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A Variance Calculations

In this section, we establish the unbiasedness and variance bounds of the estimators introduced
throughout the paper. The following lemma will be useful for some of these calculations.

Lemma 6. Suppose we have Y
obs
i,t

= Yi(zt) + "i,t for iid noise "i,t ⇠ N(0, �
2) and our estimator

has the form

dTTE =
1

n
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t=0

nX
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↵i,t · Y
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i,t

,

with each |↵i,t| = O(↵). Further suppose that for any t, t
0 2 0, . . . , � and two subsets S, S 0 of

cardinality at most �,
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hY

j2S
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Y
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z
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0
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◆
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Proof. By the law of total variance, we have
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2
�
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Turning our attention to the first variance term, we introduce the notation Mi = {i
0 : |Ni\Ni0 | � 1}.

Note that |Mi|  d
2. In addition, for all i

0 62 Mi, all S ✓ Ni, and all S 0 ✓ Ni0 , we have S \S 0 = ?.
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We may expand the variance,
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Therefore,
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i
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A.1 Graph Agnostic with Bernoulli Treatment

By plugging in the Bernoulli treatment probabilities into (3.1), we obtain the estimator:

dTTE(p) :=
1

n

nX

i=1

�X

t=0

⇣
`t,p(1) � `t,p(0)

⌘
· Y

obs
i,t

, `t,p(x) =
�Y

s=0
s 6=t

x � ps

pt � ps
.

The following lemma will be useful in establishing a bound on the variance of this estimator.

Lemma 7. max
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p

⌘
.

Proof. For each t 2 0, . . . , �, we have,
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p

⌘
.

Here, the first inequality is an application of the triangle inequality, the second uses the definition of
�p, and the third uses the fact that each pt 2 [0, 1].
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Proof of Theorem 2. To establish the unbiasedness of the estimator, note that,

E
h
dTTE(p)

i
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⌘
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h
1
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=
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Now, we compute a bound on the variance. Since the entries of each zt are independent,
Cov

hQ
j2S z

t

j
,
Q

j02S0 z
t
0

j0

i
= 0 for any disjoint S, S 0. In addition, since both arguments of this

covariance are indicator variables, we can upper bound the absolute value of each covariance by 1.
We appeal to Lemma 6, with B1 = 1, B2 = 0, and ↵ = ���

p (by Lemma 7), giving,
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i
= O
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2
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Y
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2
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p

⌘
.

A.2 Graph Agnostic with Completely Randomized Treatment

We’ll make use of the following algebraic lemma to bound the variance; recall the bracket notation
introduced in equation (2.3) in Section 2.
Lemma 8. For any constants a, b 2 N and any p 2 (0, 1],

�����

h
pn�a
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h
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����� = O

⇣
ab
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⌘
.

Proof. Expanding the bracket notation, we have,
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Proof of Theorem 3. To establish the unbiasedness of the estimator, note that,

E
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⇣
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Next, we establish a bound on the variance of this estimator. We consider the covariance term���Cov
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j2S z
t

j
,
Q
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t
0
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i��� for various values of t, t
0
, S, and S 0. First, note that when t or t

0 = 0,
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S \ S 0 6= ?, we can bound
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,
Q
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0
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i���  1 by noting that both arguments are
indicator variables. In the case that S \ S 0 = ?, we establish a stronger bound using Lemma 8. We
have,
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In the second last line, we bound the first two factors by 1, and use Lemma 8 (with p = kt0
n

) to bound

the third factor. Applying Lemma 6, with B1 = 1, B2 = O

⇣
�
2
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⌘
, and ↵ =

⇣
n
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⌘�

(by Lemma 7
using the substitution p = k/n), giving,
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A.3 Improved Variance Bounds in the Linear Setting

Proof of Corollary 4. In the linear setting (� = 1) for x = (0, x), the Lagrange polynomial coef-
ficients evaluate to `0,x(1) � `0,x(0) = �↵ and `1,x(1) � `1,x(0) = ↵ for ↵ = 1

x
, so that the

estimator dTTE(x) is equal to

dTTE(x) =
↵

n
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.

Using the Law of Total Variance, we get
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Rewriting the first term, we get
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Here, we used the fact that z0 = 0 deterministically to remove covariance terms, as it has covariance 0
with any other random variable. Under BRD(0, p) we have ↵ = 1

p
. Additionally, Var(z1

j
) = p(1 � p)

for each j 2 [n], and Cov[zj , zj0 ] = 0 for j 6= j
0 so we may simplify the variance bound to
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The analysis for the completely randomized design setting is presented in pg 32 of [25], and we
include it here for convenience. Under CRD(0, k), we have ↵ = n

k
. Additionally, Var(z1

j
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Plugging into (A.2), we find that
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A.4 Bernoulli Estimator Utilizing Realized Treatment Counts

We will make use of the following lemma to bound the variance of this estimator.

Lemma 9. Suppose X ⇠ Binom(n, p), and define

Y =

⇢
0 X = 0,

1
X� X > 0.

Then, E
⇥
Y
⇤

< (1 + o(1))(np)�� .
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Proof. Using the law of total expectation, we can upper bound this expectation,

E
⇥
Y
⇤
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�
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. (A.3)

We apply Bernstein’s inequality to compute this probability. Note that we can express

X = X1 + . . . + Xn,

with each Xi ⇠ Bernoulli(p). Now, define Z = Z1 + . . . + Zn where each Zi = p � Xi. Note that
each E

⇥
Zi

⇤
= 0 and |Zi|  1. Thus,
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For � = log�1
n and large enough n, exp

✓
�3�2np
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◆
< (np)�2� , such that plugging into (A.3), we

find E
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 ((1 � �)np)�� + (np)�2� = (1 + o(1))np
�� .

Proof of Theorem 5. First, we reason about the bias of the estimator. We define the event E1 be the
event {k0 < k1 < . . . < k�}. By the argument from the proof of Theorem 3, dTTE(k̂/n) is unbiased
on E1. Thus, we can express the bias as

E
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,

so the bias decays exponentially with n.

To bound the variance, we apply the law of total variance:
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We bound these terms individually. For the first term, note that
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which implies that,
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This term decays exponentially as n grows large, so (A.4) will be dominated by the second term.

Next, we define the event
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Notice that by a different application of the law of total variance, we get
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Let dTTE�" := 1
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Using the fact that the variance of Bernoulli random variables is always bounded above by 1, and
again using the bound `

t,k̂/n(1) � `
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� , we get
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Then, to bound the second term of (A.4), we use the unconditional bound
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Applying the definition of expectation, we have
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Here, the first equality makes use of our unconditional bound on the variance, given in inequality A.5.
The second inequality plugs the variance bound from Theorem 3 for the most pessimistically perturbed
treatment count vector in E2. The probability Pr(Ec

2) decays exponentially in n. Therefore, choosing
� = ⇥( 1

log(n) ) and letting n get sufficiently large, the upper bound for this estimator is
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2
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B Unbiased Estimation with Additional Observations

A natural question is whether we continue to see improvements in the estimator when we increase
the number of estimates beyond � + 1. Note that we restrict our attention to unbiased estimators,
as we desire the asymptotic reduction in mean-squared error as the population grows large. We
may thus assess the quality of an estimator by its variance. While in general, with noisy data, more
measurements may result in improveed estimates, we show that in the linear setting, under perfect
observations (i.e. no observation noise), these extra measurements do not help to reduce variance. In
fact, we’ll argue that the unbiased estimator with minimum variance is the one that ignores all but its
first and last observations and then performs polynomial interpolation on these endpoints. We record
this result in Theorem 10.

Theorem 10. Suppose that the potential outcomes model is linear, and a staggered rollout Bernoulli
design is implemented with a set of T + 1 distinct treatment probabilities p0 < p1 < . . . < pT . Then,
the unbiased estimator for TTE of the form

dTTE =
1

n

nX

i=1

TX

t=0

↵tYi(z
t)

that minimizes variance has ↵0 = �1
pT�p0

, ↵T = 1
pT�p0

and ↵1, . . . , ↵T�1 = 0.

On one hand, such a result seems surprising: having more observations seems like it would only lead
to a stronger estimator. However, what is overlooked is that there is strong correlation in the different
measurements due to the monotonicity of treatments enforced in the staggered rollout design, such
that the information in the first and last measurements contain all the useful information one could
construct from the intermediate measurements. When random noise is added, the trade-off between
the noise-canceling effects of additional measurements and the increased sensitivity of higher-degree
interpolating polynomials adds an additional level of complexity.

Proof. To begin, we derive the constraints on (↵0, . . . , ↵T ) needed to ensure unbiasedness. We have,
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Comparing to our expression for TTE in terms of the ci,S coefficients:

TTE = 1
n

nX
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ci,S ,

we see that we must have,

TX

t=0

↵t = 0,

TX

t=0

↵tpt = 1. (B.1)
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Now, we consider the variance of this family of estimators. We have,
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Note that the first factor is a constant depending only on the network (i.e. not on the ↵ and p

parameters of the estimator). Thus, to minimize the variance, it suffices to locate critical values of
this second factor, subject to our unbiasedness constraints. We can rewrite this factor
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Then, we consider the Lagrangian,

L :=
TX

t=0

↵tpt

⇣
↵t(1 � pt) + 2

TX

t0=t+1

↵t0(1 � pt0)
⌘

+ �

TX

t=0

↵t + µ

⇣
1 �

TX

t=0

↵tpt

⌘
. (B.3)

We compute the partial derivatives of this Lagrangian with respect to each ↵t as,
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= 2(1 � pt)
t�1X
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↵t0pt0 + 2pt

TX

t00=t

↵t00(1 � pt00) + � � ptµ.

We will set each of these partial derivatives equal to 0 sequentially to fix each of the variables at the
critical point. First, we consider the partial derivative with respect to ↵0. We have,

@L
@↵0

= 2p0

TX

t00=0

↵t00(1 � pt00) + � � p0µ = �p0(2 + µ) + �.

Here, the second inequality uses the unbiasedness constraints. Setting this partial derivative equal to
0, we must have � = p0(2 + µ). Next, we consider the partial derivative with respect to ↵1:
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= 2↵0p0(1 � p1) � 2p1
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= (p0 � p1)(2↵0 + 2 + µ).

Note that p0 � p1 6= 0 by our distinct probabilities assumption. Thus, setting this partial derivative
equal to 0, we must have 2 + µ = �2↵0. In addition, combining with the previous constraint, we can
re-express � = �2↵0p0. Next, we consider the partial derivative with respect to ↵2:
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Setting this partial derivative equal to 0, we must have ↵1 = 0, since p1 � p2 6= 0. We can iterate this
process on the partial derivatives with respect to ↵3, . . . , ↵T , concluding that ↵2, . . . , ↵T�1 = 0.

We are left with the system of two linear equations given by the unbiasedness constraints:
↵0 + ↵T = 0, ↵0p0 + ↵T pT = 1.

The unique solution to this system is ↵0 = �1
pT�p0

, ↵T = 1
pT�p0

.
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C Experimental Results under a Quadratic Outcomes Model

In this section, we discuss the results of our experiments1 under a quadratic potential outcomes model
(� = 2). As in the linear setting (see Section 4), for each population size n, we sample G networks
from the distribution described in Section 4. For each configuration of parameters in the experiment,
we sample N treatment schedules {z0, . . . , z�} from our parameterized distribution class (Bernoulli
or CRD) and compute the TTE using each estimator. In the experiments for both this setting and the
linear setting, we set G = 30 and N = 100.

For each estimator, we plot the relative bias of the TTE estimates averaged over the results from these
GN samples and normalized by the magnitude of the TTE. The width of the shading in the figures
depicts the standard deviation across the GN estimates. The experiments in the quadratic setting ran
for 29.4 minutes on the same Linux machine.

In Figure 3, we visualize the effect of three network or estimator parameters on the quality of each
of the five TTE estimators (the four described in the Other Algorithms paragraph of Section 4, and
our CRD estimator with treatment targets kt = tk

�
). Specifically, we consider the effects of the

population size (n), the maximum proportion of treated individuals (k/n) and the degree of the
potential outcomes model (�). Each of the plots fixes two of these parameters and varies the third.
Specific settings of the parameters are listed on each plot.
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(c) Varying treatment budget

Figure 3: Three graphs visualizing the performance of various TTE estimators as different parameters
are adjusted. The height of each graph depicts the experimental relative bias of the estimator and the
shaded width depicts the experimental standard deviation.

Our estimator is the blue line with blue shading on each of the plots. As expected, the estimator
is unbiased and the variance decreases as n or k/n increases. On the other hand, regardless of
population size or treatment budget, the rest of the estimators remain biased. In general, the variances
of these other estimators remains higher than ours, although it is worth noting that when the treatment
budget k/n is lower, the variance of our estimator is higher. As the ratio r increases, the network
(aka indirect) effects become greater relative to the direct effect. This is exhibited by the increase in
the bias of all the estimators, besides ours, as shown in Figure 3b. As expected, when the ratio is near
0, all estimators are unbiased as this corresponds to the case where there is no network interference.

In Figure 4, we compare the variants of our estimator when � = 2, evaluating dTTEPI(k/n) under CRD
and evaluating dTTEPI(p) and dTTEPI(k̂/n) under Bernoulli(p) randomized design, where pt = tp/�

and k̂ is the vector of realized treatment counts.

The estimators dTTEPI(k/n) and dTTEPI(k̂/n) perform nearly identically as we vary the size of the
population. They differ for lower treatment budgets, with dTTEPI(k̂/n) having lower bias than
dTTEPI(k/n) but about the same variance. As the treatment budget increases, they perform almost
identically. dTTEPI(k̂/n) has lower variance than dTTEPI(p), which is intuitive as it performs polyno-
mial interpolation on the realized treatment fraction rather than the expected treatment fraction.
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Figure 4: Two graphs visualizing the performance of our proposed TTE estimators as the size of the
population (n) or treatment budget (k/n) is varied. The height of each graph depicts the experimental
relative bias of the estimator and the shaded width depicts the experimental standard deviation. The
blue and the green plots essentially overlap.

D Experimental Results under Bernoulli Design

We performed similar experiments to Section 4 and Appendix C for the Bernoulli randomized design
setting. The main difference is that our parameterization on the budget in the realized fraction of
treated individuals, k/n, has been replaced by an upper threshold on the treatment probability, p. The
results we find in this Bernoulli design setting exhibit the same trends as those under completely
randomized design. We include these plots for completeness and refer the reader to earlier sections
for discussion and analysis.

1Code can be found at https://tinyurl.com/kee88h6d
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(c) Varying treatment budget
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Figure 5: Four graphs visualizing the performance of various TTE estimators, under Bernoulli
randomized design, as various parameters are adjusted. The height of each graph depicts the
experimental relative bias of the estimator and the shaded width depicts the experimental standard
deviation.
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Figure 6: Two graphs visualizing the performance of our proposed TTE estimators under Bernoulli
randomized design as the size of the population (n) or ratio between direct and indirect effects (r)
is varied. The height of each graph depicts the experimental relative bias of the estimator and the
shaded width depicts the experimental standard deviation.
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