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A Auxiliary Results

In this section, we first provide some useful auxiliary results that are general, and then some that are
specific to our setup.

A.1 General Auxiliary Results

First, we state the following standard definitions for a sub-Gaussian random variable and the associated
sub-Gaussian norm.
Definition 2. A random variable X is said to be sub-Gaussian if there exists a positive constant C
such that (E [|X|p])1/p ≤ C

√
p for all p ≥ 1. The sub-Gaussian norm of a sub-Gaussian random

variable X is defined as ‖X‖ψ2
:= supp≥1 p

−1/2 (E [|X|p])1/p.

Recall that the definitions of a sub-exponential random variable and the associated sub-exponential
norm have been provided in Definition 1 in the main document. The following lemma states that the
product of two sub-Gaussian random variables is sub-exponential.
Lemma 1. ([87, Lemma 2.7.7]) Let X and Y be sub-Gaussian random variables (not necessarily
independent). Then XY is sub-exponential, and satisfies

‖XY ‖ψ1
≤ ‖X‖ψ2

· ‖Y ‖ψ2
. (26)

We consider sub-Weibull random variables that generalize sub-Gaussian and sub-exponential random
variables.
Definition 3. For any α > 0, a random variable X is said to be sub-Weibull of order α if it has a
bounded ψα-norm, where the ψα-norm of X is defined as

‖X‖ψα := inf {K ∈ (0,∞) : E [exp (|X|α/Kα)] ≤ 2} . (27)

In particular, when α = 2 or 1, sub-Weibull random variables reduce to sub-Gaussian or sub-
exponential random variables respectively. The smaller the α is, the heavier tail a sub-Weibull random
variable has. Moreover, it follows readily from Definition 3 that X is sub-exponential if and only
if |X|1/α is sub-Weibull of order α. We have the following concentration inequality for the sum of
independent sub-Weibull random variables.
Lemma 2. ([33, Theorem 3.1]) Suppose that X1, X2, . . . , XN are independent sub-Weibull random
variables that are of order α, and K = maxi ‖Xi‖ψα . Then, there exists a positive constant Cα only
depending on α such that for any b = [b1, b2, . . . , bN ]T ∈ RN and u > 2, with probability at least
1− e−u, it holds that∣∣∣∣∣

N∑
i=1

biXi − E

[
N∑
i=1

biXi

]∣∣∣∣∣ ≤ CαK (‖b‖2 · √u+ ‖b‖∞ · u1/α
)
. (28)

In addition, we have the following lemma concerning the Two-sided Set-Restricted Eigenvalue
Condition (TS-REC).
Lemma 3. ([51, Lemma 2]) Let G : Bk(r)→ Rn be L-Lipschitz continuous and a1, . . . ,am be
i.i.d. realizations ofN (0, In). For ε ∈ (0, 1) and δ > 0, if m = Ω

(
k
ε2 log Lr

δ

)
, then with probability

1− e−Ω(ε2m), the following holds for all x1,x2 ∈ G(Bk(r)):

(1− ε)‖x1 − x2‖2 − δ ≤
1√
m
·

√√√√ m∑
i=1

(aTi (x1 − x2))2 ≤ (1 + ε)‖x1 − x2‖2 + δ. (29)
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A.2 Auxiliary Results for Our Setup

From Chebyshev’s inequality and the definition of a sub-exponential random variable (cf. Defini-
tion 1), as well as Lemma 2, we obtain the following lemma. Here and in subsequent results where it
is clear from the context, for simplicity of presentation, we think of ai and yi as random variables,
instead of realizations of corresponding random variables.

Lemma 4. When m ≥ log3m, the event

E : max
i∈[m]

|yi| ≤ 5Ky · logm,
1

m

m∑
i=1

y2
i ≤ 8K2

y ,
1

m

m∑
i=1

y2
i (aTi x)2 ≤ 32

√
3K2

y ,∣∣∣∣∣ 1

m

m∑
i=1

(aTi x)2 − 1

∣∣∣∣∣ ≤ C
√

logm

m
,

∣∣∣∣∣ 1

m

m∑
i=1

yi −My

∣∣∣∣∣ ≤ CKy ·
√

logm

m
,∣∣∣∣∣ 1

m

m∑
i=1

yi(a
T
i x)2 − (ν +My)

∣∣∣∣∣ ≤ CKy ·
√

logm

m
, (30)

occurs with probability 1 − O(1/m), where ν := Cov
[
y, (aTx)2

]
(cf. (7)), My := E[y], Ky :=

‖y‖ψ1 (cf. Section 2.2), and C is an absolute constant.

Proof. Since yi is assumed to be sub-exponential with the sub-exponential norm being Ky , from the
definition of a sub-exponential random variable, we obtain for any i ∈ [m] and u > 0 that

P(|yi| > u) ≤ exp(1− u/Ky). (31)

Then, setting u = 5Ky · logm and taking a union bound over i ∈ [m], we obtain with probability at
least 1− e

m4 that
max
i∈[m]

|yi| ≤ 5Ky · logm. (32)

Note that from
Ky = ‖y‖ψ1

= sup
p≥1

p−1 (E [|y|p])1/p
, (33)

we obtain

|My| ≤ E[|y|] ≤ Ky, E[y2] ≤ (2Ky)2, E[y4] ≤ (4Ky)4, E[y8] ≤ (8Ky)8. (34)

In addition, from Chebyshev’s inequality, for any ε > 0, we have

P

(∣∣∣∣∣ 1

m

m∑
i=1

y2
i − E[y2]

∣∣∣∣∣ ≥ ε
)
≤ Var[y2]

mε2
. (35)

Setting ε = 4K2
y , we obtain

P

(
1

m

m∑
i=1

y2
i ≥ 8K2

y

)
≤ P

(
1

m

m∑
i=1

y2
i ≥ E[y2] + 4K2

y

)
≤ Var[y2]

16mK4
y

≤ E[y4]

16mK4
y

≤ 16

m
, (36)

where we use (34) in the first and last inequalities. Moreover, from

E
[
y2
i (aTi x)2

]
≤ (E[y4

i ])1/2(E[(aTi x)4])1/2 = (E[y4
i ])1/2(E[g4])1/2 ≤ (4Ky)2 ·

√
3 = 16

√
3K2

y ,
(37)

where g ∼ N (0, 1) represents a standard normal random variable, similarly to (36), we obtain

P

(
1

m

m∑
i=1

y2
i (aTi x)2 ≥ 32

√
3K2

y

)
≤ P

(
1

m

m∑
i=1

y2
i (aTi x)2 ≥ E

[
y2(aTx)2

]
+ 16
√

3K2
y

)
(38)

≤
Var

[
y2(aTx)2

]
768mK4

y

≤ E[y4(aTx)4]

768mK4
y

(39)

≤ (E[y8])1/2 · (E[g8])1/2

768mK4
y

(40)

≤ (8Ky)4 ·
√

105

768mK4
y

=
16
√

105

3m
, (41)
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where g ∼ N (0, 1) and (41) follows from (34) . Furthermore, since E[y(aTx)2] = Cov[y, (aTx)2]+
E[y] · E[(aTx)2] = ν +My and y(aTx)2 is sub-Weibull of order α = 1/2 with the corresponding
constant Cα ≤ CKy ,5 from Lemma 2, we obtain that for any u > 2, with probability at least 1−e−u,∣∣∣∣∣ 1

m

m∑
i=1

yi(a
T
i x)2 − (ν +My)

∣∣∣∣∣ ≤ C ′Ky

(√
u

m
+
u2

m

)
. (42)

Setting u = logm, we obtain that when m ≥ log3m, with probability at least 1− 1/m,∣∣∣∣∣ 1

m

m∑
i=1

yi(a
T
i x)2 − (ν +My)

∣∣∣∣∣ ≤ 2C ′Ky ·
√

logm

m
. (43)

Since y is sub-exponential with ‖y‖ψ1
= Ky and (aTx)2 is sub-exponential with the sub-exponential

norm being upper bounded by C, similarly to (43), we have with probability at least 1− 2/m that∣∣∣∣∣ 1

m

m∑
i=1

yi −My

∣∣∣∣∣ ≤ CKy ·
√

logm

m
, (44)∣∣∣∣∣ 1

m

m∑
i=1

(aTi x)2 − 1

∣∣∣∣∣ ≤ C
√

logm

m
. (45)

B Proof of Theorem 1 (Guarantees for the First Step of Algorithm 1)

Before proving the theorem, we provide some additional auxiliary results.

B.1 Useful Lemmas for Theorem 1

Recall that V is defined in (10) and ν is defined in (7). First, we present the following useful lemma.
Lemma 5. Let E = V − νxxT . For any u > 2 satisfying m = Ω

(
u · logm

)
, conditioned on the

event E (cf. (30)), we have for any fixed s1, s2 ∈ Rn, with probability 1−O
(
e−u

)
that

∣∣sT1 Es2

∣∣ = O

(
Ky

√
u · logm

m

)
· ‖s1‖2 · ‖s2‖2. (46)

Proof. First, it is easy to calculate that E[V] = νxxT (see, e.g., [47, Lemma 8]) and thus E[E] = 0.
Without loss of generality, we assume that ‖s1‖2 = ‖s2‖2 = 1, and we also assume that s1 6= x and
s2 6= x.6 From the definition of V in (10), we have

sT1 Es2 = sT1 (V − νxxT )s2 =
1

m

m∑
i=1

yi
(
(aTi s1)(aTi s2)− sT1 s2

)
− ν(sT1 x)(sT2 x). (47)

We focus on dealing with the term

I :=
1

m

m∑
i=1

yi(a
T
i s1)(aTi s2). (48)

We decompose s1 as

s1 = (sT1 x)x +
√

1− (sT1 x)2 · t1, (49)

5Since y is sub-exponential with ‖y‖ψ1 = Ky , from (27), we obtain that
√
|y| is sub-Gaussian with the

sub-Gaussian norm being
√
Ky . From Lemma 1,

√
|y| · (aTx) is sub-exponential with the sub-exponential

being upper bounded by
√
CKy , where C is an absolute constant. Again from (27), we obtain |yi| · (aTx)2 is

sub-Weibull of order α = 1/2 with the corresponding constant Cα ≤ CKy .
6We will see from the proof that the case that s1 = x or s2 = x is easier to handle.
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where ‖t1‖2 = 1 and tT1 x = 0. Similarly, letting w12 =
√

1− (sT2 x)2 − (sT2 t1)2, s2 can be written
as

s2 = (sT2 x)x + (sT2 t1)t1 + w12t2, (50)
where ‖t2‖2 = 1 and tT2 x = tT2 t1 = 0. Note that from (49) and (50), we obtain

sT1 s2 = (sT1 x)(sT2 x) +
√

1− (sT1 x)2 · (sT2 t1). (51)

Let gi = aTi x, hi,1 = aTi t1, and hi,2 = aTi t2; the three are independent standard normal random
variables. From (49) and (50), I in (48) can be written as

I =
1

m

m∑
i=1

yi(a
T
i s1)(aTi s2)

=
1

m

m∑
i=1

yi((s
T
1 x)gi +

√
1− (sT1 x)2 · hi,1)((sT2 x)gi + (sT2 t1)hi,1 + w12hi,2) (52)

= (sT1 x)(sT2 x) · 1

m

m∑
i=1

yig
2
i +

√
1− (sT1 x)2 · (sT2 t1) · 1

m

m∑
i=1

yih
2
i,1

+
√

1− (sT1 x)2 · w12 ·
1

m

m∑
i=1

yihi,1hi,2

+

(
(sT1 x)(sT2 t1) +

√
1− (sT1 x)2 · (sT2 x)

)
· 1

m

m∑
i=1

yigihi,1 + (sT1 x)w12 ·
1

m

m∑
i=1

yigihi,2.

(53)

In the following, we deal with the five terms in (53) separately.

• The first term (sT1 x)(sT2 x) · 1
m

∑m
i=1 yig

2
i : From Lemma 4, we have conditioned on the

event E that ∣∣∣∣∣ 1

m

m∑
i=1

yig
2
i − (ν +My)

∣∣∣∣∣ < CKy

√
logm

m
, (54)

which gives

|(sT1 x)(sT2 x)|·

∣∣∣∣∣ 1

m

m∑
i=1

yig
2
i − (ν +My)

∣∣∣∣∣ < |(sT1 x)(sT2 x)|·CKy

√
logm

m
≤ CKy

√
logm

m
.

(55)

• The second term
√

1− (sT1 x)2 · (sT2 t1) · 1
m

∑m
i=1 yih

2
i,1: Since yi are independent of hi,1,

E[h2
i,1] = 1, and h2

i,1 are sub-exponential with the sub-exponential norm being upper
bounded by an absolute constant C, from Lemma 2, we obtain that for any u > 2, with
probability at least 1− e−u,∣∣∣∣∣ 1

m

m∑
i=1

yi(h
2
i,1 − 1)

∣∣∣∣∣ ≤ C
(√

u ·
√∑m

i=1 y
2
i /m√

m
+
u ·maxi∈[m] |yi|

m

)
. (56)

From Lemma 4, we obtain that when m = Ω(u · logm), conditioned on the event E ,∣∣∣∣∣ 1

m

m∑
i=1

yi(h
2
i,1 − 1)

∣∣∣∣∣ ≤ CKy ·
√
u · logm

m
. (57)

Then,√
1− (sT1 x)2 · |sT2 t1| ·

∣∣∣∣∣ 1

m

m∑
i=1

yih
2
i,1 −My

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

m

m∑
i=1

yi(h
2
i,1 − 1)

∣∣∣∣∣+

∣∣∣∣∣ 1

m

m∑
i=1

yi −My

∣∣∣∣∣
(58)

≤ CKy ·
√
u · logm√
m

. (59)
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• The third term
√

1− (sT1 x)2 · w12 · 1
m

∑m
i=1 yihi,1hi,2: We have

E

[
1

m

m∑
i=1

yihi,1hi,2

]
= E[y1]E[h1,1]E[h1,2] = 0. (60)

Since ‖hi,1hi,2‖ψ1
≤ ‖hi,1‖ψ2

‖hi,2‖ψ2
= C, from Lemma 2, we have that for fixed yi and

any u ∈ (2,m), with probability at least 1− e−u,∣∣∣∣∣ 1

m

m∑
i=1

yihi,1hi,2

∣∣∣∣∣ ≤ C
(√

u ·
√∑m

i=1 y
2
i /m√

m
+
u ·maxi |yi|

m

)
. (61)

When m = Ω(u · logm), conditioned on the event E , we have with probability at least
1− e−u that√

1− (sT1 x)2 ·w12 ·

∣∣∣∣∣ 1

m

m∑
i=1

yihi,1hi,2

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

m

m∑
i=1

yihi,1hi,2

∣∣∣∣∣ ≤ CKy

√
u · logm

m
. (62)

• The fourth to fifth terms in (53) can be controlled in a same way. For example, for the fourth
term ((sT1 x)(sT2 t1) +

√
1− (sT1 x)2 · (sT2 x)) · 1

m

∑m
i=1 yigihi,1: We have for fixed gi and

yi that
1

m

m∑
i=1

yigihi,1 ∼ N

(
0,

m∑
i=1

y2
i g

2
i /m

2

)
. (63)

Then, from the standard Gaussian concentration [89, Example 2.1], we obtain that for any
u > 0, with probability at least 1− 2e−u,∣∣∣∣∣
(

(sT1 x)(sT2 t1) +
√

1− (sT1 x)2 · (sT2 x)

)
· 1

m

m∑
i=1

yigihi,1

∣∣∣∣∣ ≤
∣∣∣∣∣ 2

m

m∑
i=1

yigihi,1

∣∣∣∣∣ (64)

≤
√

8u ·
∑m
i=1 y

2
i g

2
i /m

m
= O

(
Ky

√
u

m

)
, (65)

where the last inequality follows from Lemma 4. We have a similar result for the fifth term.

Combining (53) with (55), (59), (62) and (65), we obtain that whenm = Ω
(
u·logm

)
and conditioned

on the event E , with probability 1−O
(
e−u

)
,∣∣∣∣∣ 1

m

m∑
i=1

yi(a
T
i s1)(aTi s2)− (sT1 x)(sT2 x)ν − (sT1 s2)My

∣∣∣∣∣
=

∣∣∣∣∣ 1

m

m∑
i=1

yi(a
T
i s1)(aTi s2)− (sT1 x)(sT2 x)(ν +My)−

√
1− (sT1 x)2 · (sT2 t1)My

∣∣∣∣∣ (66)

≤ CKy ·
√
u · logm√
m

, (67)

where (66) follows from 51. Then, from (47), we have∣∣sT1 Es2

∣∣ =

∣∣∣∣∣ 1

m

m∑
i=1

(
yi(a

T
i s1)(aTi s2)− (sT1 x)(sT2 x)ν − (sT1 s2)My

)
+

(sT1 s2)

m

m∑
i=1

(My − yi)

∣∣∣∣∣
(68)

≤ CKy ·
√
u · logm√
m

, (69)

where (69) follows from (67) and the definite of the event E in (30). For general s1 and s2 (beyond
unit vectors), when considering Ky as a fixed positive constant, we obtain (46) as desired.

Based on Lemma 5, we obtain the following lemma.
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Lemma 6. Let E = V−νxxT . For any pair of finite sets S1, S2 in Rn satisfyingm = Ω((log(|S1| ·
|S2|)) · (logm)), we have that with probability 1− e−Ω(log(|S1|·|S2|))−O(1/m), for all s1 ∈ S1 and
s2 ∈ S2, it holds that∣∣sT1 Es2

∣∣ ≤ CKy

√
(log(|S1| · |S2|)) · (logm)

m
· ‖s1‖2 · ‖s2‖2. (70)

In addition, we have that ‖E‖2→2 = O((Ky · n logm)/m) with probability 1−O(1/m).

Proof. Note that from Lemma 4, the event E occurs with probability 1 − O(1/m). Setting u =
log(|S1| · |S2|) in Lemma 5, and taking a union bound over all s1 ∈ S1 and s2 ∈ S2, we obtain (70).
In addition, according to [86, Lemma 5.4], we have

‖E‖2→2 =
∥∥V − νxxT∥∥

2→2
= sup

r∈Sn−1

∣∣rT (V − νxxT )r
∣∣ ≤ 2 sup

r∈C1/4

∣∣rT (V − νxxT )r
∣∣ , (71)

where C1/4 is a (1/4)-net of the unit sphere Sn−1. In addition, according to [86, Lemma 5.2], we
have

∣∣C1/4∣∣ ≤ 9n. Similarly to Lemma 5,7 we obtain that for any r ∈ Sn−1 and any u > 2 satisfying
u = Ω(m), with probability at least 1− e−u,∣∣rTEr

∣∣ ≤ CKy ·
u · logm

m
. (72)

Setting u = Cn in (72) and taking a union bound over all r ∈ C1/4, we obtain that with probability
1− e−Ω(n) −O(1/m), ‖E‖2→2 = O((Ky · n logm)/m).

In addition, we have the following lemma according to [50, Theorem 2].8

Lemma 7. (Adapted from [50, Theorem 2]) Suppose that the data matrix V ∈ Rn×n can be written
as V = V̄ + E with V̄ being a positive definite rank-one matrix and E satisfying the following
conditions: 1) For any two finite sets S1, S2 in Rn satisfying m = Ω((log(|S1| · |S2|)) · (logm)),

we have for all s1 ∈ S1 and s2 ∈ S2 that
∣∣sT1 Es2

∣∣ ≤ CKy

√
log(|S1|·|S2|)·(logm)

m · ‖s1‖2 · ‖s2‖2;

2) ‖E‖2→2 = O((Ky · n logm)/m). Then, if there exists t0 ∈ N such that xTw(t0) ≥ c0 with c0
being a sufficiently small positive constant and m = Ω((k log(nLr)) · (logm)) with a large enough
implied constant, we have that after one projected power iteration in the first step of Algorithm 1
(beyond t0),

‖w(t) − x‖2 ≤
CKy

c0

√
(k log(nLr)) · (logm)

m
, (73)

i.e., this equation holds for all t > t0.

B.2 Proof of Theorem 1

Combining the results of Lemmas 6 and 7, we obtain the desired result of Theorem 1.

C Proof of Theorem 2 (Guarantees for the Second Step of Algorithm 1)

Before presenting the proof of the theorem, we provide some useful lemmas.

C.1 Useful Lemmas for Theorem 2

Recall that ȳ, ν̂(t) are defined in (12) and (13) respectively and My := E[y] and Ky := ‖y‖ψ1
(cf.

Section 2.2). First, we have the following lemma.
Lemma 8. Conditioned on the event E (cf. (30)), when m = Ω((k log(nLr)) · (logm)), for any
t ∈ {0, 1, . . . , T2 − 1}, we have with probability 1− e−Ω(k log(nLr)) that∣∣∣ν̂(t) − ν

∣∣∣ ≤ CKy

√
(k log(nLr)) · (logm)

m
+
∥∥∥x(t) − x

∥∥∥2

2
· ν. (74)

7More precisely, only (57) (and thus (59)) and (62) need to be modified accordingly.
8We consider the γ̄ = 0 case therein.
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Proof. For any δ ∈ (0, 1), let M be a (δ/L)-net of Bk(r). According to [86, Lemma 5.2], there
exists such a net with the cardinality satisfies

log |M | ≤ k log
4Lr

δ
. (75)

Due to the L-Lipschitz continuity of G, G(M) is a δ-net of G(Bk(r)). Then, since x(t) ∈
Range(G) = G(Bk(r)), it can be written as

x(t) = s(t) + e(t), (76)

where s(t) ∈ G(M) and ‖e(t)‖2 ≤ δ. We obtain

∣∣∣ν̂(t) − ν
∣∣∣ =

∣∣∣∣∣ 1

m

m∑
i=1

(yi − ȳ) ·
(
aTi x

(t)
)2

− ν

∣∣∣∣∣ (77)

=

∣∣∣∣∣ 1

m

m∑
i=1

(yi − ȳ) ·
(
aTi

(
s(t) + e(t)

))2

− ν

∣∣∣∣∣ (78)

≤

∣∣∣∣∣ 1

m

m∑
i=1

(yi − ȳ) ·
(
aTi s

(t)
)2

− ν

∣∣∣∣∣+

∣∣∣∣∣ 1

m

m∑
i=1

(yi − ȳ) ·
(
aTi e

(t)
)2
∣∣∣∣∣

+

∣∣∣∣∣ 2

m

m∑
i=1

(yi − ȳ) ·
(
aTi s

(t)
)
·
(
aTi e

(t)
)∣∣∣∣∣ . (79)

From Lemma 2 and by taking a union bound over [m], we obtain with probability 1−me−Ω(n) that

max
i∈[m]

‖ai‖2 ≤
√

2n. (80)

In addition, we have

1

m

m∑
i=1

|yi − ȳ| ≤
√∑m

i=1(yi − ȳ)2

m
(81)

=

√∑m
i=1 y

2
i −mȳ2

m
(82)

≤
√∑m

i=1 y
2
i

m
. (83)

Then, from the definition of the event E in Lemma 4, we obtain

1

m

m∑
i=1

|yi − ȳ| ≤
√∑m

i=1 y
2
i

m
≤ 2
√

2Ky. (84)

Therefore, since ‖e(t)‖2 ≤ δ, conditioned on the event in (80) and event E , we have∣∣∣∣∣ 1

m

m∑
i=1

(yi − ȳ) ·
(
aTi e

(t)
)2
∣∣∣∣∣ ≤ 1

m

m∑
i=1

|yi − ȳ| · 2nδ2 (85)

≤ 2
√

2Ky · 2nδ2. (86)

In addition, since s(t) ∈ G(M) ⊆ Sn−1, similarly to (86), we obtain∣∣∣∣∣ 2

m

m∑
i=1

(yi − ȳ) ·
(
aTi s

(t)
)
·
(
aTi e

(t)
)∣∣∣∣∣ ≤ 4

√
2Ky · 2nδ. (87)
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Then, it remains to control the first term in (79), namely
∣∣ 1
m

∑m
i=1(yi − ȳ) ·

(
aTi s

(t)
)2 − ν∣∣. For any

fixed s ∈ Sn−1, we obtain∣∣∣∣∣ 1

m

m∑
i=1

(yi − ȳ) ·
(
aTi s

)2 − ν∣∣∣∣∣ ≤
∣∣∣∣∣ 1

m

m∑
i=1

(yi −My) ·
(
aTi s

)2 − ν∣∣∣∣∣+

∣∣∣∣∣ 1

m

m∑
i=1

(My − ȳ) ·
(
aTi s

)2∣∣∣∣∣
(88)

≤

∣∣∣∣∣ 1

m

m∑
i=1

(yi −My) · (aTi s)2 −
(
xT s

)2
ν

∣∣∣∣∣+
∣∣∣1− (xT s)2∣∣∣ · ν +

∣∣∣∣∣ |My − ȳ|
m

m∑
i=1

(
aTi s

)2∣∣∣∣∣ (89)

≤

∣∣∣∣∣ 1

m

m∑
i=m

(yi −My) · (aTi s)2 −
(
xT s

)2
ν

∣∣∣∣∣+
|My − ȳ|

m

m∑
i=1

(
aTi s

)2
+ ‖x− s‖22 · ν, (90)

where we use
∣∣∣1− (xT s)2∣∣∣ =

(
1 + xT s

)
·
(
1− xT s

)
≤ 2
(
1− xT s

)
= ‖x− s‖22 in (90). Since s

is a unit vector, from Lemma 2, we obtain with probability 1− e−Ω(m) that

1

m

m∑
i=1

(
aTi s

)2 ≤ 2. (91)

In addition, conditioned on the event E , we have

|ȳ −My| ≤ CKy

√
logm

m
. (92)

Then, we only need to focus on the first term of (90). We write s ∈ Sn−1 as

s = (sTx)x +
√

1− (sTx)2 · t, (93)

where xT t = 0 and ‖t‖2 = 1. Hence,(
aTi s

)2
=
(
xT s

)2 (
aTi x

)2
+
(

1−
(
xT s

)2)·(aTi t)2+2
(
xT s

)
·
√

1− (xT s)
2·
(
aTi x

)
·
(
aTi t

)
. (94)

Then, the first term of (90) can be upper bounded as∣∣∣∣∣ 1

m

m∑
i=1

(yi −My) · (aTi s)2 −
(
xT s

)2
ν

∣∣∣∣∣
≤
(
xT s

)2
m

·

∣∣∣∣∣
m∑
i=1

(yi −My)(aTi x)2 − ν

∣∣∣∣∣+
1−

(
xT s

)2
m

·

∣∣∣∣∣
m∑
i=1

(yi −My)(aTi t)
2

∣∣∣∣∣
+

2
∣∣xT s∣∣ ·√1− (xT s)

2

m
·

∣∣∣∣∣
m∑
i=1

(yi −My) · (aTi x) · (aTi t)

∣∣∣∣∣ . (95)

Conditioned on the event E , the first term in (95) can be upper bounded by(
xT s

)2
m

∣∣∣∣∣
2m∑

i=m+1

(yi −My)(aTi x)2 − ν

∣∣∣∣∣ ≤ CKy

√
logm

m
. (96)

In addition, since y = f(aTx) is independent of aT t, from Lemma 2, for any u > 2 and fixed yi, we
have with probability at least 1− e−u that

1−
(
xT s

)2
m

·

∣∣∣∣∣
m∑
i=1

(yi −My)(aTi t)
2

∣∣∣∣∣ ≤ 1

m

∣∣∣∣∣
m∑
i=1

(yi −My)((aTi t)
2 − 1)

∣∣∣∣∣+
1

m

∣∣∣∣∣
m∑
i=1

(yi −My)

∣∣∣∣∣
(97)

≤ C

(√
u ·
√∑m

i=1(yi −My)2/m√
m

+
u ·maxi |yi −My|

m

)
+

1

m

∣∣∣∣∣
m∑
i=1

(yi −My)

∣∣∣∣∣ . (98)
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Conditioned on the event E and using the inequality |My| ≤ Ky (cf. (34)), we obtain that when
m = Ω(u · logm), with probability at least 1− e−u, it holds that

1−
(
xT s

)2
m

·

∣∣∣∣∣
m∑
i=1

(yi −My)(aTi t)
2

∣∣∣∣∣ ≤ CKy ·
√
u · logm

m
. (99)

Moreover, similarly to (65), we obtain that conditioned on the event E , with probability at least
1− 2e−u, the third term in (95) is upper bounded as

2
(
xT s

)
·
√

1− (xT s)
2

m
·

∣∣∣∣∣
m∑
i=1

(yi −My) · (aTi x) · (aTi t)

∣∣∣∣∣ = O

(
Ky ·

√
u

m

)
. (100)

Combining (90), (91), (92), (95), (96), (99) and (100), we obtain that conditioned on the event E , for
any fixed s ∈ Sn−1 and u > 2, when m = Ω(u · logm), with probability 1− e−Ω(u),∣∣∣∣∣ 1

m

m∑
i=1

(yi − ȳ) ·
(
aTi s

)2 − ν∣∣∣∣∣ ≤ CKy ·
√
u · logm

m
+ ‖x− s‖22 · ν. (101)

Taking a union bound for all s ∈ G(M) and setting u = k log Lr
δ , we obtain that when conditioned on

the event E and m = Ω
((
k log Lr

δ

)
· (logm)

)
, with probability 1− e−Ω(k log Lr

δ ), for all s ∈ G(M),∣∣∣∣∣ 1

m

m∑
i=1

(yi − ȳ) ·
(
aTi s

)2 − ν∣∣∣∣∣ ≤ CKy ·

√(
k log Lr

δ

)
· (logm)

m
+ ‖x− s‖22 · ν, (102)

and this gives an upper bound for the first term of (79) by substituting s(t) for s. Combin-
ing (79), (86), (87) and (102), we obtain that when m = Ω

((
k log Lr

δ

)
· (logm)

)
, with probability

1− e−Ω(k log Lr
δ ),∣∣∣ν̂(t) − ν
∣∣∣ ≤ 4

√
2Kynδ(2 + δ) + CKy ·

√(
k log Lr

δ

)
· (logm)

m
+ ‖x− s(t)‖22 · ν (103)

≤ CKy

nδ +

√(
k log Lr

δ

)
· (logm)

m

+
(∥∥∥x− x(t)

∥∥∥
2

+ δ
)2

· ν, (104)

where (104) follows from (76). Setting δ = 1
n
√
m

and using n = Ω(m), we obtain

CKy

nδ +

√(
k log Lr

δ

)
· (logm)

m

+
(∥∥∥x− x(t)

∥∥∥
2

+ δ
)2

· ν

≤ CKy

√(
k log Lr

δ

)
· (logm)

m
+

(∥∥∥x− x(t)
∥∥∥2

2
+ 2δ ·

∥∥∥x− x(t)
∥∥∥

2
+ δ2

)
· ν (105)

≤ CKy

√(
k log Lr

δ

)
· (logm)

m
+
∥∥∥x− x(t)

∥∥∥2

2
· ν, (106)

where (106) follows from
∥∥x− x(t)

∥∥
2
≤ 2 and ν > 0 is a fixed constant (recall that the value of C

may differ from line to line).

Next, we present the following useful lemma.
Lemma 9. For any u > 2 satisfying m = Ω(u · logm), conditioned on the event E (cf. (30)), we
have that for any s1 ∈ Sn−1 and s2 ∈ Rn, with probability 1− e−Ω(u),∣∣∣∣∣ 1

m

m∑
i=1

(
(yi − ȳ) · (aTi s1)− ν(aTi x)

)
· (aTi s2)

∣∣∣∣∣ ≤
(
CKy

√
u · logm√
m

+ ‖s1 − x‖22 · ν
)
· ‖s2‖2.

(107)
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Proof. Without loss of generality, we assume that ‖s2‖2 = 1. We have

1

m

m∑
i=1

(
(yi − ȳ) · (aTi s1)− ν(aTi x)

)
· (aTi s2)

=
1

m

m∑
i=1

(
(yi −My) · (aTi s1)− ν(aTi x)

)
· (aTi s2) +

1

m

m∑
i=1

(My − ȳ) · (aTi s1) · (aTi s2). (108)

In the second term of (108), we observe that from Lemma 1, (aTi s1) ·(aTi s2) are i.i.d. sub-exponential
random variables with mean sT1 s2 and the sub-exponential norm being upper bounded by C. From
Lemma 2, we have with probability 1− e−u that∣∣∣∣∣ 1

m

m∑
i=1

(aTi s1) · (aTi s2)− (sT1 s2)

∣∣∣∣∣ ≤ C
√
u

m
. (109)

Then, we obtain∣∣∣∣∣ 1

m

m∑
i=1

(My − ȳ) · (aTi s1) · (aTi s2)

∣∣∣∣∣ ≤ |My − ȳ| ·

∣∣∣∣∣ 1

m

m∑
i=1

(aTi s1) · (aTi s2)

∣∣∣∣∣ (110)

≤ CKy

√
logm

m
·

∣∣∣∣∣ 1

m

m∑
i=1

(aTi s1) · (aTi s2)

∣∣∣∣∣ (111)

≤ CKy

√
logm

m
·
(

1 + C

√
u

m

)
(112)

≤ C ′Ky

√
logm

m
, (113)

where (111) follows from the definition of the event E in Lemma 4, (112) follows from (109) and
|sT1 s2| ≤ ‖s1‖2 · ‖s2‖2 = 1, and (113) follows from the condition m = Ω

(
u · logm

)
. Then, it

remains to control the first term of (108). Similarly to that in the proof of Lemma 5, we decompose
s1 as (cf. (49))

s1 = (sT1 x)x +
√

1− (sT1 x)2 · t1, (114)

where ‖t1‖2 = 1 and tT1 x = 0. Similarly, letting w12 =
√

1− (sT2 x)2 − (sT2 t1)2, s2 can be written
as (cf. (50))

s2 = (sT2 x)x + (sT2 t1)t1 + w12t2, (115)

where ‖t2‖2 = 1 and tT2 x = tT2 t1 = 0. Let gi = aTi x ∼ N (0, 1), hi,1 = aTi t1 ∼ N (0, 1), and
hi,2 = aTi t2 ∼ N (0, 1); the three are independent. Therefore, we obtain

1

m

m∑
i=1

(
(yi −My) · (aTi s1)− ν(aTi x)

)
· (aTi s2) =

1

m

m∑
i=1

(
(yi −My) · (sT1 x)− ν

)
· (sT2 x)g2

i

+
1

m

m∑
i=1

(
(yi −My) ·

√
1− (sT1 x)2 · (sT2 t1)

)
h2
i,1

+
1

m

m∑
i=1

(
(yi −My) ·

√
1− (sT1 x)2

)
· w12hi,1hi,2

+
1

m

m∑
i=1

(
(yi −My) ·

√
1− (sT1 x)2 · (sT2 x) + (yi −My) · (sT1 x) · (sT2 t1)− ν(sT2 t1)

)
· gihi,1

+
1

m

m∑
i=1

(
(yi −My) · (sT1 x)− ν

)
· w12gihi,2. (116)

The equality (116) is similar to (53), with the major difference being that yi is replaced by yi −My ,
which has zero mean. In the following, we focus on bounding the first term in (116), and other terms
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can be similarly bounded as those in the proof of Lemma 5. In particular, for the first term in (116),
we have

1

m

m∑
i=1

(
(yi −My) · (sT1 x)− ν

)
· (sT2 x)g2

i

=
(sT1 x)(sT2 x)

m

m∑
i=1

(yi −My − ν)g2
i +

1

m

m∑
i=1

ν(sT2 x)((sT1 x)− 1)g2
i (117)

=
(sT1 x)(sT2 x)

m

m∑
i=1

(yig
2
i −My − ν) +

(sT1 x)(sT2 x)

m

m∑
i=1

(ν +My)(1− g2
i )

+
1

m

m∑
i=1

ν(sT2 x)((sT1 x)− 1)g2
i . (118)

By Lemma 4 and similarly to (109), as well as using |My| ≤ Ky (cf. (34)) and ν < CKy ,9 we obtain∣∣∣∣∣ 1

m

m∑
i=1

(
(yi −My) · (sT1 x)− ν

)
· (sT2 x)g2

i

∣∣∣∣∣ ≤ CKy

√
logm

m
+ C ′‖s1 − x‖22 · ν, (119)

where C ′ > 0 can be choose to be slightly larger than 1
2 . For the last four terms in (116), similarly

to (67), we obtain that whenm = Ω
(
u · logm

)
, with probability 1−O

(
e−u

)
, the sum of the absolute

value of these four terms can be upper bounded by

CKy

√
u · logm√
m

. (120)

Combining (108), (113), (116), (119), and (120), we obtain the desired result.

C.2 Proof of Theorem 2

Since x(t+1) = PG(x̃(t+1)) and x ∈ Range(G), we obtain∥∥∥x̃(t+1) − x(t+1)
∥∥∥

2
≤
∥∥∥x̃(t+1) − x

∥∥∥
2
, (121)

or equivalently, ∥∥∥(x̃(t+1) − x
)

+
(
x− x(t+1)

)∥∥∥2

2
≤
∥∥∥x̃(t+1) − x

∥∥∥2

2
, (122)

which gives

‖x(t+1) − x‖22 ≤ 2〈x̃(t+1) − x,x(t+1) − x〉 (123)

= 2

〈
x(t) − ζ

m
·
m∑
i=1

(
ν̂(t)

(
aTi x

(t)
)
− ỹ

(t)
i

)
ai − x,x(t+1) − x

〉
(124)

= 2

〈
x(t) − ζ

m
·
m∑
i=1

(
ν
(
aTi x

(t)
)
− ỹ

(t)
i

)
ai − x,x(t+1) − x

〉

+ 2

〈
ζ

m
·
m∑
i=1

(
ν − ν̂(t)

)
·
(
aTi x

(t)
)
ai,x

(t+1) − x

〉
(125)

= 2

〈
ζ

m
·
m∑
i=1

(
ỹ

(t)
i − ν(aTi x)

)
ai,x

(t+1) − x

〉

+ 2

〈(
In −

ζν

m
·
m∑
i=1

aia
T
i

)(
x(t) − x

)
,x(t+1) − x

〉
9Recall that we will assume that ν > 0 (cf. (7)). We have ν = E[y(aTx)2] − My ≤ (E[y2])1/2 ·

(E[(aTx)4])1/2 + |My|. Note that aTx ∼ N (0, 1). From (34), we have |My| ≤ Ky and (E[y2])1/2 ≤ 2Ky .
Then, we obtain ν ≤ (2

√
3 + 1)Ky .
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+ 2

〈
ζ

m
·
m∑
i=1

(
ν − ν̂(t)

)
·
(
aTi x

(t)
)
ai,x

(t+1) − x

〉
(126)

= 2

〈
ζ

m
·
m∑
i=1

(
(yi − ȳ) ·

(
aTi x

(t)
)
− ν(aTi x)

)
ai,x

(t+1) − x

〉

+ 2

〈(
In −

ζν

m
·
m∑
i=1

aia
T
i

)(
x(t) − x

)
,x(t+1) − x

〉

+ 2

〈
ζ

m
·
m∑
i=1

(
ν − ν̂(t)

)
·
(
aTi x

(t)
)
ai,x

(t+1) − x

〉
, (127)

where (124) follows from the setting of x̃(t+1) in (15), (125) follows from the decomposition
ν̂(t+1) = ν +

(
ν̂(t) − ν

)
, (126) follows from the fact that the first term in (125) can be written as

the sum of the first two terms in (126), and (127) follows from the setting of ỹ(t)
i in (14). For any

δ ∈ (0, 1), let M be a (δ/L)-net of Bk(r). Then, similarly to that in the proof of Lemma 8, we have
log |M | ≤ k log 4Lr

δ (cf. (75)) and G(M) is a δ-net of G(Bk(r)). For any t ∈ {0, . . . , T2}, we write

x(t) = s(t) + e(t), (128)

where s(t) ∈ G(M) and ‖e(t)‖2 ≤ δ. Next, we provide upper bounds for the three terms in (127)
separately. Throughout the following, we assume the occurrence of the event E (cf. (30)) and the
relevant probabilities are all conditioned accordingly.

The first term of (127): From (128), we have

2

〈
ζ

m
·
m∑
i=1

(
(yi − ȳ) ·

(
aTi x

(t)
)
− ν(aTi x)

)
ai,x

(t+1) − x

〉

= 2

〈
ζ

m
·
m∑
i=1

(
(yi − ȳ) ·

(
aTi x

(t)
)
− ν(aTi x)

)
ai, s

(t+1) − x

〉

+ 2

〈
ζ

m
·
m∑
i=1

(
(yi − ȳ) ·

(
aTi x

(t)
)
− ν(aTi x)

)
ai, e

(t+1)

〉
(129)

= 2

〈
ζ

m
·
m∑
i=1

(
(yi − ȳ) ·

(
aTi s

(t)
)
− ν(aTi x)

)
ai, s

(t+1) − x

〉

+ 2

〈
ζ

m
·
m∑
i=1

(yi − ȳ) ·
(
aTi e

(t)
)
ai, s

(t+1) − x

〉

+ 2

〈
ζ

m
·
m∑
i=1

(
(yi − ȳ) ·

(
aTi x

(t)
)
− ν(aTi x)

)
ai, e

(t+1)

〉
. (130)

Recall that in (80), we obtain with probability 1−me−Ω(n) that maxi∈[m] ‖ai‖2 ≤
√

2n. In addition,
according to (84), we have 1

m

∑m
i=1 |yi − ȳ| ≤ 2

√
2Ky. Then, for the second term in (130), since∥∥e(t)

∥∥
2
≤ δ, similarly to (86), we obtain

2

〈
ζ

m
·
m∑
i=1

(yi − ȳ) ·
(
aTi e

(t)
)
ai, s

(t+1) − x

〉
≤ 2ζ · 2nδ ·

∥∥∥s(t+1) − x
∥∥∥

2
· 1

m

m∑
i=1

|yi − ȳ|

(131)

≤ 8
√

2ζKynδ ·
∥∥∥s(t+1) − x

∥∥∥
2

(132)

≤ 8
√

2ζKynδ ·
(∥∥∥x(t+1) − x

∥∥∥
2

+ δ
)
. (133)
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Similarly, since both x and x(t) are unit vectors and
∥∥e(t+1)

∥∥
2
≤ δ, for the third term in (130),

2

〈
ζ

m
·
m∑
i=1

(
(yi − ȳ) ·

(
aTi x

(t)
)
− ν(aTi x)

)
ai, e

(t+1)

〉

≤ 2ζ · 2nδ · 1

m

m∑
i=1

|yi − ȳ|+ 2ζ · 2nδ · ν (134)

≤ 4ζnδ · (2
√

2Ky + ν). (135)

It remains to control the first term of (130). In order to do this, we make use of Lemma 9 with taking
a union bound over all (s1, s2) ∈ G(M) × (G(M) − x) and setting u = k log Lr

δ , and we obtain
that when m = Ω

((
k log Lr

δ

)
· (logm)

)
, with probability 1− e−Ω(k log Lr

δ ),∣∣∣∣∣2
〈
ζ

m
·
m∑
i=1

(
(yi − ȳ) ·

(
aTi s

(t)
)
− ν(aTi x)

)
ai, s

(t+1) − x

〉∣∣∣∣∣
≤ 2ζ ·

CKy

√(
k log Lr

δ

)
· (logm)

m
+ ν

∥∥∥s(t) − x
∥∥∥2
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The second term of (127): By (128), we have
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Since from (80), we have with probability 1 − me−Ω(n) that maxi∈[m] ‖ai‖2 ≤
√

2n. Similarly
to (86), we obtain∣∣∣∣∣2
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and
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Fix any pair of s1, s2 ∈ Rn. From Lemma 2 and similarly to (109), we obtain that for any u > 2,
with probability at least 1− e−u,
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(142)
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Then, we obtain∣∣∣∣∣
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Taking a union bound for all pairs (s1, s2) ∈ (G(M)−x)×(G(M)−x) and setting u = m
C2 logm , as

well as considering ζ, ν as fixed positive constants, we obtain that whenm = Ω
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The third term of (127): By the TS-REC in Lemma 3, we obtain that for any δ ∈ (0, 1), when
m = Ω(k log Lr

δ ), with probability 1− e−Ω(m),
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where c is a sufficiently small positive constant. By (128) and similarly to the derivation of the
TS-REC, we have that when m = Ω(k log Lr

δ ), with probability 1− e−Ω(m),
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Then, from the Cauchy-Schwarz inequality, the third term in (127) can be upper bounded as∣∣∣∣∣2
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Combining terms: Combining (127), (130), (133), (135), (137), (138), (139), (141), (146), and (150),
we obtain that when m = Ω
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Considering ζ as a positive constant and setting δ =
Ky
mn , as well as using n = Ω(m), similarly
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From Lemma 8, we have∣∣∣ν − ν̂(t)
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Then, since c > 0 is sufficiently small, we obtain
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Combining (152) and (154), we obtain∥∥∥x(t+1) − x
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Therefore, from the quadratic formula, we obtain∥∥∥x(t+1) − x
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Then, since 1√
logm

= o(1), if (18) holds for t = 0, i.e., 5ζν ·
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This in turn leads to 5ζν ·
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is violated, by induction, we obtain that the sequence
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In addition, since T0 ∈ N is the smallest integer such that (161) is violated, we have∥∥∥x(T0) − x
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Then, by the linear convergence rate in (165) and ‖x(0) − x‖2 ≤ 2, we obtain T0 =
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Then, by induction, we obtain for all t ≥ T0 that∥∥∥x(t) − x
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which completes the proof.

D Additional Numerical Results for the MNIST Dataset

In this section, we present some additional numerical results for the MNIST dataset. We first present
a figure to illustrate how quickly does Step 2 of Algorithm 1 converge in Appendix D.1, then we
present how the reconstruction error of Algorithm 1 varies with respect to 1/

√
m in Appendix D.2.

In Appendix D.3, we empirically illustrate the effect of the scale factor ν̂(t) used in (15). In
Appendix D.4, we compare with the method proposed in [80]. A simple numerical comparison with
the approximate message passing (AMP) algorithm proposed in [3] is provided in Appendix D.5.

D.1 The Convergence Rate of Step 2 of Algorithm 1

For the noisy magnitude-only measurement model (22), we fix m = 400 and σ = 0.1 to see how the
reconstruction error decays with respect to the number of iterations of Step 2 of Algorithm 1. The
results are illustrated in Figure 5. From Figure 5, we observe that the logarithm of the reconstruction
error decays almost linearly during the first 20 iterations.

D.2 The Reconstruction Error against 1/
√
m

According to Theorem 2, for a fixed generative model, the final reconstruction error of our Algorithm 1
should scale as O

(
1/
√
m
)

(ignoring the logm term). This is numerically verified in Figure 6, for
which we consider the noisy magnitude-only measurement model (22) with σ = 0 or σ = 0.1.
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Figure 5: A plot of the log reconstruction error against the number of iterations.

0.03 0.04 0.05 0.06 0.07
1/ m

0.4

0.5

0.6

0.7

0.8

Re
co

ns
tru

ct
io

n 
Er

ro
r

0.03 0.04 0.05 0.06 0.07
1/ m

0.4

0.5

0.6

0.7

0.8

Re
co

ns
tru

ct
io

n 
Er

ro
r

(a) (22) with σ = 0 (b) (22) with σ = 0.1

Figure 6: Plots of reconstruction error of MPRG against 1/
√
m for the measurement model (22).

D.3 The Effect of the Scale Factor ν̂(t) used in (15)

In Algorithm 1, the scale factor ν̂(t) is calculated according to (13) and is used in (15). We remark
that this scale factor plays an important role. To illustrate this, we compare Algorithm 1 (recall that it
is denoted by MPRG) with the case that using a fixed ν̂(0) in (15) (i.e., it is not varying with respect
to t) during the iterations of the second step of Algorithm 1, which is denoted by MPRGf. For the
measurement models (24) and (25), the numerical results are presented in Figures 7 and 8. From
these figures, we observe that by using a varying scale factor ν̂(t), we obtain better reconstructed
images and smaller reconstruction errors.

D.4 Comparison with the Method proposed in [80]

In this subsection, we compare with the method proposed in [80], which we denote by prGAN. We
focus on the noiseless measurement model yi = |aTi x| for i ∈ [m], and the numerical results are
presented in Figures 9 and 10. We observe from these figures that the three methods prGAN, APPGD,
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Figure 7: Examples of reconstructed MNIST images of MPRG and MPRGf.
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Figure 8: Quantitative comparisons of the performance of MPRG and MPRGf.

and MPRG lead to competitive reconstruction error. However, prGAN is not as stable as APPGD
and MPRG, and it may result in reconstructed images that are not desired.

D.5 Comparison with the AMP Algorithm proposed in [3]

We follow the setting in [3] to use a ReLU neural network generative model with no offsets and
zero-mean random Gaussian weights. The architecture of this neural network generative model G is
the same as the decoder of the VAE model used for the MNIST dataset, i.e., the latent dimension
k = 20, there are two hidden layers with 500 neurons, and the output dimension is 784. We randomly

Or
ig

in
al

M
PR

S
pr

GA
N

PP
ow

er
AP

PG
D

M
PR

G

Figure 9: Examples of reconstructed MNIST images of prGAN.
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Figure 10: Quantitative comparisons to the performance of prGAN.
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Figure 11: Examples of reconstructed signals of MPRG and AMP.

choose 10 latent vectors z ∈ Rk and use the corresponding G(z) as the signal. Under this ReLU
neural network generative model and the noiseless measurement model yi = |aTi x|, we compare our
Algorithm 1 with the AMP algorithm used in [3]. The reconstruction error is averaged over the 10
signals and 10 random restarts. The results are presented in Figures 11 and 12. We can observe from
these figures that MPRG leads to better reconstruction performance compared to AMP.

E Empirical Results for the CelebA Dataset

The CelebA dataset contains more than 200, 000 face images of celebrities. Each input image is
cropped into a 64× 64 RGB image and thus n = 64× 64× 3 = 12288. The generative model G
is set to be (the normalized version of) the Deep Convolutional Generative Adversarial Networks
(DCGAN) model pre-trained by the authors of [6], with the latent dimension being k = 100. The
projection operator PG(·) is approximated by the Adam optimizer with a learning rate of 0.1 and
100 steps. To reduce the impact of local minima, we present the best reconstructed images among 6
random restarts. Other involved parameters are set to be the same as those for the MNIST dataset.

For the CelebA dataset, we do not compare with the sparsity-based method MPRS since the face images
are clearly not sparse in the natural domain and we have observed from the results for the MNIST
dataset that MPRS leads to poor reconstructions. Recall that we have performed numerical experiments
for several measurement models (cf. (22), (23), (24) and (25)) for the MNIST dataset. In this section,
we only present some proof-of-concept experimental results for the following measurement model:

yi = |aTi x + ηi|+ 5 tanh(|aTi x|), i = 1, 2, . . .m, (171)
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Figure 12: Quantitative comparisons to the performance of AMP under a ReLU neural network
generative model.
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Figure 13: Examples of reconstructed images of the CelebA dataset for the measurement model (171)
with m = 6000 and σ = 0.4.

where ηi are i.i.d. realizations of an N (0, σ2) random variable. The model in (171) can be thought
of as a misspecified version of the measurement model yi = |aTi x + ηi|. The reconstructed
images are presented in Figure 13, from which we observe that our method MPRG leads to the best
reconstructed images compared to those of PPower and APPGD. Quantitative comparisons according
to the reconstruction error are provided in Figure 14. From this figure, we observe that when
m > 4000, MPRG gives smallest reconstruction error. We expect the advantage of our method to
be more significant as the level of misspecification increases, i.e., the multiplier of the tanh term
in (171) becomes larger.
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Figure 14: Quantitative comparisons of the performance for the CelebA dataset and measurement
model (171) with σ = 0.4 and varying m.
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