
Appendix

A ProcTHOR Assets 3

B House Generation 3

B.1 Examples . 3

B.1.1 3-Room Houses . 4

B.1.2 4-Room Houses . 5

B.1.3 5-Room Houses . 6

B.1.4 6-Room Houses . 7

B.1.5 7+ Room Houses . 8

B.2 Room Specs . 9

B.3 Sampling Floor Plans . 9

B.4 Connecting Rooms . 11

B.5 Structure Materials . 12

B.6 Ceiling Height . 12

B.7 Lighting . 13

B.8 Object Placement . 13

B.8.1 Assets . 13

B.8.2 Semantic Asset Groups (SAGs) . 14

B.8.3 Floor Object Placement . 16

B.8.4 Wall Object Placement . 18

B.8.5 Surface Object Placement . 20

B.9 Material and Color Randomization . 21

B.10 Object States . 21

B.11 Validator . 23

B.12 Related Works . 23

B.13 Limitations and Future Work . 24

C PROCTHOR Datasheet 25

D ARCHITECTHOR 29

D.1 Datasheet . 30

D.2 Analysis . 32

E Input Modalities 34

F Experiment details 35

F.1 ObjectNav experiments . 35

F.2 ArmPointNav experiments . 38

F.3 Rearrangement experiments . 39

1

G Performance Benchmark 40

H Robustness 40

I Broader Impact 40

J Contributions 41

2

A ProcTHOR Assets

FRIDGE_1 FRIDGE_10 FRIDGE_11 FRIDGE_12

FRIDGE_13 FRIDGE_14 FRIDGE_15 FRIDGE_16

SOFA_201_2 SOFA_203_1 SOFA_204_1 SOFA_205_1

SOFA_207_3 SOFA_214_2 SOFA_218_1 SOFA_227_1

CHAIR_002_1 CHAIR_007_1 CHAIR_201_1 CHAIR_203_1

CHAIR_204_1 CHAIR_205_1 CHAIR_210_1 CHAIR_215_1

(a) Examples of assets in the asset database. The forward-facing
direction for each asset is consistent across all assets within its
type, which allows us to do things like not spawn fridges facing
the wall.

0 20 40 60
Unique Instances

SideTable
Chair

ArmChair
Bed

Faucet
Sofa
Desk
Book

Box
CounterTop
CoffeeTable

Television
FloorLamp

Pillow
Laptop

Cup
HousePlant

GarbageCan
AlarmClock

Plate
Bowl

Apple
Egg
Pan

Microwave
Potato

Sink
Lettuce

SoapBottle
Toaster

ToiletPaperHanger
Tomato
Fridge

Pot
LightSwitch

CoffeeMachine
Bread

DiningTable
Dresser
Painting
Window

Statue
Doorway

Vase
DeskLamp

ShelvingUnit
Cloth

TVStand
Stool

SprayBottle
Candle

CellPhone
Pencil

Footstool
Knife

TennisRacket
BaseballBat

Mug
Newspaper

Pen
CreditCard

Ottoman
LaundryHamper

RemoteControl
Towel

SaltShaker
DogBed

KeyChain
PepperShaker

Plunger
Ladle
Toilet

BasketBall
ButterKnife

ShowerHead
ToiletPaper
RoomDecor

ShowerCurtain
Safe

ClothesDryer
WashingMachine

Watch
GarbageBag

Fork
TeddyBear

Boots
TowelHolder

VacuumCleaner
Blinds

TissueBox
WateringCan

Dumbbell
TableTopDecor

Spoon
Spatula

Bottle
SoapBar

CD
ScrubBrush

Cart
PaperTowelRoll

AluminumFoil
Kettle

Desktop
HandTowelHolder

HandTowel
DishSponge
WineBottle

As
se

t T
yp

e

Number of Unique Instances per Asset Type

(b) The number of unique 3D modeled as-
sets for each of the 108 asset types. There
are 1,633 unique assets in total.

Figure 1: Examples and statistics of assets in the asset database.

B House Generation
This section gives more details about the process we developed to procedurally sample houses.

B.1 Examples

3

B.1.1 3-Room Houses

Figure 2: Examples of 3-room houses generated in PROCTHOR-10K.

4

B.1.2 4-Room Houses

Figure 3: Examples of 4-room houses generated in PROCTHOR-10K.

5

B.1.3 5-Room Houses

Figure 4: Examples of 5-room houses generated in PROCTHOR-10K.

6

B.1.4 6-Room Houses

Figure 5: Examples of 6-room houses generated in PROCTHOR-10K.

7

B.1.5 7+ Room Houses

Figure 6: Examples of 7+ room houses generated in PROCTHOR-10K.

8

(a) 4-Room House (b) 5-Room House (c) 7-Room House

Figure 7: Examples of room spec hierarchies used to sample differently sized houses.

B.2 Room Specs

Room specs provide the ability to specify the rooms that appear in a house, the relative size of each
room, and how the rooms are connected with doors. Their idea was first proposed in [65]. A room
spec is manually specified with a tree data structure.

Figure 7a shows a simplified example of a room spec with four rooms: bedroom, bathroom, kitchen,
and living room. In this room spec, there are two subtrees, comprising Zbb = {bedroom, bathroom}
and Zklv = {kitchen, living room}. At each level of the tree, there is a constraint that there must
be a direct path connecting every child node of a parent. Thus, in our example, there will be a path
between the bedroom and the bathroom, a path between the kitchen and the living room, and another
path connecting Zbb to Zklv. We can also specify which room types we would prefer not to have a
path between it and the parent. For example, we typically do not want the bathroom to have 2 doors,
such as between it and the bedroom and between it and a room in Zklv .

Each tree node, below the root of the tree, is also assigned a growth weight, which approximates the
relative size of the node compared to all other nodes that share the same parent. For instance, we
might assign both Zbb and Zklv a growth rate of 1, to be roughly the same size. But, if we want the
bedroom to take up roughly 60% of the Zbb’s area, then we might assign the bedroom a growth rate
of 3 and the bathroom a growth rate of 2.

Room specs allow us to flexibly choose the distribution of houses we sample, allowing us to specify
massive mansions, studio apartments, and anything in-between. Moreover, just a few room specs
can go a long way. To generate our houses, we use 16 room specs, which each uses between 1 to 10
rooms. To generate the houses dataset, we assign a sampling weight to each of our room specs, and
then use weighted sampling to sample a room spec for each house.

B.3 Sampling Floor Plans

The size and shape of the house are sampled to form the interior boundaries. Room specs specify
the distribution over the dimensions of the house. Figure 8 visualizes the process of sampling an
interior boundary, where we first sample the size of the boundary and then make cuts to the corners
to add randomness. The sampling starts off by choosing the initial upper bound of the top-down x
and z size of the house, in meters, respectively denoted as xs and zs. Each dimension is an integer.
In most room specs, each dimension is independently sampled from the discrete uniform distribution
xs, zs ∼ U(max(ℓmin, µa

√
nr − µa/2), µa

√
nr + µa/2), inclusive. However, individual room specs

can override the xs and zs sampling distributions. Here, nr represents the number of rooms in the
house, ℓmin is set to 2 and represents the minimum size of xs and zs, and µa is set to 3 and represents
the average size of xs and zs per room.

9

Figure 8: An example of the interior boundary cut algorithm. The images show a top-down view
of the house’s floor plan. First, we sample an interior boundary rectangle (xs, zs), which is shown
on the left. Then, we make nc rectangular cuts to the corners of the rectangle to make the interior
boundary of the house a more complex polygon. In this case, we make nc = 3 cuts to form the final
interior boundary, which is shown on the right.

Figure 9: The probability distribution over the number of cuts, nc, made to the rectangular boundary
(xs, zs) with respect to the number of rooms in the house, nr. Notice that when there are more rooms
in the house, the number of cuts in the distribution increases.

Once we have the rectangular boundary (xs, zs), we then make several cuts to the outside of the
rooms such that the interior boundaries can take on the shape of more complex polygons. The number
of cuts, nc, is sampled from the distribution nc ∼ ⌊10 · Beta(αc, βc) + 1/2⌋, where αc = nr/2 and
βc = 6. Figure 9 shows the distribution that is formed with respect to the number of rooms in the
house, nr. When there are more rooms, the probability distribution over the number of cuts increases.
Since the range of the beta distribution is (0, 1), the upper bound on the number of cuts is exactly 10.

The size of each cut is a rectangle, in meters, denoted by (cx, cz). Both cx and cz are sampled from
integer distributions. We sample from cx ∼ U(1,max(2,min(xs − 1, ⌊amax/2⌋) − 1), inclusive,
where amax is set to 6 representing the maximum cut area. We then sample cz ∼ U(1, amax − cx).
The position of where the cut happens is anchored to one of the 4 corners of the interior boundary,
where the exact corner is independently and uniformly sampled each time.

Since the size of each cut is an integer, and the rectangular boundary sizes are also integers, we can
efficiently represent the interior boundary with a (xs, zs) boolean matrix. Here, we could have 1s
representing where the inside of the interior boundary and 0s representing the outside of the interior
house boundary.

Given a room spec and an interior boundary, we use the algorithm proposed in [61] to divide the
interior boundary into rooms. The algorithm recursively subdivides the interior boundary for each
subtree in the room spec. Figure 10 shows an example using Figure 7a’s room spec. The algorithm
first divides the interior boundary into two zones, the “bedroom & bathroom” zone and the “kitchen
& living room” zone. The “bedroom & bathroom” zone then subdivides into two rooms, the bedroom
and bathroom. Similarly, the “kitchen & living room” zone is also subdivided into two rooms, the

10

Kitchen & Living Room

Bedroom & Bathroom BathroomBedroom
Living RoomKitchen

Figure 10: An example of the recursive floor plan generation algorithm, given an interior boundary
and the room spec in Figure 7a. Here, we first divide the room into a “bedroom & bathroom” and
a “kitchen & living room” zone. Then, within the “bedroom & bathroom” zone we place both the
bedroom and bathroom, and within the “kitchen & living Room” zone, we place both the kitchen and
living room.

kitchen and living room. The growth weight is used to approximate the size of each subdivision.
By recursively subdividing the zones of each subtree, we satisfy the constraint that we can traverse
between child nodes of the same parent in the room spec.

Finally, we scale the entire floor plan by s ∼ U(1.6, 2.2). Scaling the interior boundary to be larger
provides more room for the agent to be able to navigate within the houses. Using a range of values
also provides more variability on the size of the houses. We set the upper bound to 2.2 based on the
empirical quality of the houses, where values above that often left too much empty space.

B.4 Connecting Rooms

Figure 11: An example of the 3 ways to connect different rooms, using either a doorway (left), door
frame (middle), or open room connection (right).

Figure 11 shows the 3 types of ways adjacent rooms may be connected. Specifically, rooms may be
connected using 3 different types of connections: doorways, door frames, or open room connections.
We determine which rooms should have doors between them based on the constraints in the room
spec. Amongst adjacent rooms that may have doors between them, subject to the constraints in
the room spec, we randomly sample which rooms have doors. We also impose the constraint that
neighboring rooms in the room spec may have at most 1 room connected to it.

To choose the type of connection, we consider the rooms we are connecting. Specifically, we only
allow open room connections and door frame connections between kitchen and living room room
types. We impose this constraint because it would be unrealistic for a room like a bathroom to be
fully visible from another room. For connecting room types that do support open room connections
or door frames, we annotate the probability of sampling a doorway, door frame, and open room
connection. Between a kitchen and living room the probability is 0.375 for sampling both an open
room connection and a door frame connection, and 0.25 for sampling a doorway connection.

11

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Ceiling Height (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

Ceiling Height Distribution

Figure 12: The distribution of the ceiling height of each house, in meters.

If a doorway or door frame is sampled, we filter to use a valid asset that is smaller than the wall
connecting the rooms. For our generation, the minimum wall size is always greater than a single door
size, but occasionally the filter might remove double doors from valid doors that can be sampled as
they would be too big. The placement of the door is then uniformly sampled from anywhere along
the wall. For doorways, the open direction is uniformly sampled. Finally, if the open state from any
2 doorways collides, we also use rejection sampling to potentially change the open direction and
modify the placement of doorways.

Each house also has a permanently closed exterior door connecting to the outside. We prioritize
placing this door in kitchen and living room room types, as it is unnatural to have to go through a
bathroom or bedroom to go outside. However, in the case where the room spec does not include a
kitchen or living room (e.g. if the room is a standalone bathroom), we randomly place a door to the
outside in one of the remaining rooms.

B.5 Structure Materials

Wall materials. To choose the materials that make up the walls, we consider 2 families of wall
materials: solid colors and texture-based materials. Our solid color materials consist of 40 unique
colors of popular paint colors found in houses. We constrain ourselves to only using popular paint
colors, so we do not randomize the walls to unrealistic colors such as bright green or yellow. For
the texture-based materials, we annotate 122 different AI2-THOR materials to be suitable as wall
materials. These include materials for brick textures, drywall textures, and tiling textures, amongst
others.

Each wall in a room shares the same materials. For each room, we sample it if its materials are a
solid color with wsolid ∼ Bernoulli(0.5). It is sometimes the case in real life that all rooms in a house
share the same material (e.g. every room in an apartment is painted with white walls). We therefore
also have a parameter wsame ∼ Bernoulli(0.35) that specifies if all rooms in the house will have the
same material.

Ceiling material. The entire ceiling of the house is always assigned to a single wall material. If
wsame, then the ceiling material is also set to the wall material. Otherwise, it is independently sampled
with the same wall material sampling process.

Floor materials. We annotate 55 materials in AI2-THOR as floor materials. Most commonly, these
materials are wood materials. For each room, we independently sample its floor material from
the set of annotated floor materials. However, similar to wall materials, we independently sample
fsame ∼ Bernoulli(0.15) that specifies if all rooms in the house will have the same material.

B.6 Ceiling Height

The ceiling height for the house, in meters, is sampled from ch ∼ hmin+(hmax−hmin)·Beta(αh, βh),
where we set hmin = 2.5, hmax = 7, αh = 1.25, and βh = 5.5. Figure 12 shows the ceiling height
distribution that is formed. All rooms in the house have the same ceiling height.

12

The minimum and mean values were chosen based on the typical height of an American apartment,
while βh allows some of the train houses to have much larger ceilings.

B.7 Lighting

Lighting Placement. Each procedural house places two types of lights: a directional light and point
lights. The directional light is analogous to the sun in the scene, where only 1 is placed in each scene.
Light from point lights are analogous to the light emitted from lightbulbs. We place a point light in
each room near the ceiling, centered at the centroid of the room’s floor polygon. Using the centroid
ensures that the light is always placed inside of the room, even for L-shaped rooms. Additionally,
desk lamp and floor lamp objects have a point light associated with them.

Figure 13: Examples different skyboxes in a scene with a midday skybox (left), golden hour skybox
(middle), and a blue hour skybox (right). Notice how the colors of the images differ and how the
content outside of the window changes with the skybox.

Effects by the time of day. Skyboxes may appear at 3 different times of day: midday, golden
hour, and blue hour. The time of day determines the intensity, hue, and direction of the ambient
outdoor lighting. For each time of day, there exist multiple skyboxes, which dictate the lighting of the
environment. Figure 13 shows examples of how the time of day visually affects the scene. At this
time, there are 16 midday skyboxes, 5 golden hour skyboxes, and 1 blue hour skybox, based on full
360-degree photos taken in Seattle and San Francisco.

B.8 Object Placement

In this section, we discuss how objects are placed realistically in the house. We hypothesize reasonable
object placement is necessary in order to train efficient agents. For instance, if a toilet could appear
anywhere in the house, the agent would have a much harder search problem, leading to longer
episodes, than if the toilet was always in the bathroom. Moreover, we do not want objects to appear in
unnatural positions, such as a fridge facing the wall, as it would make it unnatural, and even unusable,
for interaction.

Finally, we do not always want objects to spawn independently. For instance, we might want a table to
be surrounded by chairs. We achieve dependant sampling by developing SAGs, which are described
in the section that follows.

B.8.1 Assets

The ProcTHOR asset database consists of 1,633 interactive household assets across 108 object types
(see Appendix A for more details). The majority of assets come from AI2-THOR. Windows, doors,
and counter tops are built into the exterior of rooms in AI2-THOR, which prevents us from spawning
them in as standalone assets. Thus, we have also hand-built 21 windows, 20 doors, and 33 counter
tops.

Asset Annotations. Our assets include several annotations that help us place them realistically
in a house. Figure 14 shows an example of the asset annotations used to place an arm chair. For
an individual asset, we annotate its object type, computationally obtain its 3D bounding box, and
partition assets of object types into training, validation, and testing splits. Then, we annotate how

13

each object type might be spawned into the house. Annotating the 108 object types, as opposed to
annotating the 1,633 individual assets, allows us to scale up the number of unique assets dramatically.
Moreover, it does not require any new annotation to add an asset that can be grouped with an existing
object type.

In Living Rooms 2Object Type Arm Chair

Bounding Box (0.9, 0.88, 0.74)

Split Train

On Edge

In Kitchens 0In Bedrooms 1 In Bathrooms 0

Object Type AnnotationsAsset Annotations

On FloorMultiple Per Room

In Corner In Middle

Figure 14: An example of the asset annotations used to place an arm chair asset. This particular
instance is annotated with its object type, bounding box, and split. Annotations about how it is placed
in the house are done at an object type level, applying to all instances of that type.

If instances of an object type cannot be placed independently on the floor, the rest of its annotations
are not considered. For instance, we do not allow television object types to be placed alone on the
floor, rather they are often placed on top of a television stand or mounted on the wall, which is
discussed later in this section. Similarly, we also annotate small objects, like a fork, pen, and mug to
not be placed independently on the floor. However, typical large object types, such as counter top,
arm chair, or fridge object types can be placed independently on the floor.

Among the remaining object types, we annotate where and in which rooms the object type may
appear. Each object type has a room weight, rw ∈ {0, 1, 2, 3}, corresponding to how likely it is to
appear in each room type. For each room type, a 0 indicates the object should never appear (e.g.,
a fridge in a bathroom); a 1 indicates the object may appear, but is unlikely; a 2 indicates that the
object appears quite often; and a 3 indicates that the object nearly always appears (e.g., a bed in a
bedroom). To determine where the object is placed, we annotate whether it may appear on the edge,
in the corner, or in the middle of a room. For example, we annotate that a fridge can be placed on
the edge or in the corner of the room, but not in the middle. We also annotate whether there can be
multiple instances of an object type in a single room. Here, we annotate that multiple toilet object
types cannot be in the same room, for instance.

Asset Splits. If an object type has over 5 unique assets, then those assets are partitioned into train,
validation, and testing splits. Specifically, approximately 2/3 of the assets are assigned to the train
split, and approximately 1/6 of the assets are assigned to each of the validation and testing splits. For
object types that have 5 or fewer unique assets, they may appear in any split. In general, the more
visual diversity an object type has, the more instances of that object type exist. For instance, there are
many chair objects, but there are much fewer CD, toilet, and fork objects. Appendix A shows the
precise count of each object type.

B.8.2 Semantic Asset Groups (SAGs)

A Semantic Asset Group (SAG) provides a flexible and diverse way to encode which objects may
appear near each other. The power of SAGs comes in their ability to support randomized asset
and rotational sampling. SAGs can be created and exported in seconds with our user-friendly
drag-and-drop web interface.

Figure 15 shows an example of how we might construct a SAG that has two chairs pushed into the
side of a dining table. The SAG includes two chair samplers and a dining table sampler. Asset
samplers contain a set of unique 3D modeled asset instances that may be sampled. When the SAG
is instantiated, each asset sampler randomly chooses one of its instances. Asset samplers can also
be linked, where multiple samplers sample the same asset instance each time. Here, linking may
allow for multiple instances of the same chair to be placed at a dining table, instead of independently
sampling a different chair for each sampler.

The ability to randomly sample assets to place in a SAG is incredibly expressive. For instance,
consider a SAG with samplers for a TV stand, television, sofa, and arm chair. If each of these
samplers can sample from just 30 different 3D modeled asset instances, then there are over 800k
unique combinations of instances that can make be sampled from that SAG.

14

(a) An interface for viewing SAGs showing child asset anchoring
and rotational randomness.

Dining Table Sampler

Chair Sampler

Chair Sampler

(b) Hierarchy

Location

In Room

Middle
Corner
Edge

Kitchen
Living Room
Bedroom
Bathroom

(c) Annotation

Figure 15: An example of a semantic asset group (SAG), where two chair samplers are parented to a
dining table sampler. Both chairs are anchored to the top middle of the table.

Asset samplers define how assets are positioned relative to one another. SAGs are constructed by
looking at instances of asset samplers from their top-down orthographic images, such as the one shown
in Figure 15a. Here, both of the chair samplers are parented to the dining table sampler. Each child
asset sampler is anchored to its parent asset sampler vertically in V = {TOP, CENTER, BOTTOM}
and horizontally in H = {LEFT, CENTER, RIGHT}. Each child asset sampler’s pivot position can
similarly be set vertically in V and horizontally in H. For instance, in Figure 15a, both chair samplers
are anchored to the parent vertically on TOP and horizontally in the CENTER. But, the chair sampler
on the left’s pivot position is vertically in the CENTER and horizontally on the RIGHT, whereas the
chair sampler on the right’s pivot position is vertically in the CENTER and horizontally on the LEFT.
Figure 16 shows more examples of how a plant or floor lamp sampler may be positioned around an
arm chair sampler. Each child asset sampler can then have an (x, y) offset, which is the distance from
the parent sampler’s anchor point to the child sampler’s pivot position.

(a)
CENTER RIGHT Anchor

CENTER LEFT Pivot

(b)
CENTER RIGHT Anchor

BOTTOM LEFT Pivot

(c)
BOTTOM CENTER Anchor

CENTER CENTER Pivot

(d)
BOTTOM CENTER Anchor

TOP CENTER Pivot

Figure 16: Instantiations of a SAG that places a plant or floor lamp sampler Sc around a parented
arm chair sampler Sp with anchor and pivot position annotations. Notice that the placement from Sc

reacts to the size of the asset sampled from Sp. None of the examples have any offset.

The motivation for the relative positioning of asset samplers is to prevent the meshes from clipping
into each other. For instance, with the same SAG in Figure 15a, consider what would happen if
the dining table sampler samples a table that is double the size of the current table. Instead of the
chairs being stuck in a fixed global position, and effectively colliding with the new dining table, the
chairs will reactively move back, and be re-positioned to remain slightly tucked under the larger
table. Moreover, consider that the size of instances that are sampled from an asset sampler are often
quite different. For instance, one table might be square-ish, while another is elongated. If we only
used a CENTER CENTER pivot and an offset, one would not be able to reliably place asset samplers,
containing differently sized objects, directly beside each other without it resulting in clipping.

While setting anchoring and pivot positions solves many mesh clipping issues, some cases may still
arise. Figure 17 shows an example, where if our dining table sampler samples a short dining table, it

15

(a) Rejected (b) Accepted

Figure 17: Rejection sampling is used to make sure objects placed in SAGs do not collide. Left:
the chair collides with the dining table, and hence it is rejected; Right: none of the objects in the
instantiated SAG collide with each other, so the SAG is accepted as valid.

may clip into certain chairs. Such issues are rare in practice, but object clipping would lead to less
realistic and interactive houses. To solve the clipping issue, we use rejection sampling to resample
the assets of a SAG until none of the 3D meshes of the sampled assets are clipping.

In PROCTHOR-10K, we construct 18 SAGs, which can be instantiated with over 20 million unique
combinations of assets. These include semantic asset groups for chairs around tables, pillows on top
of beds, sofas and arm chairs looking at a television on top of a TV stand, faucets on top of sinks, and
a desk with a chair, amongst others.

B.8.3 Floor Object Placement

We start object placement by first placing objects on the floor of the house. Objects are independently
placed on a room-by-room basis, where we may first place objects in the bedroom and then place
objects in the bathroom, without either affecting each other.

For each room, we filter the objects down into only using objects that have a room weight rw > 0
in the given room type, and that have the annotation that they can be placed on the floor. Here, for
instance, a chair object may have the annotation that it can be placed on the floor, but a knife object
may not.

At this stage, we simplify rooms to just look at the top-down 2D bounding box that makes up the
room in the floor plan. We also simplify objects to just look at its top-down 2D bounding box, of
size (ow, oh). These simplifications make it easier to determine if an object will fit in the room,
specifically in a particular rectangle.

Figure 18 illustrates the iterative process of placing objects in the scene. First, the polygon forming
the area left to place an object is partitioned into rectangles. The rectangles come from drawing
a horizontal and vertical grid line at all corner points of the open polygon. Here, we can easily
obtain the largest rectangle remaining in the open room polygon. We sample rℓ ∼ Bernoulli(0.8) to
determine if the next object to be placed should be placed inside of the largest rectangle. Otherwise,
we randomly choose amongst all possible rectangles, weighted by the area of each rectangle.

Once we have the rectangle (rw, rh) where the object should be placed in, we filter our objects to only
those that would fit, both semantically and physically, in the rectangle. Semantically, we consider 3
scenarios: the rectangle being on the corner, edge, or middle of the room’s polygon.

If any of the rectangle’s corners is in a corner of the room, then we will place an object in that corner
of the room. If multiple of the rectangle’s corners are in a corner of the room, then we uniformly
sample a corner amongst one of those corners.

Now, we will filter down objects and asset groups to only consider:

16

Rectangularize the Floor Plan’s Open Space

Sample Inner Rectangle

Place Object in Inner Rectangle

Rectangularize the Floor Plan’s Open Space

Sample Inner Rectangle

Place Object in Inner Rectangle

Rectangularize the Floor Plan’s Open Space

Sample Inner Rectangle

Place Object in Inner Rectangle

Figure 18: Diagram detailing how floor objects are placed in a room. First, we rectangularize the
top-down view of the room’s open floor plan by drawing horizontal and vertical dividers from each
corner point. Then, we construct all possible rectangles that are formed within the dividers. We
then sample one of those rectangles and place the object within that rectangle. The sampled object’s
top-down bounding box (with margin) is shown in blue. The bounding box is then subtracted from
the open floor plan before repeating the process again.

1. Those that are annotated specifying that they can be placed in the corner of the room. For
example, we might annotate a fridge to be placed in the corner of the room, but we might not
annotate a SAG consisting of a dining table to be placed in the corner of the room.

2. The annotated split of the asset instance matches the current split of the generated house. See
Appendix B.8.1 which talks about asset splits to create train/val/test homes.

3. The top-down bounding box of the object (with margin) must fit within the chosen rectangle. For
a corner object, Figure 19b shows the 2 valid rotations that this object may take on. Specifically,
the back of the object may be against either wall. Then, we filter down remaining objects to
only use those where the object’s bounding box fits within the rectangle’s bounding box; that
is, (oh + wpad ≤ rw and ow + wpad ≤ rh) or (oh + wpad ≤ rh and ow + wpad ≤ rw). If both
conditions are valid, we uniformly choose one of the rotations of the object’s bounding box.
We add margin around objects to make sure it is always possible to navigate around them. Objects
to be placed in the middle of the room have mpad = 0.35 meters of margin on each side. Objects
on the edge or corner of the room have wpad = 0.5 meters of margin only in front of the object,
which enables objects to be placed directly beside it.

We sample an object or asset group that satisfies all of the previous conditions. If there are no objects
or asset groups that satisfy all conditions, we continue to the next iteration and remove the selected
rectangle from consideration. We slightly prioritize placing asset groups over standalone assets when

17

(a) Edge Rotations (b) Corner Rotations (c) Middle Rotations

Figure 19: Valid rotations of objects when placed on the edge, corner, and middle of the room.
Objects placed on the edge or corner of the room always have their backs to the wall. Objects in the
middle of the scene can be rotated in any direction. By constraining rotations of objects, we ensure
an object on the edge of the room, such as a fridge or drawer, can still be opened.

possible. Once we have chosen an object or asset group, the bounding box with margin is then
anchored to the corner of the rectangle, and hence to the corner of the room. We then subtract the
object’s bounding box, with margin, from the open polygon representing the space remaining in the
room before doing the same process again.

If the rectangle is along the edge, we sample redge ∼ Bernoulli(0.7) to determine if we should try
to place an object on the edge of the rectangle, or if we should try and place it in the middle. If the
rectangle is not along the edge or on the corner of the room, then we will always try to place an object
in the middle of it. We use a similar filtering process, as the one described with edge rectangles, to
filter down objects to those that only fit within the bounds of the rectangle. However, as depicted in
Figure 19a and Figure 19c, edge objects can only have their backs to the wall, and middle objects can
be rotated in any 90-degree rotation.

The iterative process of sampling a rectangle from the open polygon of the room, placing an object in
that rectangle, and subtracting the bounding box formed by the object in the rectangle, continues on
for ri, where ri is sampled from

ri ∼

1 p = 1/200

4 p = 2/200

5 p = 4/200

6 p = 20/200

7 p = 173/200

. (1)

Sampling ri allows us to infrequently have rooms in the house where there are very few objects,
which is sometimes the case in real-world homes. It should also be noted that there can be more than
ri objects on the floor of the scene if some objects in the scene are in SAGs.

By iteratively choosing the largest, or near largest, rectangle in the room’s open polygon, placing an
object in it, and subtracting the object’s bounding box with margin from the open room polygon, we
enable great coverage across the entirety of the room, and hence the entirety of the house.

B.8.4 Wall Object Placement

After placing objects on floors, we then place objects on walls. We currently place window, painting,
and television objects on the walls. Figure 20 shows some examples. Window and television objects
may appear in kitchen, living room, and bedroom room types. Paintings may appear in any room
type.

Windows. Window objects are the first objects we place on the walls of the house. We only consider
placing a window on walls that are connected to the outside of the house, such that we do not place a

18

Figure 20: Examples of objects placed on the wall of a house, including a window (left), painting
(middle), and television (right).

window between two indoor rooms. For each kitchen, living room, and bedroom in the house, we
sample

nw ∼

0 p = 0.125

1 p = 0.375

2 p = 0.5

(2)

maximum window objects to be placed.

For each wall in a given room, we look at the segment formed by each edge connecting 2 adjacent
corners. If there is a floor object placed along that edge (or corner) of the wall, we subtract it from the
segment. Here, the segment may break into different segments, where each segment is treated just
like the original one. If the length of any segment is smaller than the minimum window size in the
split, we remove the segment. We then use a uniform sample over the remaining segments, weighted
by their lengths, to determine where to place the window. If no segments are longer than the smallest
window, we move on to the next room in the house. A window smaller than the length of the segment
is then uniformly placed somewhere along the sampled segment. The window is vertically centered
along the wall between the floor and wmax = min(3, ch). All segments along the wall where the
window was placed are removed from future sampling calls, and we continue this process nw times.

Paintings. Painting objects are placed on the walls after window objects. They may be placed in
any room. The maximum number of painting objects that are attempted to be placed in each room is
sampled from

np ∼

0 p = 0.05

1 p = 0.1

2 p = 0.5

3 p = 0.25

4 p = 0.1

. (3)

The placement of painting objects is similar to the placement of window objects. However, multiple
painting objects may be placed along the same wall, so instead of removing the entire wall segment
after an object is placed on it, we subtract the width of the painting from the segment. Moreover, we
also allow painting objects to be placed above edge floor objects if the height of the edge object is
less than 1.15 meters. Here, this allows for a painting to be above an object like a counter top, but not
behind a taller object like a fridge.

The vertical position of each painting is sampled at oy ∼ wmin + (wmax − wmin) · Beta(12, 12),
where wmin is the maximum height of a floor object along the wall line. Here, we allow a painting
to be placed above an object along the wall of the room, such as placing it above a counter top.
Sampling from Beta(12, 12) allows for some randomness in the sampling process while still having a
large density near the center.

Televisions. Television wall objects may only be placed in living room, kitchen, and bedroom room
types. Only 1 wall television may be placed in each room. From our annotations, television objects
cannot be placed standalone on the floor. However, a television is often placed in a SAG, on top

19

0.3 0.2 0.1 0.0 0.1
House Bias

0

1

2

3

4

5

D
en

si
ty

House Bias Distribution

Figure 21: The house bias distribution bhouse that offsets the probability of attempting to spawn an
object in a receptacle.

of an object like a TV stand. So as to not place too many television objects in the same room, we
only filter by rooms that do not have a television object already in them. Amongst the remaining
rooms, if the room type is a living room, we sample Bernoulli(0.8) if we should try placing a wall
television in the room. For kitchen and bedroom room types, we sample from Bernoulli(0.25) and
Bernoulli(0.4), respectively. We only consider television objects that could be mounted to a wall (i.e.
they do not have a base that is sticking out of the object). Television wall objects sample from the
same vertical position distribution as painting objects, and follow the same placement on the walls as
painting objects.

B.8.5 Surface Object Placement

After placing objects on the floor and wall of the house, we focus on placing objects on the surface of
the floor objects just placed. For example, we may place objects like a coffee machine, plate, or knife
on of a receptacle like a counter top.

For each receptacle object, we approximate the probability that each object type appears on its surface.
We use the hand-modeled AI2-iTHOR or RoboTHOR rooms to obtain these approximations. Here,
we compute the total number of times each object type is on the receptacle type and divide it by the
total number of times the receptacle type appears across the scenes.

For each receptacle placed on the floor, we look at the probability of each object type pspawn that it has
been placed on that receptacle. We then iterate over the object types that may be on the receptacle. For
each object type, we try spawning it on the receptacle if Bernoulli(pspawn + bhouse + breceptacle + bobject),
where

• bhouse denotes the additional bias of how likely objects are to be spawned on receptacles in this
particular house. Each house samples

bhouse ∼ (bhouse-max − bhouse-min) · Beta(3.5, 1.9) + bhouse-min, (4)

where bhouse-min = −0.3 and bhouse-max = 0.1. Figure 21 shows the distribution that bhouse forms.
Using a house bias allows for some houses to be much cleaner or dirtier than others, whereas
cleaner houses would have more objects put away that are not on receptacles.

• breceptacle denotes the additional bias of how likely an object is to be spawned on a receptacle.
The default receptacle bias is 0.2, which is only overwritten by shelving unit (0.4 bias), counter
top (0.2 bias), arm chair (0 bias), and chair (0 bias). Receptacle biases were manually set based
on the empirical quality of the houses.

• bobject denotes the additional bias of how likely a particular object is to spawn in the scene. By
default, bobject is set to 0, and overwritten by house plant (0.25 bias), basketball (0.2 bias), spray
bottle (0.2 bias), pot (0.1 bias), pan (0.1 bias), bowl (0.05 bias), and baseball bat (0.1 bias).
Object biases were also manually set based on the empirical quality of the houses to ensure more
target objects appear in each of the procedurally generated houses.

20

(a) Examples of color randomization for a vase object. The original color is shown on the left. Notice that the
vase still looks realistic with many possible colors.

(b) Examples of material randomization in ProcTHOR. Notice that only the objects randomize in materials,
where the walls, floor, and ceiling remain the same.

Figure 22: Examples of color randomization and material randomization in ProcTHOR.

Note that pspawn + bhouse + breceptacle + bobject may be greater than 1, in which case we will always try
to spawn the object on the receptacle, or less than 0, where we will never try to spawn the object on
the receptacle.

To attempt to spawn an object of a given type on a receptacle, we will sample an instance of that object
type and randomly try npa = 5 poses of the object to try and fit the object instance on the receptacle.
If the object instance fits and does not collide with another object, we keep it there. Otherwise, we
try another pose of the object on the receptacle until we reach npa attempted poses. If none of the
attempted poses work, we continue on to the next object type that may be on the receptacle.

If the first object of a given type is placed successfully on a receptacle, we attempt to place nor ∼
min(smax,Geom(pspawn)− 1)− 1 more objects of that type given type on the receptacle. Here, smax

is set to 3, representing the maximum number of objects of a type that may be on a receptacle. We
ignore the biases to not have too many objects of a given type on the same receptacle.

B.9 Material and Color Randomization

Several object types may have their color randomized to a randomly sampled RGB value. Specifically,
for each vase, statue, or bottle in the scene, we independently sample from rc ∼ Bernoulli(0.8) to
determine if we should randomize the object’s color. These objects were chosen because they all still
looked natural as any solid color. Figure 22a shows some examples of randomizing the color of a
vase.

For each training episode, we sample from rm ∼ Bernoulli(0.8) to determine if we should randomize
the default object materials in the scene. Wall, ceiling, and floor materials are left untouched to
preserve wsolid and wsame sampling parameters. Materials are only randomized within semantically
similar classes, which ensures objects still look and behave like the class they represent. For instance,
an apple will not swap materials with an orange. Figure 22b shows some examples of randomizing
the materials in the scene.

B.10 Object States

We randomize object states to expose the agent to more diverse objects during training. For instance,
instead of always having an open laptop or a clean bed, we randomize the openness of each laptop and

21

(a) Openness state randomness example with a laptop.

(b) Clean state randomness example with a bed.

(c) On or off state randomness with a floor lamp.

Figure 23: Examples of object state randomness.

22

if each bed is clean or dirty. Figure 23 shows some examples. Our current set of state randomizations
include:

• Toggling objects. Floor lamp and desk lamp object types have their state toggled on or off.

• Cleaning or dirtying objects. Bed object types may appear as either clean or dirty.

• Opening or closing objects. Box and laptop object types may

toggling objects on or off (for floor lamp and desk lamp object types), setting objects to clean or dirty
(for bed object types), and openness randomizations (for box and laptop object types).

B.11 Validator

Once a house is generated, we use a validator to make sure that the agent can successfully navigate
to each room in the house, without modifying the scene through interaction (e.g. moving an object
out of the way). Specifically, we first make sure the agent can teleport to a location inside the house.
Then, from that position, we perform a BFS over neighboring positions on a 0.25× 0.25 meter grid
to obtain all reachable positions from the agent’s current position. The validator checks to make sure
that every room in the house has at least 5 reachable positions on the grid. If the validator fails, we
resample a new house using the same room spec, so as to not change the distribution of room specs
that we sample from.

B.12 Related Works

In this work, our goal is to generate diverse and semantically plausible houses. We also aimed to
make it easily extendable in the future, adapting to new object types or synthesizing new room types.
To this end, we tried to use the best approaches or build on existing works that are insufficient for our
use case. Given the modular nature of our house generation process, if a better algorithm exists at any
stage of the pipeline, we can easily update the generation process with that algorithm to generate
better houses.

Floorplan Generation. Floorplan generation involves taking a set of rooms to place in a house and
an interior boundary (i.e., a top-down outline of the home) and partitioning the interior boundary
into rooms. Floorplan generation is a longstanding problem, with many works generating floorplans
with procedural generation [61, 4, 88, 30, 65] and deep learning [73, 74, 42, 103]. Our Floorplan
generation algorithm is based on [61, 65], which generates a floorplan from a room specification,
connectivity constraints between rooms, and an interior boundary. [88] is similar to [61], except that
it tries to learn the approximate size of room types from data rather than manually specifying the
relative sizes of each room. [42] proposes a similar approach that tries to generate a floorplan based
on room preferences, room connectivity constraints, and an interior boundary, but it trains a network
on RPLAN [103] to solve these constraints. [73, 74, 103] train a network to generate floorplans, but
it does not support inputting any preferences about the number of rooms or the types of rooms in the
house. However, in contrast to [61], such work cannot generate arbitrary floorplans that are out of the
training distribution, which is problematic if one wanted to generate new types of rooms, such as
garages and stairways connecting to another floor [30], or generate massive multi-family floorplans.
We also sample an interior boundary for each new house to generate more diverse floorplans.

Object Placement. Object placement involves selecting which objects from a given object database
should appear in the house and arranging those objects in a plausible configuration within the rooms
of a home (e.g. chairs near tables, paintings on walls, toilets in bathrooms). We built a 3-stage
pipeline for placing objects, which (1) places objects on floors, (2) places objects on walls, and (3)
places objects on the surface of other objects. Our approach requires specifying remarkably few
constraints about how objects are placed in scenes, making it easily extendable to add new objects to
our object database and generate new room types.

Many works studying object placement [67, 37, 109, 107, 47, 99, 28, 10, 11, 41, 64] relied on
procedural generation. [67, 107, 47, 99] take a given set of objects and the outline of the room but
iteratively optimize over several functions to try and minimize the cost function. The cost function
determines how realistic the room is with respect to quantities such as how navigable it is and how far
an object is from a wall. [109] uses a similar object placement algorithm to ours based on hierarchical
relationships between objects. It tries to learn these relationships from 3D-Front [31], whereas we

23

specify constraints and SAGs for objects, such as which can be placed on walls and which objects may
appear near each other. In [28], the authors take examples of object arrangements and generate similar
ones using probabilistic models trained on 130 scenes. [37] introduces the idea of anchoring objects
in parent-child relationships. For instance, objects may be anchored to a wall or on top of a surface
such as a table. [10, 11, 41, 64, 8] take in text descriptions or graphs [62] of a furniture arrangement
as input and attempt to place objects based on that. However, this work requires manually prompting
the model for each new room one wants to generate, so it similarly does not scale well.

Some recent works have proposed using deep learning to place objects on the floors of rooms [96, 97,
79, 85, 110, 13, 31, 59, 78]. The main factors limiting our use of such models are that they: (1) cannot
be easily adapted to place novel objects and room types and (2) the lack of high-quality training
data of objects placed in 3D scenes. For training data, [96, 97, 85, 110, 59] uses SUNCG [92], a
dataset that has been taken down due to legal issues, and [79, 13, 31, 78] uses 3D-Front. However,
these approaches do not work with novel objects outside their training dataset and cannot generate
novel room types that are not seen during training. Thus, it is impractical to use such approaches
in ProcTHOR out of the box, as we have differing object databases. It is also impractical (and
undesirable) to reproduce such approaches with our object database since we do not have large
amounts of training data specifying examples of how our objects are placed in scenes. Here, even
if we had such annotations, it would not allow us to add new objects to our object database in the
future, as it would require manually collecting many new examples of where each is placed in scenes
to train such models properly. Finally, note that kitchens and bathrooms are not diversely furnished
in 3D-Front, so trying to learn object placement in such rooms is impractical.

The approach we use to place objects on surfaces is similar to that of [11, 37], where we calculate
the co-object occurrence prior to determine which objects to place on a surface. For example, when
looking at which objects to place on a dining table, then the co-object occurrence of a plate is
much higher than that of a baseball bat. [48] proposes a fascinating approach to learning co-object
occurrences using LLMs [22, 6, 108, 82]. It computes the probability of prompts such as “plate on
table” or “baseball bat on table” to compute the relative probabilities of such pairwise combinations.
In [28], they propose surface object placement by training probabilistic models that learn to cluster
similar objects together as a way to scale much better to new object types. For example, they might
input a cluttered desk with a chair, generating many new arrangements of a cluttered desk with new
objects on the surface. [98, 29] have done randomizations of objects on surfaces without any priors
about which objects should appear on a given surface.

We use semantic asset groups (SAGs) to place co-occurring objects next to each other. We define
SAGs in an interactive web environment from top-down images of groups of objects. SAGs are
most similar to object arrangements generated from Sketch2Scene [105], which takes an artistic
sketch of a scene as input and generates plausible object configurations from that sketch. However,
creating the sketches can be incredibly time-consuming, and sampling from them results in a leaky
abstraction. In [107, 47, 99], the authors try to place select objects near each other by optimizing a
pairwise distance constraint. Here, the cost function is set to minimize the distance between objects,
such as chairs and a table, until they are sufficiently close. The relationships between the objects
are manually defined at the object type level. SAGs are also similarly related to the idea of hyper
relations in [37]. Instead of using positional anchoring, it uses density-based clustering to attempt
to sample how objects are anchored around a parent object [86]. In addition, instead of manually
defining the hyper-relations, they attempt to extract them from 3D-Front.

B.13 Limitations and Future Work

ProcTHOR-10K only generates 1-floor houses. We plan to support multi-floor houses in ProcTHOR-
v2.0. This will allow us to capture a wider range of houses and provide better fine-tuning results. Ad-
ditionally, we plan to scale up our asset databases by leveraging many open-source 3D asset databases,
such as ABO [19], PartNet [69], ShapeNet [9], Google Scanned Objects [23], 3D-Future [32], and
CO3D [84], among others.

ProcTHOR opens up many avenues of future research in scene synthesis targeted at training embodied
agents. Along these lines, better leveraging real-world data as a prior, similar to what is done in
Meta-Sim [49], is a promising direction. Similarly, using curriculum learning [76, 72] to train agents
in environments that progressively get harder [1] may help train better and faster agents.

24

C PROCTHOR Datasheet

Motivation

For what purpose was the dataset
created?

The dataset was created to enable the training of simulated
embodied agents in substantially more diverse environments.

Who created and funded the
dataset?

This work was created and funded by the PRIOR team at
Allen Institute for AI. See the contributions section for spe-
cific details.

Composition

What do the instances that comprise
the dataset represent?

Each house is specified as a JSON file, which specifies how
to populate a 3D Unity scene in AI2-THOR.

How many instances are there in
total (of each type, if appropriate)?

There are 10K houses released in the dataset, along with
the code to sample substantially more. Section 4 shows the
distribution of houses in PROCTHOR-10K.

Does the dataset contain all possi-
ble instances or is it a sample (not
necessarily random) of instances
from a larger set?

We make 10K houses available, but more houses can easily
be sampled with the procedural generation scripts.

What data does each instance con-
sist of?

Each house is specified as a JSON file, which precisely de-
scribes how our AI2-THOR build should create the house.
The procedurally generated JSON files are typically several
thousand lines long.

Is there a label or target associated
with each instance?

No.

Is any information missing from in-
dividual instances?

No.

Are relationships between individ-
ual instances made explicit (e.g.,
users’ movie ratings, social net-
work links)?

Each house is generated independently, meaning there are no
relationships between the houses.

Are there recommended data splits? Yes. See Appendix B.8.1.

Are there any errors, sources
of noise, or redundancies in the
dataset?

No.

Is the dataset self-contained, or
does it link to or otherwise rely on
external resources (e.g., websites,
tweets, other datasets)?

The dataset is self-contained.

Does the dataset contain data that
might be considered confidential?

No.

Does the dataset contain data that,
if viewed directly, might be of-
fensive, insulting, threatening, or
might otherwise cause anxiety?

No.

Collection Process

25

How was the data associated with
each instance acquired?

Each house was procedurally generated. See Appendix A.

If the dataset is a sample from a
larger set, what was the sampling
strategy?

The dataset consists of 1 million houses sampled from the
procedural generation scripts.

Who was involved in the data col-
lection process?

The authors were the only people involved in constructing
the dataset.

Over what timeframe was the data
collected?

Data was collected between the end of 2021 and the begin-
ning of 2022.

Were any ethical review processes
conducted?

No.

Preprocessing/Cleaning/Labeling

Was any preprocess-
ing/cleaning/labeling of the
data done?

Section B.8 describes the labeling that was done to make the
assets spawn in realistic places.

We have also gone through every asset in the asset database
to make sure the pivots for each asset are facing a consistent
direction.

Was the “raw” data saved
in addition to the prepro-
cessed/cleaned/labeled data?

There is no raw data associated with the house JSON files.

Is the software that was used to pre-
process/clean/label the data avail-
able?

The code to generate the houses is made available.

Uses

Has the dataset been used for any
tasks already?

Yes. See the Experiments section of the paper.

26

What (other) tasks could the dataset
be used for?

The houses can be used in a wide variety of interactive tasks
in embodied AI and computer vision.

Any task that can be performed in AI2-THOR can
be performed in ProcTHOR. For instance, in em-
bodied AI, the houses may be used for navigation
[51, 80, 101, 112, 100, 106, 63, 111], multi-agent in-
teraction [44, 45, 1], rearrangement and interaction
[98, 33, 35, 16, 93], manipulation [25, 75, 24, 104],
Sim2Real transfer [20, 46, 58], embodied vision-and-
language [91, 77, 43, 57, 38, 50], audio-visual navigation
[15, 34, 14], and virtual reality interaction [102, 70, 40],
among others.

In the broader field of computer vision, the dataset may be
used to study object detection [56]; NeRFs [68, 95, 39, 60];
segmentation, depth, and optimal flow estimation [27, 39];
generative modeling [52, 55, 54]; occlusion reasoning [26];
and pose estimation [12], among others.

Our framework for loading in procedurally generated houses
from a JSON spec also enables the study of scene clut-
ter generation, building more realistic procedurally gener-
ated homes, and the development of synthetically generated
spaces to train embodied agents in factories [71], offices,
grocery stores [66], and full procedurally generated cities.

Is there anything about the com-
position of the dataset or the
way it was collected and prepro-
cessed/cleaned/labeled that might
impact future uses?

No.

Are there tasks for which the
dataset should not be used?

Our dataset may be used for both commercial and non-
commercial purposes.

Distribution

Will the dataset be distributed to
third parties outside of the entity
on behalf of which the dataset was
created?

Yes. We plan to make the entirety of the work open-source,
including the code used to generate and load houses, the
initial static dataset of 1 million procedurally generated house
JSON files, and the asset and material databases.

How will the dataset be distributed? The static house JSON files will be distributed with the
PRIOR Python package [21].

The code, asset, and material databases will be distributed on
GitHub.

Will the dataset be distributed un-
der a copyright or other intellectual
property (IP) license, and/or under
applicable terms of use (ToU)?

The house dataset, 3D asset database, and generation code
will be released under the Apache 2.0 license.

Have any third parties imposed IP-
based or other restrictions on the
data associated with the instances?

No.

Do any export controls or other
regulatory restrictions apply to the
dataset or to individual instances?

No.

Maintenance

27

Who will be support-
ing/hosting/maintaining the
dataset?

The authors will be providing support, hosting, and maintain-
ing the dataset.

How can the
owner/curator/manager of the
dataset be contacted?

For inquiries, email <mattd@allenai.org>.

Is there an erratum? We will use GitHub issues to track issues with the dataset.

Will the dataset be updated? We expect to continue adding support for new features to
continue to make procedurally generated houses even more
diverse and realistic. We also intend to support new tasks in
the future.

If the dataset relates to people, are
there applicable limits on the reten-
tion of the data associated with the
instances (e.g., were the individu-
als in question told that their data
would be retained for a fixed period
of time and then deleted)?

The dataset does not relate to people.

Will older versions of the
dataset continue to be sup-
ported/hosted/maintained?

Yes. Revision history will be available for older versions of
the dataset.

If others want to ex-
tend/augment/build on/contribute
to the dataset, is there a mechanism
for them to do so?

Yes. The work will be open-sourced and we intend to provide
support to help others use and build upon the dataset.

Table 1: A datasheet [36] for PROCTHOR and PROCTHOR-10K.

28

D ARCHITECTHOR

Figure 24: Top-down images of the 5 custom-built interactive validation houses in ARCHITECTHOR.
The goal of these houses is to evaluate interactive agents in more realistic and larger home environ-
ments.

29

D.1 Datasheet

Motivation

For what purpose was the dataset
created?

ARCHITECTHOR was created to enable the evaluation of
embodied agents in large, realistic, and interactive household
environments.

Who created and funded the
dataset?

This work was created and funded by the PRIOR team at
Allen Institute for AI. See the contributions section for spe-
cific details.

Composition

What do the instances that comprise
the dataset represent?

Instances of the dataset comprise interactive 3D houses that
were built in Unity and can be used with our custom build of
the AI2-THOR API.

How many instances are there in
total (of each type, if appropriate)?

There are 10 total houses, comprising 5 validation houses
and 5 testing houses.

Does the dataset contain all possi-
ble instances or is it a sample (not
necessarily random) of instances
from a larger set?

The dataset is self-contained.

What data does each instance con-
sist of?

Each instance of a house is a Unity scene, which includes
data such as the placement of objects, lighting, and texturing.

Is there a label or target associated
with each instance?

No.

Is any information missing from in-
dividual instances?

No.

Are relationships between individ-
ual instances made explicit (e.g.,
users’ movie ratings, social net-
work links)?

Each house was independently created.

Are there recommended data splits? Yes. The houses themselves are partitioned as 5 validation
houses and 5 testing houses. The assets placed in the house
follow the same train/val/test splits used in PROCTHOR-
10K.

Are there any errors, sources
of noise, or redundancies in the
dataset?

No.

Is the dataset self-contained, or
does it link to or otherwise rely on
external resources (e.g., websites,
tweets, other datasets)?

The dataset is self-contained.

Does the dataset contain data that
might be considered confidential?

No.

Does the dataset contain data that,
if viewed directly, might be of-
fensive, insulting, threatening, or
might otherwise cause anxiety?

No.

Collection Process

30

How was the data associated with
each instance acquired?

Each house was professionally hand-modeled by 3D
artists. Most objects placed in the hosues come from the
PROCTHOR asset database. However, countertops, show-
ers, and many cabinets were custom built.

If the dataset is a sample from a
larger set, what was the sampling
strategy?

The dataset consists of 1 million houses sampled from the
procedural generation scripts.

Over what timeframe was the data
collected?

The houses were built towards the beginning of 2022.

Were any ethical review processes
conducted?

No.

Preprocessing/Cleaning/Labeling

Was any preprocess-
ing/cleaning/labeling of the
data done?

No.

Was the “raw” data saved
in addition to the prepro-
cessed/cleaned/labeled data?

There is no raw data associated with the ARCHITECTHOR
houses.

Is the software that was used to pre-
process/clean/label the data avail-
able?

Yes. We will open-source the ARCHITECTHOR houses and
they can be opened and viewed in Unity.

Uses

Has the dataset been used for any
tasks already?

Yes. Please see the Experiments section of the paper.

What (other) tasks could the dataset
be used for?

The tasks can be used for any type of navigation and
interaction tasks in embodied AI. The houses are built into
our build of AI2-THOR, meaning ARCHITECTHOR can
work with any task that can be performed in AI2-THOR.

We especially think ARCHITECTHOR will be useful as an
evaluation suite for evaluating different sets of PROCTHOR
tasks and evaluating agents trained on different sets of proce-
durally generated houses.

Is there anything about the com-
position of the dataset or the
way it was collected and prepro-
cessed/cleaned/labeled that might
impact future uses?

No.

Are there tasks for which the
dataset should not be used?

Our dataset may be used for both commercial and non-
commercial purposes.

Distribution

Will the dataset be distributed to
third parties outside of the entity
on behalf of which the dataset was
created?

Yes. All houses in ARCHITECTHOR will be released to the
open-source community and available through our build of
the AI2-THOR Python API.

How will the dataset be distributed? The houses will be distributed on GitHub and available to
open as Unity scenes.

31

Will the dataset be distributed un-
der a copyright or other intellectual
property (IP) license, and/or under
applicable terms of use (ToU)?

ARCHITECTHOR will be released under the Apache 2.0
license.

Have any third parties imposed IP-
based or other restrictions on the
data associated with the instances?

No.

Do any export controls or other
regulatory restrictions apply to the
dataset or to individual instances?

No.

Maintenance

Who will be support-
ing/hosting/maintaining the
dataset?

The authors will be providing support, hosting, and maintain-
ing the dataset.

Is there an erratum? We will use GitHub issues to track issues with the dataset
once it is published.

Will the dataset be updated? ARCHITECTHOR is currently in maintenance mode and
we do not expect it to update much from its current state.
However, we plan to actively support future AI2-THOR
functionalities in ARCHITECTHOR, such as support for new
robots, more advanced interaction capabilities, and bug fixes.

If the dataset relates to people, are
there applicable limits on the reten-
tion of the data associated with the
instances (e.g., were the individu-
als in question told that their data
would be retained for a fixed period
of time and then deleted)?

The dataset does not relate to people.

Will older versions of the
dataset continue to be sup-
ported/hosted/maintained?

Yes. Revision history will be available in the GitHub reposi-
tory.

If others want to ex-
tend/augment/build on/contribute
to the dataset, is there a mechanism
for them to do so?

Yes. The work will be open-sourced and we intend to provide
support to help others use and build upon the dataset.

Table 2: A datasheet [36] for the artist-designed ARCHITECTHOR houses.

D.2 Analysis

ARCHITECTHOR consists of 10 remarkably high-quality large interactive 3D houses. Figure 24
shows top-down images of the 5 validation houses. Figure 25 shows some examples of images taken
inside of 2 kitchens and a bedroom from ARCHITECTHOR validation.

ARCHITECTHOR was built to be much larger than AI2-iTHOR and RoboTHOR. Figure 26 shows
the size comparisons between comparable hand-built scene datasets in AI2-iTHOR and RoboTHOR,
measured in navigable area. Notice that the navigable area in ARCHITECTHOR is substantially
larger than in those. The figure also shows the navigable areas in PROCTHOR-10K span the spectrum
of navigable areas between AI2-iTHOR, RoboTHOR, and ARCHITECTHOR.

In total, the creation of the 10 houses in ARCHITECTHOR took approximately 320 hours of cumu-
lative work by professional 3D artists. Figure 27 shows the time breakdown of which parts of the
process took the longest. In particular, the creation of custom assets for the kitchen, such as modeling
each of the countertops and cabinets, took the longest amount of time, followed by modeling the 3D
structure of house.

32

Figure 25: Examples of images inside of 2 hand-modeled kitchens and 1 hand-modeled bathroom
from ARCHITECTHOR validation.

ArchitecTHOR AI2-iTHOR RoboTHOR ProcTHOR-10K
0

20

40

60

80

Ar
ea

 (m
2)

Navigable Area of Scene Datasets

Figure 26: Box plots of the navigable areas for ARCHITECTHOR compared to AI2-iTHOR,
RoboTHOR, and PROCTHOR-10K. Validation scenes were used to calculate the data for
ARCHITECTHOR, and training scenes were used to calculate the data for AI2-iTHOR, RoboTHOR,
and PROCTHOR-10K.

0 20 40 60 80 100 120
Time (hours)

Lighting
Populating Objects

Creating Bathroom Assets
Texturing

Unity Setup
Modeling the House

Creating Kitchen Assets
Time Breakdown of Building ArchitecTHOR

Figure 27: Cumulative time breakdown of the development of ARCHITECTHOR across 3D artists.

33

E Input Modalities

Figure 28: Examples of image-based modalities available in ProcTHOR include RGB (top left), depth
(top right), instance segmentation (middle left), semantic segmentation (middle right), bounding box
annotations (bottom left), and surface normals (bottom right). More image modalities can be added
by modifying the Unity backend.

34

F Experiment details

This section discusses the training details used for our experiments. We discuss baselines,
PROCTHOR pre-training, and environment-specific fine-tuning details for the tasks of ObjectNav,
ArmPointNav, and rearrangement.

F.1 ObjectNav experiments

For ObjectNav experiments, agents are given a target object type (e.g. a bed) and are tasked with
finding a path in the environment that navigates to that target object type. The task setup matches
what is commonly used in embodied AI [20, 5, 51, 83], although we only utilize forward-facing
egocentric RGB images at each time step. All ObjectNav experiments are trained with a simulated
LoCoBot (Low Cost Robot) agent [7]. The task and training details are described below.

Evaluation. Following [3], an ObjectNav task is considered successful if all of the following
conditions are met:

1. The agent terminates the episode by issuing the DONE action.

2. The target object type is within a distance of 1 meter from the agent’s camera.

3. The object is visible in the final frame from the agent’s camera. For instance, if (1) and (2) are
satisfied, and the agent is looking in the direction of the object, but the target object is occluded
behind a wall, then the task is unsuccessful. Similarly, if the target object type is located in the
opposite direction of where the agent is looking, then the task will be unsuccessful.

We also use SPL to evaluate the efficiency of the agent’s trajectory to the target object. SPL is defined
and discussed in [3, 5]. A house may have multiple instances of objects for a given type that the agent
can successfully reach. For instance, a house may have multiple bedrooms, where each bedroom
includes a bed. Here, if the agent navigates to any of the beds, the episode is successful. To calculate
SPL in these scenarios, the shortest path length for the task is the minimum shortest path length from
the starting position of the agent to any of the reachable target objects of the given type, regardless of
which instance the agent navigates towards.

Actions. For each of the trained models, we use a discrete action space consisting of 6 actions,
which is shown in Table 3. Following common practice [20, 46], we use stochastic actuation to better
simulate noise in the real world.

Action Description
MOVEAHEAD Attempts to move the agent forward by δm ∼ N (µ = 0.25, σ = 0.01)

meters from its current facing direction. If moving the agent forward
by δm meters results in a collision in the scene (e.g. there is a wall
directly in-front of the agent within δm meters), the action fails and the
agent’s position remains unchanged.

ROTATERIGHT
ROTATELEFT

Rotates the agent rightwards or leftwards from its current forward
facing direction by δr ∼ N (µ = 30, σ = 0.5) degrees.

LOOKUP
LOOKDOWN

Tilts the agent’s camera up or down by 30 degrees.

DONE A signal from the agent to terminate the episode and evaluate the
trajectory from its current state. Discussed in [3].

Table 3: The action space for ObjectNav experiments.

Model. We use the relatively simple EmbCLIP [51] training setup for training all ObjectNav
experiments. Table 4 shows the hyperparameters used during training, which are adapted from [51].

35

Except for the “ProcTHOR+Large” model trained for HM3D (described below), we otherwise use
the same model architecture across ObjectNav experiments. Namely, at each time step, the agent
receives a 3 × 224 × 224 egocentric RGB image from its camera. The image is processed with a
frozen RN50 CLIP-ResNet visual encoder [81] to produce a 2048 × 7 × 7 visual embedding, Vt.
The embedding is compressed through a 2-layer CNN (going from 2048 to 128 to 32 channels) with
1× 1 convolutions [94] to obtain a 32× 7× 7 tensor, V′

t.

The target object type is represented as an integer in {0, 1, . . . , T}, where T is the number of target
object types used during training. We use an embedding of t to obtain a 32-dimensional vector. The
vector is resized to be a 32× 1× 1 tensor. The tensor is then expanded to be of size 32× 7× 7, to
form our goal target object type embedding Gt, where the 32× 1× 1 tensor is copied 7× 7 times.

We concatenate V′
t and Gt to form a 64× 7× 7 tensor, which is compressed with a 2-layer CNN

to form a 32 × 7 × 7 tensor, Zt. The tensor Z is flattened to form a 1568 dimensional vector, zt.
Following [75], we use an embedding of the previous action, represented as an integer in {0, 1, . . . , 5},
to obtain a 6 dimensional vector at−1. We concatenate zt and at−1 to form a 1574 dimensional
vector xt. The vector xt is passed through a 1-layer GRU [17, 18] with a hidden belief state bt−1, of
size 512, to obtain bt.

Using an actor-critic formulation, the 512-dimensional belief state bt is passed through a 1-linear
layer, representing the actor, to get a 6-dimensional vector, where each entry represents an action.
The 6-dimensional vector is passed through a softmax function to obtain the agent’s policy π (i.e. the
probability distribution over the action space). We sample from π to choose the next action. We also
pass the belief state bt through a separate 1-linear layer, representing the critic to obtain the scalar v,
estimating the value of the current state.

The “ProcTHOR+Large” is similar to the above except we: (1) use the larger RN50x16 CLIP-ResNet
model, (2) use a 1024-dimensional hidden belief state in our GRU, and (3) input images to the model
at a 512×384 resolution.

Hyperparameter Value
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Value loss coefficient 0.5
Entropy loss coefficient 0.01
Clip parameter (ϵ) 0.1
Rollout timesteps 20
Rollouts per minibatch 1
Learning rate 3e-4
Optimizer Adam [53]
Gradient clip norm 0.5

Table 4: Training hyperparameters for ObjectNav experiments.

Training. Each agent is trained using DD-PPO [90, 100], using a clip parameter ϵ = 0.1, an
entropy loss coefficient of 0.01, and a value loss coefficient of 0.5. Agents are trained to maximize
the cumulative discounted rewards

∑H
t=0 γ

t · rt, where we set the discount factor γ to 0.99 and the
episode’s horizon H to 500 steps. We also employ GAE [89] parameterized by λ = 0.95.

Reward. The reward function follows that of [51]. Specifically, at each time step, it is calculated as
rt = max(0,min∆0:t−1 −∆t) + st − ρ, where:

• min∆0:t−1 is the minimum L2 distance from the agent to any of the reachable instances of the
target object type that the agent has observed over steps {0, 1, . . . , t− 1}.

• ∆t is the current L2 distance from the agent to the nearest reachable instance of the target object
type.

• st is the reward for successfully completing the episode. If the agent takes the DONE action and
the episode is deemed successful, then st is 10. Otherwise, it is 0.

36

• ρ is the step penalty that encourages the agent to finish the episode quickly. It is set to 0.01.

ProcTHOR pre-training. We pre-train our ObjectNav agents on the full set of 10k training houses
in PROCTHOR-10K.1 We pre-train with all T = 16 target object types, which are shown in Table 5.
The agent is trained for 423 million steps, although by 200 million steps, the agent has reached 90%
of its peak performance. We used multi-node training to train on 3 AWS g4dn.12xlarge machines,
which takes approximately 5 days to complete.

Object Type RoboTHOR HM3D-Semantics AI2-iTHOR ARCHITECTHOR

Alarm Clock
Apple
Baseball Bat
Basketball
Bed
Bowl
Chair
Garbage Can
House Plant
Laptop
Mug
Sofa
Spray Bottle
Television
Toilet
Vase

Table 5: The target objects that are used for each ObjectNav task.

Sampling target object types. To sample the target object type for a given episode, we restrict ourselves
to only sampling target object types that have a possibility of leading to a successful episode. For
instance, even if there is an object like an apple in the scene, it might be located in the fridge, and so
if it was used as a target object, the agent would never succeed because the object would never appear
visible in the frame (without any manipulation actions). Therefore, we impose a constraint that the
target object must be visible without any form of manipulation.

For each house, we use an approximation to determine the set of target object instances that the agent
can successfully reach, without any manipulation. Specifically, we start by teleporting the agent into
the house, and then perform a BFS over a 0.25× 0.25 meter grid to obtain the reachable positions in
the scene. A position is considered reachable if teleporting to it would not cause any collisions with
any other objects, and the agent is successfully placed on the floor. Then, for each candidate instance
of every target object type, we look at the nearest 6 reachable agent positions ⟨x(a), z(a)⟩ to the
candidate object instance’s center position. For each reachable agent position, we perform a raycast
from the agent’s camera height y(a) to up to 6 random visibility points on the object ⟨x(o), y(o), z(o)⟩.
Each object is annotated with visibility points, which are used as a fast approximation to determine if
an object is visible with just using a few raycasts, instead of using full segmentation masks. If any
of the raycasts from the agent’s reachable position to the object’s visibility point do not have any
collisions with other objects (e.g. the raycast does not collide with the outside of the fridge), and
the L2 distance between ⟨x(o), y(o), z(o)⟩ and ⟨x(a), y(a), z(a)⟩ is less than 1 meter, then the object
instance is considered successfully reachable by the agent.

To choose a target object type, we use an ϵ-greedy sampling method. Specifically, with a probability
of ϵ = 0.2, we randomly sample a target object type that has at least 1 reachable object instance in a

1When training the “ProcTHOR+Large” model used in the HM3D challenge, we use a modified set of 10K
houses, see below for details.

37

given house. With a probability of 1− ϵ, the target object type is the target object type that has been
most infrequently sampled in the training process. Since some objects appear much more frequently
than others (e.g. beds appear in many more houses than baseball bats), sampling based on the least
commonly sampled target object types allows us to maintain a more uniform distribution of sampled
target object types.

RoboTHOR. RoboTHOR is evaluated in both a 0-shot and fine-tuned setting. For 0-shot, we
take the pre-trained model on PROCTHOR-10K and run it on the RoboTHOR evaluation tasks. For
fine-tuning, we reduce T to the 12 RoboTHOR target object types, shown in Table 5 and train on the
60 provided training scenes. We fine-tune for 29 million steps, before validation performance starts
to go down, on a machine with 8 NVIDIA Quadro RTX 8000 GPUs. Fine-tuning took about 7 hours
to complete.

HM3D-Semantics. We evaluate on HM3D-Semantics in both a 0-shot and fine-tuned setting using
the “ProcTHOR” and “ProcTHOR+Large” architectures described above, these two architectures
have slightly different pretraining strategies.

“ProcTHOR” model. For 0-shot, we take the pre-trained model on PROCTHOR-10K, and run it on
the HM3D-Semantics evaluation tasks. For fine-tuning, we reduce T to the 6 target object types used
in HM3D-Semantics (see Table 5) and train on the 80 provided training houses. We use an early
checkpoint from PROCTHOR pre-training, specifically from after 220 million steps. We performed
fine-tuning on a machine with 8 NVIDIA RTX A6000 GPUs for approximately 220M steps, which
took about 43 hours to complete.

“ProcTHOR+Large” model. We pre-train this model using PROCTHORLARGE-10K a variant of
PROCTHOR-10K with houses sampled to better align to the distribution of houses in HM3D. In
particular, PROCTHORLARGE-10K contains 10K procedurally generated houses each of which
contains between 4 and 10 rooms (houses in PROCTHORLARGE-10K thus tend to be much larger
than houses in PROCTHOR-10K). Moreover, during pretraining we only train our agent to navigate
to the 6 object categories used in HM3D-Semantics. Fine-tuning is done identically as above. We use
an early checkpoint from PROCTHOR pre-training, specifically from after 125 million steps. We
performed fine-tuning on a machine with 8 NVIDIA RTX A6000 GPUs for approximately 185M
steps taking 85 hours to complete.

AI2-iTHOR. Similar to RoboTHOR and HM3D-Semantics, we use AI2-iTHOR for both 0-shot
and fine-tuning. For 0-shot, we take the pre-trained model on PROCTHOR-10K, and run it on the
AI2-iTHOR evaluation tasks. Since the AI2-iTHOR evaluation tasks use the full set of target objects
used during PROCTHOR pre-training, we do not need to update T . For fine-tuning, we use a machine
with 8 TITAN V GPUs. We fine-tune for approximately 2 million steps before validation performance
starts to go down, which takes about 1.5 hours to complete.

ArchitecTHOR. Since ARCHITECTHOR does not include any training scenes, we only use it for
evaluation of the PROCTHOR pre-trained model. As shown in Table 5, ARCHITECTHOR evaluation
uses the full-set of target object types that are used during PROCTHOR pre-training.

F.2 ArmPointNav experiments

In ArmPointNav, we followed the same architecture as [25]. The task is to move a target object from
a starting location to a goal location using the relative location of the target in the agent’s coordinate
frame. The visual input is encoded using 3 convolutional layers followed by a linear layer to obtain
a 512 feature vector. The 3D relative coordinates, specifying the targets, are embedded using three
linear layers to a 512 embedding which combined with the visual encoding is input to the GRU. The
agent is allowed to take up to 200 steps or the episode will automatically fail.

ProcTHOR pre-training. We pre-train our model on a subset of 7000 houses, on 58 object
categories. For each episode, we move the agent to a random location, randomly choose an object
in the room that is pickupable, and randomly select a target location. We train our model for 100M
frames, running on 4 AWS g4dn.12xlarge machines. Running on a total of 16 GPUs and 192 CPU
cores took 3 days of training. Table 6 shows the hyperparameters used for pre-training.

38

Hyperparameter Value
Learning rate 3e-4
Gradient steps 128
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Gradient clip norm 0.5
Rotation Degrees 45
Step penalty -0.01
Number of RNN Layers 1
Rollouts per minibatch 1
Optimizer Adam [53]

Table 6: Training hyperparameters for ArmPointNav experiments.

AI2-iTHOR evaluation. We evaluate our model on 20 test rooms of AI2-THOR (5 kitchens, 5
living rooms, 5 bedrooms, 5 bathrooms), on a subset of 28 object categories for a total of 528 tasks.
We attempted to perform fine-tuning on AI2-iTHOR, but none of the fine-tuning models performed
better than the zero-shot model trained with PROCTHOR pre-training.

F.3 Rearrangement experiments

Following [98, 51], we use imitation learning (IL) to train all models for the 1-phase modality of the
task. We divide the full training of the final model into two stages: pre-training in PROCTHOR and
fine-tuning in AI2-iTHOR.

Hyperparameter Value
Rollout timesteps 64
Batch size 7,680
Learning rate 7.4 · 10−4

Optimizer Adam [53]
Gradient clip norm 0.5
BCtf=1 steps 200,000
DAgger steps 2,000,000

Table 7: ProcTHOR pre-training hyperparameters for Rearrange experiments.

ProcTHOR pre-training. We pre-train our model on a subset of 2,500 one and two-room
PROCTHOR-10K houses where a number of 1 to 5 objects are shuffled from their target poses
in each episode, including two shuffle modalities: different openness degree (at most one object in an
episode) and a different location (up to five objects in an episode). For each house, 20 episodes are
sampled such that all shuffled objects are in the same room where the agent is initially spawned. We
train with 2 · 105 steps of teacher forcing and 2 million steps of dataset aggregation [87], followed by
about 180 million steps of behavior cloning. We use a small set of 200 episodes sampled from 20
validation houses unseen during training to select a checkpoint to evaluate every 5 million steps.

Running on 6 AWS g4dn.12xlarge (totaling 24 GPUs and 288 virtual CPU cores), pre-training with
240 parallel simulations took 4 days. Table 7 shows the hyperparameters used during pre-training.

AI2-iTHOR fine-tuning. We use the training dataset provided by [2] (4,000 episodes over 80
single-room scenes), and a small subset of 200 episodes from the also provided full validation set to
perform model selection. We fine-tune for 3 million steps with 64-step long rollouts, 6 additional
million steps with 96-step long rollouts, and another 6 million steps with 128-step long rollouts.

Running on 8 Titan X GPUs and 56 virtual CPU cores, fine-tuning with 40 parallel simulations took
16 hours.

39

Navigation FPS Isolated Interaction FPS Environment Query FPS

Compute AI2-iTHOR RoboTHOR AI2-iTHOR RoboTHOR AI2-iTHOR RoboTHOR

8 GPUs 5,779±189 9,195±294 5,411±190 6,331±137 463,446±18,577 412,550±21,806
1 GPU 1,316±19 1,648±11 1,451±72 1,539±5 169,092±4,232 163,660±3,336
1 Process 180±9 340±26 141±2 217±1 15,584±156 15,578±164

PROCTHOR-S PROCTHOR-L PROCTHOR-S PROCTHOR-L PROCTHOR-S PROCTHOR-L

8 GPUs 8,599±359 3,208±127 6,488±250 2,861±107 480,205±19,684 433,587±18,729
1 GPU 1,427±74 6,280±40 1,265±71 597±37 160,622±2,846 157,567±2,689
1 Process 240±69 115±19 180±42 93±15 14,825±199 14,916±186

Table 8: Comparing performance benchmarks in PROCTHOR to baselines in AI2-iTHOR and
RoboTHOR. FPS for navigation, interaction, and querying the environment for data. PROCTHOR-S
and PROCTHOR-L denotes small and large PROCTHOR houses, respectively.

G Performance Benchmark

To calculate the FPS performance benchmark shown in the Analysis section, we partitioned houses
into small houses (1-3 room houses) and large houses (7-10 room houses). For the navigation
benchmark, we perform move and rotate actions. For the interaction benchmark, we performing a
pushing object action. For querying the environment for data, we obtain a piece of metadata from the
environment that is not commonly provided at each time step (e.g. checking the dimensions of the
agent). At each time step, we render a single 3× 224× 224 RGB image from the agent’s egocentric
perspective. Experiments were conducted on a server with 8 NVIDIA Quadro RTX 8000 GPUs. We
employ 15 processes for the single GPU tests and 120 processes for the 8 GPU tests, evenly divided
across the GPUs. Table 8 shows the comparisons to AI2-iTHOR and RoboTHOR.

H Robustness

We ran ProcTHOR ObjectNav pre-training with 5 different random seeds for 100M steps and found
that the variance across seeds is quite small. This measurement was performed for our 0-shot results
on a set of 1000 ObjectNav tasks divided evenly between unseen ProcTHOR validation homes,
ArchitecTHOR validation scenes, AI2-iTHOR validation scenes, and RoboTHOR validation scenes.
Here, we obtained similar performance across all run which had a train success of 67.87%± 2.89%
and a val success of 45.3%± 1.2%.

I Broader Impact

This work focuses on increasing the generalization abilities of robotic agents on various tasks.
We specifically focus on robots that operate in household environments. More capable robotic
agents can help improve the lives of many by assisting with cooking, cleaning, and providing social
interaction. Furthermore, robots can provide a wide range of health benefits. For example, they could
give domestic assistance to individuals with physical and mental disabilities and the elderly. They
could provide social and emotional support to children, adolescents, and adults, such as delivering
personalized educational content, reducing loneliness, and counseling in times of crisis. We can also
use home-assisted robots to monitor and provide feedback on people’s physical activity, sleep, and
diet.

However, the adoption of home-assisted robots could have several undesirable social consequences.
One is that home-assisted social robots may lead individuals to become more dependant on robots for
companionship and care, leading to increased social isolation and loneliness. Another concern is that
they may exacerbate existing inequities, as those who can afford to buy and maintain robots will have
access to care and assistance that those who cannot will not. Furthermore, because robots would have
access to sensitive information about people’s daily lives, they could threaten privacy and security.
Finally, robots have the potential to be exploited for malicious intent, such as for mass surveillance or
being used for autonomous warfare. As a community, we need to work to reduce the risks of social
robots while maximizing the benefits for the common good.

40

J Contributions

Matt Deitke designed and implemented the procedure to generate houses, implemented ObjectNav
pre-training experiments and fine-tuning experiments, built the website, advised and implemented
parts of the Unity backend, built the platform to visualize assets and create semantic asset groups,
contributed to visuals, and wrote the paper.

Eli VanderBilt standardized AI2-THOR’s asset and material database to make it usable with
PROCTHOR, led the development of ARCHITECTHOR, implemented parts of the Unity backend,
created new 3D assets and skyboxes, advised on lighting the houses, and contributed to visuals.

Alvaro Herrasti led the Unity backend development that creates a house from a JSON specification.

Luca Weihs advised the work on experiments, assisted with rearragement experiments, implemented
ObjectNav fine-tuning on HM3D-Semantics, and wrote parts of the paper.

Jordi Salvador implemented rearrangement experiments, advised on multi-node training experiments,
and wrote parts of the paper.

Kiana Ehsani implemented ArmPointNav experiments and wrote parts of the paper.

Winson Han implemented parts of ARCHITECTHOR, implemented parts of the Unity backend, and
contributed to visuals.

Eric Kolve advised on the Unity backend development.

Ali Farhadi advised on the research direction.

Aniruddha Kembhavi advised on research direction, the ARCHITECTHOR development, and the
house generation process and wrote the paper.

Roozbeh Mottaghi advised on the research direction, the Unity backend, the ARCHITECTHOR
development, and the house generation process and wrote the paper.

References
[1] Adam, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob Bauer, Jakub Sygnowski, Maja Trebacz, Max

Jaderberg, Michael Mathieu, Nat McAleese, Nathalie Bradley-Schmieg, Nathaniel Wong, Nicolas Porcel,
Roberta Raileanu, Steph Hughes-Fitt, Valentin Dalibard, and Wojciech Marian Czarnecki. Open-ended
learning leads to generally capable agents. arXiv, 2021. 24, 27

[2] Allen Institute for AI. Rearrangement Challenge 2022. https://leaderboard.allenai.org/ithor_
rearrangement_1phase_2022. 39

[3] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen
Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, and Amir Roshan Zamir. On
evaluation of embodied navigation agents. arXiv, 2018. 35

[4] Scott A Arvin and Donald H House. Modeling architectural design objectives in physically based space
planning. Automation in Construction, 11(2):213–225, 2002. 23

[5] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets, Roozbeh Mottaghi, Manolis
Savva, Alexander Toshev, and Erik Wijmans. Objectnav revisited: On evaluation of embodied agents
navigating to objects. arXiv, 2020. 35

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In NeurIPS, 2020. 24

[7] Carnegie Mellon University. Locobot: an open source low cost robot. http://www.locobot.org/. 35
[8] Angel X Chang, Mihail Eric, Manolis Savva, and Christopher D Manning. Sceneseer: 3d scene design

with natural language. arXiv preprint arXiv:1703.00050, 2017. 24
[9] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li,

Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet:
An information-rich 3d model repository. arXiv, 2015. 24

[10] Angel X. Chang, Will Monroe, Manolis Savva, Christopher Potts, and Christopher D. Manning. Text to
3d scene generation with rich lexical grounding. In ACL, 2015. 23, 24

[11] Angel X. Chang, Manolis Savva, and Christopher D. Manning. Learning spatial knowledge for text to 3d
scene generation. In EMNLP, 2014. 23, 24

41

https://leaderboard.allenai.org/ithor_rearrangement_1phase_2022
https://leaderboard.allenai.org/ithor_rearrangement_1phase_2022
http://www.locobot.org/

[12] Jorge L. Charco, Angel Domingo Sappa, Boris Xavier Vintimilla, and Henry O. Velesaca. Camera pose
estimation in multi-view environments: From virtual scenarios to the real world. Image Vis. Comput.,
2021. 27

[13] Aditya Chattopadhyay, Xi Zhang, David Paul Wipf, Rene Vidal, and Himanshu Arora. Structured graph
variational autoencoders for indoor furniture layout generation. arXiv preprint arXiv:2204.04867, 2022.
24

[14] Changan Chen, Ziad Al-Halah, and Kristen Grauman. Semantic audio-visual navigation. In CVPR, 2021.
27

[15] Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vicenc Amengual Gari, Ziad Al-Halah, Vamsi Krishna
Ithapu, Philip Robinson, and Kristen Grauman. Soundspaces: Audio-visual navigation in 3d environments.
In ECCV, 2020. 27

[16] Rohan Chitnis, Tom Silver, Joshua B. Tenenbaum, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
Learning Neuro-Symbolic Relational Transition Models for Bilevel Planning. arXiv, 2021. 27

[17] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. In EMNLP, 2014. 36

[18] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv, 2014. 36

[19] Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang,
Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, Matthieu Guillaumin, and Jitendra Malik.
Abo: Dataset and benchmarks for real-world 3d object understanding. In CVPR, 2022. 24

[20] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi
Salvador, Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, Luca Weihs, Mark Yatskar, and Ali
Farhadi. Robothor: An open simulation-to-real embodied ai platform. In CVPR, 2020. 27, 35

[21] Matt Deitke, Aniruddha Kembhavi, and Luca Weihs. PRIOR: A Python Package for Seamless Data
Distribution in AI Workflows, 2022. 27

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019. 24

[23] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset of 3d
scanned household items. In ICRA, 2022. 24

[24] Kiana Ehsani, Ali Farhadi, Aniruddha Kembhavi, and Roozbeh Mottaghi. Object manipulation via visual
target localization. arXiv, 2022. 27

[25] Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha Kemb-
havi, and Roozbeh Mottaghi. ManipulaTHOR: A Framework for Visual Object Manipulation. In CVPR,
2021. 27, 38

[26] Kiana Ehsani, Roozbeh Mottaghi, and Ali Farhadi. Segan: Segmenting and generating the invisible. In
CVPR, 2018. 27

[27] Di Feng, Christian Haase-Schuetz, Lars Rosenbaum, Heinz Hertlein, Fabian Duffhauss, Claudius Gläser,
Werner Wiesbeck, and Klaus C. J. Dietmayer. Deep multi-modal object detection and semantic seg-
mentation for autonomous driving: Datasets, methods, and challenges. IEEE Trans. on Intelligent
Transportation Systems, 2021. 27

[28] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Hanrahan. Example-based
synthesis of 3d object arrangements. ACM Transactions on Graphics (TOG), 31(6):1–11, 2012. 23, 24

[29] Matthew Fontaine and Stefanos Nikolaidis. A quality diversity approach to automatically generating
human-robot interaction scenarios in shared autonomy. arXiv preprint arXiv:2012.04283, 2020. 24

[30] Jonas Freiknecht and Wolfgang Effelsberg. Procedural generation of multistory buildings with interior.
IEEE Transactions on Games, 12(3):323–336, 2019. 23

[31] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming Wang, Cao Li, Qixun Zeng, Chengyue
Sun, Rongfei Jia, Binqiang Zhao, et al. 3d-front: 3d furnished rooms with layouts and semantics. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10933–10942, 2021.
23, 24

[32] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and Dacheng Tao.
3d-future: 3d furniture shape with texture. International Journal of Computer Vision, 129(12):3313–3337,
2021. 24

[33] Samir Yitzhak Gadre, Kiana Ehsani, Shuran Song, and Roozbeh Mottaghi. Continuous scene representa-
tions for embodied ai. In CVPR, 2022. 27

[34] Chuang Gan, Yiwei Zhang, Jiajun Wu, Boqing Gong, and Joshua B Tenenbaum. Look, listen, and act:
Towards audio-visual embodied navigation. In ICRA, 2020. 27

[35] Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Alter, Abhishek Bhandwaldar, Dan Gutfreund,
Daniel LK Yamins, James J DiCarlo, Josh McDermott, Antonio Torralba, et al. The threedworld transport
challenge: A visually guided task-and-motion planning benchmark for physically realistic embodied ai.
arXiv, 2021. 27

42

[36] Timnit Gebru, Jamie H. Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna M. Wallach,
Hal Daumé, and Kate Crawford. Datasheets for datasets. Comm. of the ACM, 2021. 28, 32

[37] Tobias Germer and Martin Schwarz. Procedural arrangement of furniture for real-time walkthroughs. In
Computer Graphics Forum, volume 28, pages 2068–2078. Wiley Online Library, 2009. 23, 24

[38] Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and Ali
Farhadi. Iqa: Visual question answering in interactive environments. In CVPR, 2018. 27

[39] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J Fleet,
Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu, Dmitry Lagun,
Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek Nowrouzezahrai, Cengiz
Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi S. M. Sajjadi, Matan Sela,
Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi,
Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: a scalable dataset generator. In CVPR, 2022. 27

[40] Padraig Higgins, Ryan Barron, and Cynthia Matuszek. Head pose as a proxy for gaze in virtual reality. In
Workshop on Virtual, Augmented, and Mixed Reality for HRI, 2022. 27

[41] Md Shahadat Hossain and Abdus Salam. Text-to-3d scene generation using semantic parsing and
spatial knowledge with rule based system. International Journal of Computer Science Issues (IJCSI),
14(5):37–41, 2017. 23, 24

[42] Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver Matias van Kaick, Hao Zhang, and Hui Huang. Graph2plan:
Learning floorplan generation from layout graphs. ACM Trans. on Graphics, 2020. 23

[43] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. arXiv, 2022. 27

[44] Unnat Jain, Luca Weihs, Eric Kolve, Ali Farhadi, Svetlana Lazebnik, Aniruddha Kembhavi, and Alexander
Schwing. A cordial sync: Going beyond marginal policies for multi-agent embodied tasks. In ECCV,
2020. 27

[45] Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Rastegari, Svetlana Lazebnik, Ali Farhadi, Alexander G
Schwing, and Aniruddha Kembhavi. Two body problem: Collaborative visual task completion. In CVPR,
2019. 27

[46] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexander Clegg, Erik Wijmans, Stefan Lee, Manolis
Savva, Sonia Chernova, and Dhruv Batra. Sim2real predictivity: Does evaluation in simulation predict
real-world performance? IEEE Robotics and Automation Letters, 2020. 27, 35

[47] Peter Kán and Hannes Kaufmann. Automatic furniture arrangement using greedy cost minimization. In
2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 491–498. IEEE, 2018. 23,
24

[48] Yash Kant, Arun Ramachandran, Sriram Yenamandra, Igor Gilitschenski, Dhruv Batra, Andrew Szot, and
Harsh Agrawal. Housekeep: Tidying virtual households using commonsense reasoning. arXiv preprint
arXiv:2205.10712, 2022. 24

[49] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak, David Acuna,
Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to generate synthetic datasets. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 4550–4559, 2019. 24

[50] Siddharth Karamcheti, Dorsa Sadigh, and Percy Liang. Learning adaptive language interfaces through
decomposition. arXiv, 2020. 27

[51] Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kembhavi. Simple but effective:
Clip embeddings for embodied ai. In CVPR, 2021. 27, 35, 36, 39

[52] Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, and Sanja Fidler. Learning to simulate
dynamic environments with gamegan. In CVPR, 2020. 27

[53] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv, 2014. 36, 39
[54] Jing Yu Koh, Harsh Agrawal, Dhruv Batra, Richard Tucker, Austin Waters, Honglak Lee, Yinfei Yang,

Jason Baldridge, and Peter Anderson. Simple and effective synthesis of indoor 3d scenes. arXiv, 2022. 27
[55] Jing Yu Koh, Honglak Lee, Yinfei Yang, Jason Baldridge, and Peter Anderson. Pathdreamer: A world

model for indoor navigation. In ICCV, 2021. 27
[56] Klemen Kotar and Roozbeh Mottaghi. Interactron: Embodied adaptive object detection. In CVPR, 2022.

27
[57] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-graph:

Vision-and-language navigation in continuous environments. In ECCV, 2020. 27
[58] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for legged

robots. In RSS, 2021. 27
[59] Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir, Changhe Tu,

Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. Grains: Generative recursive autoencoders for indoor
scenes. ACM Trans. on Graphics, 2019. 24

[60] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal, and Antonio Torralba. 3d neural scene
representations for visuomotor control. In CoRL, 2022. 27

[61] Ricardo Lopes, Tim Tutenel, Ruben M Smelik, Klaas Jan De Kraker, and Rafael Bidarra. A constrained
growth method for procedural floor plan generation. In Game-ON, 2010. 10, 23

43

[62] Andrew Luo, Zhoutong Zhang, Jiajun Wu, and Joshua B Tenenbaum. End-to-end optimization of scene
layout. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3754–3763, 2020. 24

[63] Haokuan Luo, Albert Yue, Zhang-Wei Hong, and Pulkit Agrawal. Stubborn: A strong baseline for indoor
object navigation. arXiv, 2022. 27

[64] Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li, Sören Pirk, Binh-Son Hua, Sai-Kit Yeung, Xin
Tong, Leonidas Guibas, and Hao Zhang. Language-driven synthesis of 3d scenes from scene databases.
ACM Transactions on Graphics (TOG), 37(6):1–16, 2018. 23, 24

[65] Fernando Marson and Soraia Raupp Musse. Automatic real-time generation of floor plans based on
squarified treemaps algorithm. International Journal of Computer Games Technology, 2010. 9, 23

[66] Cristina Mata, Nick Locascio, Mohammed Azeem Sheikh, Kenny Kihara, and Dan Fischetti. Standardsim:
A synthetic dataset for retail environments. In ICIAP, 2022. 27

[67] Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen Koltun. Interactive furniture
layout using interior design guidelines. ACM transactions on graphics (TOG), 30(4):1–10, 2011. 23

[68] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020. 27

[69] Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao Su.
PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In
CVPR, 2019. 24

[70] Mark Murnane, Padraig Higgins, Monali Saraf, Francis Ferraro, Cynthia Matuszek, and Don Engel. A
simulator for human-robot interaction in virtual reality. In VRW, 2021. 27

[71] Yashraj Narang, Kier Storey, Iretiayo Akinola, Miles Macklin, Philipp Reist, Lukasz Wawrzyniak,
Yunrong Guo, Adam Moravanszky, Gavriel State, Michelle Lu, Ankur Handa, and Dieter Fox. Factory:
Fast contact for robotic assembly. In RSS, 2022. 27

[72] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. J. Mach. Learn. Res.,
21:181:1–181:50, 2020. 24

[73] Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg Mori, and Yasutaka Furukawa. House-gan:
Relational generative adversarial networks for graph-constrained house layout generation. In European
Conference on Computer Vision, pages 162–177. Springer, 2020. 23

[74] Nelson Nauata, Sepidehsadat Hosseini, Kai-Hung Chang, Hang Chu, Chin-Yi Cheng, and Yasutaka
Furukawa. House-gan++: Generative adversarial layout refinement network towards intelligent computa-
tional agent for professional architects. In CVPR, 2021. 23

[75] Tianwei Ni, Kiana Ehsani, Luca Weihs, and Jordi Salvador. Towards disturbance-free visual mobile
manipulation. arXiv, 2021. 27, 36

[76] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas A. Tezak,
Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei M. Zhang. Solving
rubik’s cube with a robot hand. ArXiv, abs/1910.07113, 2019. 24

[77] Aishwarya Padmakumar, Jesse Thomason, Ayush Shrivastava, Patrick Lange, Anjali Narayan-Chen,
Spandana Gella, Robinson Piramuthu, Gokhan Tur, and Dilek Hakkani-Tur. Teach: Task-driven embodied
agents that chat. In AAAI, 2022. 27

[78] Wamiq Reyaz Para, Paul Guerrero, Niloy Mitra, and Peter Wonka. Cofs: Controllable furniture layout
synthesis. arXiv preprint arXiv:2205.14657, 2022. 24

[79] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and Sanja Fidler.
Atiss: Autoregressive transformers for indoor scene synthesis. Advances in Neural Information Processing
Systems, 34:12013–12026, 2021. 24

[80] Claudia Pérez-D’Arpino, Can Liu, Patrick Goebel, Roberto Martín-Martín, and Silvio Savarese. Robot
navigation in constrained pedestrian environments using reinforcement learning. In ICRA, 2021. 27

[81] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In ICML, 2021. 36

[82] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020. 24

[83] Ram Ramrakhya, Eric Undersander, Dhruv Batra, and Abhishek Das. Habitat-web: Learning embodied
object-search strategies from human demonstrations at scale. In CVPR, 2022. 35

[84] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David
Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruc-
tion. In ICCV, 2021. 24

[85] Daniel Ritchie, Kai Wang, and Yu-An Lin. Fast and flexible indoor scene synthesis via deep convolutional
generative models. In CVPR, 2019. 24

44

[86] Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of density peaks. science,
344(6191):1492–1496, 2014. 24

[87] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In AISTATS, 2011. 39

[88] Julian F Rosser, Gavin Smith, and Jeremy G Morley. Data-driven estimation of building interior plans.
International Journal of Geographical Information Science, 31(8):1652–1674, 2017. 23

[89] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In ICLR, 2016. 36

[90] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, 2017. 36

[91] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday
tasks. In CVPR, 2020. 27

[92] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser. Semantic
scene completion from a single depth image. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1746–1754, 2017. 24

[93] Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Mart’in-Mart’in, Fei Xia, Kent Vainio,
Zheng Lian, Cem Gokmen, S. Buch, C. Karen Liu, Silvio Savarese, Hyowon Gweon, Jiajun Wu, and Li
Fei-Fei. Behavior: Benchmark for everyday household activities in virtual, interactive, and ecological
environments. In CoRL, 2021. 27

[94] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR, 2015.
36

[95] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srinivasan,
Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view synthesis. In
CVPR, 2022. 27

[96] Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, Angel X Chang, and Daniel Ritchie. Planit:
Planning and instantiating indoor scenes with relation graph and spatial prior networks. ACM Transactions
on Graphics (TOG), 38(4):1–15, 2019. 24

[97] Xinpeng Wang, Chandan Yeshwanth, and Matthias Nießner. Sceneformer: Indoor scene generation with
transformers. In 3DV, 2021. 24

[98] Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and Roozbeh Mottaghi. Visual room rearrangement. In
CVPR, 2021. 24, 27, 39

[99] Tomer Weiss, Alan Litteneker, Noah Duncan, Masaki Nakada, Chenfanfu Jiang, Lap-Fai Yu, and Demetri
Terzopoulos. Fast and scalable position-based layout synthesis. IEEE Transactions on Visualization and
Computer Graphics, 25(12):3231–3243, 2018. 23, 24

[100] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva, and
Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames. In ICLR, 2019.
27, 36

[101] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Learning
to learn how to learn: Self-adaptive visual navigation using meta-learning. In CVPR, 2019. 27

[102] Qi Wu, Cheng-Ju Wu, Yixin Zhu, and Jungseock Joo. Communicative learning with natural gestures for
embodied navigation agents with human-in-the-scene. In IROS, 2021. 27

[103] Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, and Ligang Liu. Data-driven interior
plan generation for residential buildings. ACM Trans. on Graphics, 2019. 23

[104] Fei Xia, Chengshu Li, Roberto Mart’in-Mart’in, Or Litany, Alexander Toshev, and Silvio Savarese.
Relmogen: Integrating motion generation in reinforcement learning for mobile manipulation. In ICRA,
2021. 27

[105] Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. Sketch2scene: Sketch-based co-retrieval
and co-placement of 3d models. ACM Transactions on Graphics (TOG), 32(4):1–15, 2013. 24

[106] Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt, and Shuran Song. Clip on
wheels: Zero-shot object navigation as object localization and exploration. arXiv, 2022. 27

[107] Lap Fai Yu, Sai Kit Yeung, Chi Keung Tang, Demetri Terzopoulos, Tony F Chan, and Stanley J Osher.
Make it home: automatic optimization of furniture arrangement. ACM Transactions on Graphics (TOG)-
Proceedings of ACM SIGGRAPH 2011, v. 30,(4), July 2011, article no. 86, 30(4), 2011. 23, 24

[108] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022. 24

[109] Shao-Kui Zhang, Wei-Yu Xie, and Song-Hai Zhang. Geometry-based layout generation with hyper-
relations among objects. Graphical Models, 116:101104, 2021. 23

[110] Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo, Alexander G. Huth, Etienne Vouga, and
Qixing Huang. Deep generative modeling for scene synthesis via hybrid representations. ACM Trans. on
Graphics, 2020. 24

45

[111] Kaiyu Zheng, Rohan Chitnis, Yoonchang Sung, George Konidaris, and Stefanie Tellex. Towards Optimal
Correlational Object Search. In ICRA, 2022. 27

[112] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi.
Target-driven visual navigation in indoor scenes using deep reinforcement learning. In ICRA, 2017. 27

46

