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In this Supplementary document, we first provide a detailed description of the dataset in Sec. A.
Implementation and training details are in Sec. B. We show detailed infraction statistics for both
leaderboard results and ablation studies, and qualitative results in Sec. C. Last, we discuss limitations,
common failure cases, and possible future directions and potential social impact of our work in
Sec. D.

A Dataset

A.1 Dataset Collection

We use CARLA 0.9.10.1 for data collection and testing. We use Roach [16] as the expert to collect
data. In order to improve the obstacle avoidance ability of the expert, we additionally add a rule-based
vehicle and pedestrian detector adopted from Transfuser [12] to avoid possible collisions. Each
route is generated randomly with length ranging from 50 meters to 300 meters. We use the scenario
configurations provided in [12]. We terminate each route if the expert makes a collision or runs a red
light. Last few frames for such routes are discarded. The data samples are stored at 2HZ.

A.2 Dataset Statistics

Detailed statistics for each town and their descriptions are provided in Table 1. As stated in the main
paper, we train on all eight towns for the leaderboard submission. For our ablation experiments, we
train on four towns (Town01, Town03, Town04, and Town06) and test on the designed four routes
with four different weathers in Town02 and Town05, as does in [3].

B Implementation Details

We use ResNet-34 [8] pretrained on ImageNet [6] as the image encoder. The size of the input image
is 900× 256 and the FOV of the camera is set as 100°. We choose K being 4 meaning four future
steps at 2HZ are predicted for both the trajectory branch and the control branch. Detailed network
structure is presented in Table 5. We follow the same PID setting as [5], where the PID parameters
are exquisitely tuned, i.e., Kp = 5.0, Ki = 0.5, Kd = 1.0 for the longitudinal PID controller and Kp =
0.75, Ki = 0.75, Kd = 0.3 for the lateral PID controller. The weights for different loss terms are as
follows: λF = 0.05, λtraj = 1, λctl = 1, λaux = 0.05, and 0.001 for speed and value regression
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Table 1: Detailed statistics of the number of samples, the number of dynamic agents added, and a
brief description of each town.

Town Name #Samples #Dynamic Agents Description

Town01 50384 120 a basic town with T junction
Town02 55943 100 similar to Town01 but smaller
Town03 42771 120 a complex town
Town04 47954 200 a highway loop and a small town
Town05 53684 120 a squared-grid town with multiple lanes
Town06 48415 150 long highways
Town07 51549 110 a rural enviroment with narrow roads
Town10 59898 120 a city with various environments

respectively. For all experiments, we train TCP on 4 GeForce RTX 3090 GPUs. We use the Adam
optimizer [10] with a learning rate of 1× 10−4 and weight decay of 1× 10−7 for all experiments.
We train all models with batch size 128 for 60 epochs, and the learning rate is reduced by a factor of
2 after 30 epochs.

In the situation based fusion scheme, we choose whether the vehicle is turning as the criterion
of the situation. Specifically, we calculate the absolute values of steer actions within the past 1
second. If half of them are larger than 0.1, we assume the vehicle is turning so the situation is
control specialized, otherwise trajectory specialized. For the online CARLA Leaderboard [1]
submission, we use an asymmetric fusion scheme. If the situation is trajectory specialized, we
set α = 0.5, and α = 0 when it is control specialized. We take the maximum of the brake control
instead of taking the average. For the ensemble submission TCP-Ens, we also take the maximum of
brake value from different models and take the average for steer and throttle.

C Experiments

C.1 Validation Protocol Details

We use the same validation routes as LAV [3]. This includes 4 routes in total, 2 from Town02 and
05 each. Each route is tested under 4 different weathers (ClearNoon, CloudySunset, SoftRainDawn,
HardRainNight) and is repeated for 3 times, resulting in 48 routes in total. Random scenarios are
added from the official CARLA leaderboard repo (all_towns_traffic_scenarios_public.json). The
time-limit for agent blocking is reduced from 300 seconds to 60 seconds to save time.

C.2 Detailed Infractions Statistics

In this part, we report detailed infraction statistics of the methods on CARLA Leaderboard in Table 2,
and statistics of our ablation experiments in Table 3 and Table 4.

C.3 Qualitative Results

We show cases of our method performing well in different challenging scenarios in Fig. 1. In the
first case, the autonomous agent successfully reacts to the changing of the traffic light in time at the
crossing. In the second case, a cyclist suddenly runs across the road right after the ego vehicle has
made a right turn, and our agent makes an emergency brake in time, avoiding a collision. In the third
case, the ego vehicle is making a right turn while there are other vehicles crossing. It stops and waits
for the crossing vehicles to pass and then continues to make the turn. In the last case, our agent is
performing an unprotected left turn with oncoming traffic, and it successfully negotiates with the
oncoming vehicle.

More visualization examples of the trajectory-guided attention maps are provided in Fig. 2. We also
show the GradCam [13] and EigenCam [11] visualization of two examples for Control-Only model
with multi-step prediction scheme in Fig. 3. For the GradCam visualization, we set the target (which
is needed to be maximized during the calculation of GradCam) be the negative action loss for the
current and future action prediction. Note that GradCam visualizes the regions of the input image that
are important for predictions by calculating gradients to maximize the target. It does not indicate
that the model does focus or well capture the region highlighted by GradCam. As shown in Fig. 3, the
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Table 2: Detailed statistics of the evaluation on the public CARLA Leaderboard [1] (accessed in
May 2022). Driving Score, Route Completion, and Infraction Penalty are higher the better. For other
metrics, lower values are desired. The collisions, infractions, and agent blocked related metrics are
given as the number of events per kilometer. Our method outperforms other methods by a large
margin in terms of Driving Score and Route Completion. We also have the best scores for metrics of
collisions vehicle, collisions pedestrian, collisions layout, and off-road infractions among all methods.

Rank Method Driving
Score

Route
Completion

Infraction
Penalty

Collisions
Vehicle

Collisions
Pedestrian

Collisions
Layout

Red light
Infractions

Off-road
Infractions

Agent
Blocked

1 TCP-Ens (ours) 75.137 85.629 0.873 0.316 0.000 0.000 0.089 0.038 0.537
1 TCP (ours) 69.714 82.962 0.851 0.220 0.006 0.034 0.083 0.017 0.564
1 TCP-SB (ours) 68.695 82.957 0.833 0.250 0.000 0.111 0.066 0.026 0.528

2 LAV [3] 61.846 94.459 0.640 0.696 0.038 0.017 0.166 0.252 0.104
3 Transfuser 61.181 86.694 0.714 0.814 0.036 0.007 0.046 0.228 0.428
4 Latent Transfuser 45.029 75.366 0.618 1.259 0.034 0.098 0.102 0.288 0.757
5 GRIAD [2] 36.787 61.855 0.597 2.772 0.000 0.407 0.484 1.388 0.842
6 Transfuser+ [9] 34.577 69.841 0.562 0.703 0.045 0.025 0.750 0.185 2.406
7 WoR [4] 31.370 57.647 0.557 1.346 0.606 1.017 0.791 0.963 0.473
8 MaRLn [14] 24.980 46.968 0.518 2.329 0.000 2.472 0.550 1.823 0.936
9 NEAT [5] 21.832 41.707 0.650 0.742 0.042 0.617 0.700 2.680 5.225

Table 3: Detailed infraction statistics of the ablation on the effectiveness of the trajectory-guided
multi-step control prediction design.

Exp. Driving
Score

Route
Completion

Infraction
Penalty

Collisions
Vehicle

Collisions
Pedestrian

Collisions
Layout

Red light
Infractions

Off-road
Infraction

Agent
Blocked

Control 32.45±2.23 76.54±3.22 0.45±0.03 1.24±0.06 0.00±0.00 0.23±0.09 0.18±0.05 0.59±0.06 0.41±0.11
+ traj-task 34.98±1.96 81.32±5.50 0.49±0.05 1.39±0.15 0.00±0.00 0.15±0.07 0.11±0.04 0.39±0.04 0.38±0.10
+ temporal 42.87±4.77 87.51±3.63 0.49±0.07 1.14±0.25 0.00±0.00 0.20±0.07 0.18±0.04 0.18±0.05 0.22±0.03
+ traj-attn 46.08±3.47 84.95±1.84 0.56±0.03 0.90±0.20 0.00±0.00 0.04±0.06 0.14±0.07 0.54±0.06 0.29±0.08
+ fusion 57.01±1.88 85.27±1.20 0.67±0.01 0.37±0.10 0.00±0.00 0.08±0.03 0.10±0.03 0.14±0.06 0.20±0.03

Table 4: Detailed infraction statistics of the experiments of the comparison between MTL and
ensemble methods.

Exp. Driving
Score

Route
Completion

Infraction
Penalty

Collisions
Vehicle

Collisions
Pedestrian

Collisions
Layout

Red light
Infractions

Off-road
Infraction

Agent
Blocked

Ensemble 45.03±1.28 79.30±5.13 0.59±0.04 0.62±0.09 0.00±0.00 0.22±0.03 0.22±0.07 0.28±0.03 0.35±0.10
MTL 48.27±0.58 81.62±2.74 0.60±0.02 0.51±0.07 0.00±0.00 0.26±0.06 0.06±0.05 0.36±0.03 0.28±0.09
TCP-SB 52.46±4.66 83.94±3.75 0.64±0.04 0.53±0.14 0.00±0.00 0.08±0.03 0.13±0.09 0.06±0.00 0.29±0.04
TCP 57.01±1.88 85.27±1.20 0.67±0.01 0.37±0.10 0.00±0.00 0.08±0.03 0.10±0.03 0.14±0.06 0.20±0.03
TCP-Ens 59.09±3.66 87.02±2.02 0.70±0.03 0.41±0.19 0.00±0.00 0.00±0.00 0.10±0.13 0.18±0.05 0.27±0.06

GradCam heat-map for current action prediction (a0) focuses on regions close to the current location
of the ego vehicle, while the heat-map for future prediction (a1) focuses on regions further. This
indicates that predicting future actions does need to focus on further regions.

However, Control-Only model with multi-step action prediction only aggregates the image feature
map once by global average. The pooled feature is then used to predict actions of all time steps.
Therefore, it is not realistic to highlight corresponding important regions for each step. We use the
EigenCam to visualize the 2D image feature map. It is a gradient-free visualization method to directly
calculate the heat-map by projecting the feature map to eigen-vectors. As shown in the last column
in Fig. 3, the highlighted region of the 2D image feature map only spans a single area, which is not
informative enough for multi-step predictions. It verifies the necessity of re-aggregating the image
information with different highlighted regions for each future step, as what we did in Fig. 2.
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Figure 1: Examples of our agent performing well under different challenging scenarios.

Figure 2: More examples of trajectory-guided attention maps. In each case (row), from the left to
right we show that the input image with the predicted trajectory (the first waypoint is projected out of
the image), the predicted trajectory in the top-down view, the attention map w1, the attention map
w3.

D Discussion

D.1 Limitations and Future Work

D.1.1 Failure Cases and Future Work Directions

Our work mainly focuses on combining the two output forms of end-to-end autonomous driving,
i.e., trajectory planning and direct control. A detailed and elaborate situation based fusion scheme is
based on rules which may require a large number of experiments and specific prior knowledge. A
more general or a learning-based adaptive fusion scheme may be a possible future direction.

We also discuss two typical failure cases of TCP in Fig. 4. The first scenario happens when other
vehicles initially outside the ego agent’s front view rushes into the path with a high speed. It causes
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Image GradCam-𝒂0 GradCam-𝒂1 EigenCam

Figure 3: Visualization examples of GradCam [13] and EigenCam [11]. From left to right: original
image, GradCam heat-map for current action prediction, GradCam heat-map for future action
prediction, EigenCam heat-map for the image feature map.

Figure 4: Examples of two failure cases. Top row: the red vehicle runs into the ego path with a high
speed, and the ego vehicle fails to take an emergent brake. Down row: The ego agent is waiting for a
left turn but occupies part of the opposite lane, causing a block.

a delayed collision when an emergent braking fails. It is because of the limited view of our single
camera, hence a straightforward future direction is to add multi-view cameras or a LiDAR input to
our agent. Another kind of failures is that the ego agent fails to predict the possible trajectory of other
vehicles, resulting in blocking or collisions. Thus explicitly making trajectory predictions of other
vehicles and combining it with our trajectory branch is also an interesting direction to further boost
the ability of generalization as demonstrated in LAV [3] and LBW [15].

D.2 Broader Impact

We explore the limitations and advantages of the two conventional output paradigms for end-to-end
autonomous driving, present TCP which achieves state-of-the-art performance on the public closed-
loop benchmark to push the boundary of the problem. We aim to bring together the two branches
of research in this field and provide a unified framework to combine their possible advantages. Our
work provides a simple yet effective framework, based on which, new models and techniques can be
conveniently integrated and transparently compared. Despite such improvement, we fully understand
that our work is by no means perfect and still has many challenges when it comes to real-world
application. Our model is trained and tested in the simulator, directly deploying it in the real world
will lead to possible traffic accidents which may cause negative societal impacts.

E License of Assets

CARLA [7] is an open-source simulator which is under the MIT license and its assets are under the
CC-BY license. We integrate part of the official code of Roach [16] which is under the CC-BY-NC
4.0 license into our codebase. The pretrained ResNet model is under the MIT license.

The source code and training data for our work will be publicly available once accepted and they are
under the CC-BY-NC 4.0 license.
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Table 5: Detailed network structure of our TCP model.

Layer Type # of Filters Activation Function #

Image Encoder

ResNet-34

Measurement Encoder

FC 128 ReLU × 2

Join_ctrl

FC 512 ReLU × 2
FC 256 ReLU × 1

Join_traj

FC 512 ReLU × 2
FC 256 ReLU × 1

Speed Head

FC 256 ReLU × 2
FC 1 ReLU × 1

Value Head ×2 traj+ctrl

FC 256 ReLU × 2
FC 1 ReLU × 1

Temporal Module

GRU_cell hidden size = 256 × 1
FC (output) 256 ReLU × 2

Control Policy Head

FC 256 ReLU × 2
FC (alpha) 2 Softplus × 1
FC (beta) 2 Softplus × 1

Traj Policy Head

GRU_cell hidden size = 256 × 1
FC (output) 2 × 2

Init Att.

FC 256 ReLU × 1
FC 29*8 Softmax × 1

Traj Guided Att.

FC 256 ReLU × 1
FC 29*8 Softmax × 1

Merge (merge the re-aggregated image feature and hidden state)

FC 512 ReLU × 1
FC 256 ReLU × 1
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