluated over 64 time steps. In this experiment, we use
the dopri5 solver (implemented in torchdi↵eq) with a tolerance of 10�7 for adaptive step sizes in
both forward and backward passes. Similar to [60], we parameterize the dynamic f of all methods
with a dense layer. The network architecture is:

• ODE layer: inputn⇤+1 ! fcn

D.2 Experimental details used in the Point Cloud benchmark in Section 5.2
Following the setting in [60, 9], we use a 3-layer neural network to parameterize the function
f(h(t), t, ✓) on the right hand side of the ODE-based models in our study. We integrate the ODE
from t0 = 1 to T = 2, and pass the output h(T ) at time T to a dense classifier. We also set
the tolerance of the ODE solvers to be 10�7 so that the effect of numerical error is minimized.
Visualization of the point cloud evolution for a random run of each model is in Fig. 11.

• Initial Velocity layer: input2 ! fch ! HTanh ! fch ! HTanh ! fcn
• ODE layer: inputn⇤ ! fch ! ELU ! fch ! ELU ! fcn
• Output layer: inputn ! fc1 ! Tanh

D.3 Experimental details for MNIST/CIFAR10 in Section 5.1
In our experiment, we parameterize f(h(t), t, ✓) in the NODE-based layer using a 3-layer neural
network. The output of this NODE-based layer is then passed through a dense layer to perform
the classification task. Following the augmentation approach in ANODE [8], we add p additional
channels to input image, augmenting the number of image channels from c to c + p where p is
differently chosen for each method. The values of p chosen for each model are specified in Table 3.
For SONODE, HBNODE, GHBNODE, NesterovNODE and GNesterovNODE, we also incorporate
velocity or momentum of the same shape as the augment state. We also present extra experiment
results for MNIST in Fig. 12.

The architecture for MNIST:

18



Figure 11: Visualization of the features transform by NODE, ANODE, SONODE, HBNODE, GHBNODE,
NesterovNODE and GNesterovNODE after the first 100 epochs of a random run.

Figure 12: Contrasting the NFEs, training time, training loss, and test accuracy of NODE [4], ANODE
[9], HBNODE/GHBNODE [60], and our methods NesterovNODE/GNesterovNODE on the MNIST dataset
(Tolerance: 10�5). The run for NODE is stopped due to long running time. The x-axes of the plots for training
loss and testing accuracy are scaled logarithmically for visibility.

• Initial Velocity layer: input1⇥28⇥28 ! convh,1 ! LReLU ! convh,3 ! LReLU
! conv2n�1,1

• ODE layer: inputn⇤⇥28⇥28 ! tpad ! convh,1 ! ReLU ! tpad ! convh,3 ! ReLU
! tpad ! convn,1

• Output layer: inputn⇥28⇥28 ! fc10

19



The architecture for CIFAR10:

• Initial Velocity layer: input3⇥28⇥28 ! convh,1 ! LReLU ! convh,3 ! LReLU
! conv2n�3,1

• ODE layer: inputn⇤⇥32⇥32 ! tpad ! convh,1 ! ReLU ! tpad ! convh,3 ! ReLU
! tpad ! convn,1

• Output layer: inputn⇥32⇥32 ! fc10

D.4 Experimental details for Walker2D in Section 5.3
The dataset [3] consists of a dynamical system from kinematic simulation of a person walking from
a pre-trained policy, aiming to learn the kinematic simulation of the MuJoCo physics engine [53].
Following the procedure in HBNODE [60], we randomly take out 10% of the data to make the time
series irregularly-sampled. Each input sequence consists of 64 timestamps, which are recurrently
fed through a hybrid technique, with the output of the hybrid method being transferred to a single
dense layer to form the output time series. The goal is to generate an auto-regressive forecast with an
output time series that is as close as the input sequence when shifted one time stamp to the right. The
RNN and ODE are parameterized by a 3-layer network. The network architecture is:

• ODE layer: inputn⇤ ! fc⇤n ! Tanh ! fcn ! Tanh ! fcn
• RNN layer: inputdn+k ! fch1 ! Tanh ! fch2 ! Tanh ! fcdn
• Output layer: inputn ! fc17

Table 6: Solvers, tolerance, and step sizes used for the experiments.

Experiments Solvers Tolerance Step sizes

Silverbox Initialization (Section 3) dopri5 10�7 N/A
Point Cloud separation (Section 5.2) dopri5 10�7 N/A

MNIST/CIFAR10 (Section 5.1) dopri5 10�5 N/A
Walker2D (Section 5.3) dopri5 10�7 N/A

Stability of NesterovNODE (Section 6)
Euler, RK4,

Explicit Adams,
dopri5

10�5 for dopri5

0.1, 0.2, 0.5
(for details,

refer to Fig. 9
and Fig. 10)

D.5 Experimental details for Continous Normalizing Flow for VAE on the MNIST dataset in
Section 5.4

Our training and the baseline FFJORD-NODE model follow the setting in Section 4.3 in [14]. We
use the dopri5 solver with a tolerance of 10�5. We use the identity function as �, and ⇠ = 2 for
GHBNODE and GNesterovNODE. Aggregated results about the experiment can be found in Table 7.

Table 7: Test negative ELBO (lower is better) and mean NFEs over all epochs of FFJORD-NODE, FFJORD-
HBNODE and our method FFJORD-GNesterovNODE for use in variational inference with a continuous
normalizing flow model, i.e. FFJORD [14], trained on the binarized MNIST dataset. We also include the
reported results from [14] (in parentheses) in addition to our reproduced results. (Tolerance: 10�5).

Method Mean Forward NFEs Mean Backward NFEs Negative ELBO

FFJORD-NODE 97.92 100.76 88.30 (82.82)
FFJORD-GHBNODE 90.33 98.77 75.87
FFJORD-GNesterovNODE 62.04 51.07 72.16

E Additional experiments
E.1 Integration time
In the the differential-algebraic version of NesterovNODE, we reparametrize from h to x in order
to eliminate the time-dependent damping coefficient 3

t in the Nesterov ODE given by Eq. 8. In

20



Figure 13: Contrasting the NFEs and accuracy of NODE [4], ANODE [9], HBNODE/GHBNODE [60], our
methods NesterovNODE/GNesterovNODE and the methods NesterovNODE/GNesterovNODE with starting
integration time t0 = 1 on the CIFAR10 dataset (Tolerance: 10�5).

Figure 14: Contrasting the NFEs and losses of NODE [4], ANODE [9], HBNODE/GHBNODE [60], our
methods NesterovNODE/GNesterovNODE and the methods NesterovNODE/GNesterovNODE with starting
integration time t0 = 1 on the Walker2D dataset (Tolerance: 10�7).

Figure 15: Test accuracy for GNesterovNODE on CIFAR10 with varying Nesterov factors with a lower
tolerance value (Tolerance: 10�7).

particular, we set h(t) = k(t)x(t) and then find k(t) such that Eq. 8 written in terms of x(t) matches
the Heavy-Ball ODE with a constant damping coefficient given by Eq. 5. We find that k(t) = t

� 3
2 e

t
2

satisfies this requirement. Solving this Heavy-Ball ODE with respect to x(t) is easier and more
stable than solving the Nesterov ODE with respect to h(t). To strengthen our proposed trick, we
conduct two experiments (CIFAR 10 and Walker2d) using the original version of Nesterov in Eq.
10 with the starting integration time t0 = 1. We have to change the starting integration to t0 = 1
due to the singularity in t0 = 0. The empirical results on CIFAR10 (Fig. 13) and Walker2d (Fig.
14) benchmarks show that the approach of changing starting integration time shows much worse
accuracy and efficiency than using our reparametrization trick.

E.2 The Effect of Nesterov factor regarding the solver’s tolerance

We run another CIFAR10 expreriment using smaller tolerance (10�7) in order to study the effect of
Nesterov factor regarding the solver’s tolerance. As shown in Fig. 15, when the tolerance are shrunk
small enough, the forward NFEs of the smaller factor (3, 5 compared to 10) are still smaller, although
the opposite is true for backward NFEs. Moreover, the larger factor converges to a better solution
(higher accuracy) despite converging to its best solution later than the smaller factor.

21



Table 8: GPU memory consumption of the ODE-based method on the CIFAR10 dataset.

Method Maximum CUDA memory consumption (GiB)

NODE 3.2046
ANODE 2.3292
SONODE 2.2034
HBNODE 2.2346
GHBNODE 2.2456
NesterovNODE 2.2346
GNesterovNODE 2.2580

E.3 GPU memory consumption
We present the maximum CUDA memory consumption of the models used in the CIFAR10 ex-
periments in Table 8. We extract the numbers using the function max memory allocated 2 in
PyTorch.

E.4 Wall-clock time advantage of NesterovNODEs/GNesterovNODEs

Figure 16: The total wall-clock training and testing time of SONODE, HBNODE, GHBNODE, NesterovNODE,
and GNesterovNODE.

In this Figs. 16 and 17, we show the advantage of NesterovNODEs in wall-clock time. Nes-
terovNODEs/GNesterovNODEs uses less time to achieve a comparable accuracy compared to other
methods.

E.5 The Effect of using Seminorm for reducing backward NFEs on GNesterovNODE
We tested the effect of the seminorm method [22] on GNesterovNODE for the CIFAR10 classification
task and demonstrated the results in Fig. 18. We observe that using the adjoint seminorm method
slightly reduces the NFEs compared to using only GNesterovNODE while also considerably reducing
the test accuracy. This effect is expected because while the adjoint seminorm method helps reduce
the NFEs, its semi-strong constraints might affect the final ODE solutions.

E.6 Human Activity Dataset
We verify the advantage of the GNesterovNODE over the baseline NODE and GHBNODE for
time series data on the Human Activity dataset [29]. This dataset consists of time series from five
individuals doing various activities: walking, sitting, lying, etc. The data contains 3D positions of
tags attached to those individuals’ belt, chest and ankles (12 features in total). After preprocessing,
the dataset has 6554 sequences of 211 time points. In this task, the model classifies each time point

2https://pytorch.org/docs/stable/generated/torch.cuda.max memory allocated.html

22

https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html


Figure 17: Test accuracy vs the corresponding wall-clock time for SONODE, HBNODE, NesterovNODE, and
GNesterovNODE.

Figure 18: CIFAR10 with the adjoint seminorm method [22].

Figure 19: Contrasting the NFEs of NODE-RNN, GHBNODE-RNN and our GNesterovNODE-RNN on the
Human Activity benchmark (Per-time-point classification) [29] (Tolerance: 10�7).

into one of seven types of activities (walking, sitting, etc.). We use the ODE-RNN architecture
described in Section 4.5 of [46] as the baseline model, with dopri5 adaptive solver and tolerance
10�7. For the GNesterovNODE, we use � = tanh, and ⇠ is a learnable scalar. Figure 19 and Table 9
show that GNesteroveNODE-RNN achieves the best accuracy and the smallest NFEs in both forward
and backward pass.

F Solving Neural Differential-Algebraic Equations
Our implementation uses an ODE to calculate the DAE. An alternative approach is using DAE solvers
to solve the DAE, which are implemented by the DifferentialEquations.jl library [44, 43].

23



Table 9: Test accuracy and mean NFEs over all epochs of NODE-RNN, GHBNODE-RNN and our
method GNesterovNODE-RNN on the Human Activity benchmark (Per-time-point classification) [29]
(Tolerance: 10�7).

Method Mean Forward NFEs Mean Backward NFEs Accuracy

NODE-RNN 220.74 396.42 0.829 ± 0.016
GHBNODE-RNN 51.85 221.26 0.838 ± 0.017
GNesterovNODE-RNN 46.44 210.84 0.840 ± 0.016

Although Dormand-Prince 5(4) [7] is a common choice for adaptive ODE solver, Tsitouras 5(4) [54]
is a more efficient method, which the libraries DifferentialEquations.jl 3 [44] and Diffrax 4

[21] have implemented.

3https://github.com/SciML/DifferentialEquations.jl
4https://github.com/patrick-kidger/diffrax

24

https://github.com/SciML/DifferentialEquations.jl
https://github.com/patrick-kidger/diffrax

	Introduction
	Contribution
	Organization

	 An Integration of Nesterov ODEs into NODEs
	Generalize Nesterov ODEs to Differential-Algebraic Systems
	The Effectiveness of GNesterovNODE in black Alleviating Vanishing Gradients
	Experimental Results
	Image classification
	Point cloud separation
	Walker2D kinematic simulation
	Continuous Normalizing Flows for MNIST

	Observed Properties of NesterovNODE in GNesterovNODE
	Related Work
	Concluding Remarks
	Review of the adjoint equation and the gradient for the first-order NODEs
	The adjoint equations for the NesterovNODEs and GNesterovNODEs
	Proof of Proposition 3 - the nonvanishing gradient for GNesterovNODEs
	Implementation details
	Experimental details used in Section 3 Silverbox Initialization Test
	Experimental details used in the Point Cloud benchmark in Section 5.2
	Experimental details for MNIST/CIFAR10 in Section 5.1
	Experimental details for Walker2D in Section 5.3
	Experimental details for Continous Normalizing Flow for VAE on the MNIST dataset in Section 5.4

	Additional experiments
	Integration time
	The Effect of Nesterov factor regarding the solver's tolerance
	GPU memory consumption
	Wall-clock time advantage of NesterovNODEs/GNesterovNODEs
	The Effect of using Seminorm for reducing backward NFEs on GNesterovNODE
	Human Activity Dataset

	Solving Neural Differential-Algebraic Equations

