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A Appendix1

A.1 Details of Algorithms2

The optimization problem is rewritten as,3

max
P

Tr(Z⊤
1 Z2P+ λS⊤

1 P
⊤S2P), s.t. P1 = 1,P⊤1 = 1,P ∈ [0, 1]m×m, (1)

We refer Eq. (1) as the multi-view anchor correspondence framework. To efficiently solve Eq. (1),4

we adopt the Projected Fixed-Point Algorithm to update P as follows,5

P(t+1) = (1−α)P(t)+αΓ
(
∇f

(
P(t)

))
= (1−α)P(t)+αΓ(K⊤+2λS2P

(t)S⊤
1 ), α ∈ [0, 1], (2)

where α is the step size parameter, t denotes the number of iterations and Γ denotes the double6

stochastic projection operator. The convergence of the algorithm has been proved, and we set α = 0.57

in this paper.8

The Γ representing the double stochastic projection operator for given matrix Q =
(
∇f

(
P(t)

))
,9

where follows [1] with two-step projection as follows,10

Γ1(Q) = argmin
Q1

∥Q−Q1∥F, s.t. Q11 = 1,Q⊤
1 1 = 1. (3)

and then the second step is that,11

Γ2(Q) = argmin
Q2

∥Q2 −Q∥F, s.t. Q2 ≥ 0. (4)

Both of the two subprojections have closed-formed solutions [1] and the von Neumann successive12

projection lemma [2] guarantees the successive projection converges to the optimum.13

A.2 Convergence Rate Proof14

Remark 1. The algorithm to solve the alignment matrix Pi converges at rate 1
2 + λ ∥(S1 ⊗ S2)∥F.15

Proof. By denoting R(t) = (K⊤ + 2λS2P
(t)S⊤

1 ), it is easy to show that
∥∥R(t) −R(t−1)

∥∥
F

≥16 ∥∥Γ(R(t))− Γ(R(t−1))
∥∥
F

. Then, we have that
∥∥P(t+1) −P(t)

∥∥
F

≤ 1
2

∥∥P(t) −P(t−1)
∥∥
F

+17

1
2

∥∥R(t) −R(t−1)
∥∥
F

and
∥∥R(t) −R(t−1)

∥∥
F

= 2λ
∥∥S2P

(t)S⊤
1 − S2P

(t−1)S⊤
1

∥∥
F

=18

2λ
∥∥(S1 ⊗ S2)vec(P

(t) −P(t−1))
∥∥
2

≤ 2λ ∥(S2 ⊗ S1)∥F
∥∥P(t) −P(t−1)

∥∥
F

. Therefore we19

can obtain that
∥P(t+1)−P(t)∥

F

∥P(t)−P(t−1)∥
F

≤ 1
2 + λ ∥(S1 ⊗ S2)∥F.20

A.3 Experimental setting21

By the way, all the experimental environment are implemented on a desktop computer with an Intel22

Core i7-7820X CPU and 64GB RAM, MATLAB 2020b (64-bit).23
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A.4 More Experimental Results24

In this section, we report in Table 1 the comparison of the clustering performance of LMVSC and our25

proposed FMVACC before and after using the anchor alignment module.26

Effect of Alignment Module: We further verify the effect of the proposed alignment module through27

experiments on real-world datasets. Different from the experiments in the main text, we use two28

others commonly used clustering effect evaluation indicators, namely NMI and Fscore, for evaluation.29

From the results in Table 1, we can notice that the clustering performance of the LMVSC algorithm30

and our FMVACC is greatly improved by utilizing the alignment module for column alignment.31

Specifically, in terms of NMI, LMVSC-Aligned achieves 14.46 % (UCI-Digit) and 8.70 % (BDGP)32

progress compared to its own original version. In terms of Fscore, compared with the FMVACC33

without the alignment module, FMVACC-Aligned achieves 8.52 % (BDGP) and 6.80 % (YTF-10)34

progress.35

Table 1: Other Clustering performance on the seven benchmarks. ’OM’ indicates the out-of-memory
failure.

Datasets Samples LMVSC-Unaligned LMVSC-Aligned Proposed-Unaligned Proposed-Aligned
NMI (%)

3-Sources 169 26.38±0.42 27.66±4.04 43.95±3.17 56.85±5.44
UCI-Digit 2000 64.89±1.57 79.35±1.97 77.81±2.40 84.33±2.37

BDGP 2500 18.17±0.07 26.87±0.12 27.35±2.53 36.81±2.69
SUNRGBD 10335 18.76±0.14 24.22±0.23 17.91±0.55 19.88±0.61

MNIST 60000 94.06±1.49 96.45±1.41 95.90±0.65 96.74±0.75
YTF-10 38654 74.71±1.41 75.87±1.48 75.55±2.42 77.13±1.87
YTF-20 63896 74.63±0.82 75.90±1.30 78.94±1.23 78.47±1.01

Fscore (%)
3-Sources 169 39.17±0.54 41.33±2.77 47.21±4.51 54.71±7.67
UCI-Digit 2000 57.62±2.17 75.56±4.59 73.35±3.95 83.33±4.29

BDGP 2500 32.10±0.04 40.11±0.18 35.73±2.37 44.25±2.43
SUNRGBD 10335 8.84±0.14 11.01±0.23 10.74±0.32 12.94±0.29

MNIST 60000 95.36±2.70 96.97±3.05 97.03±1.52 97.65±1.68
YTF-10 38654 65.26±2.06 66.88±2.47 64.49±3.72 71.29±4.22
YTF-20 63896 57.87±1.37 60.80±2.52 66.51±3.24 66.40±2.16

A.5 Parameter sensitivity36

There are two parameters to tune, including the number of anchors m and the balanced parameter37

λ. To illustrate the impact of these two parameters on performance, we conduct a comparative38

experiment on six datasets shown in Fig. 1. For λ, we select 0.0001, 1, 10000 and positive infinity39

from small to large, indicating the effect of structure correspondence. For the number of anchors, we40

respectively let m be k, 2k, and 5k, where k is the number of clusters. It can be seen from (a) and (b)41

that when the number of anchors is constant, the clustering performance increases with the decrease42

of the effect of structure correspondence. As can be seen from (d) and (e), when m is fixed, for the43

MNIST dataset, m = 2k works best, while on YTF-10, m = 2k achieves the best performance.44
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(a) 3-Sources (b) UCI-Digit (c) BDGP

(d) MNIST (e) YTF-10 (f) YTF-20

Figure 1: The sensitivity of our proposed method on benchmark datasets.
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