
A Additional Results

A.1 Additional ablations
Table 10 shows automatic metrics with various language models used to parameterize NATURAL-
PROVER.

Table 11 shows results with the 774M parameter GPT-2 model with greedy decoding, and full-proof
sampling & reranking with 5 and 10 samples, compared to the 13B parameter GPT-3 with greedy
decoding. We use ⌧ = 0.3 and ↵ = 0.75 based on our full-proof sampling experiments with GPT-3.

Table 13 varies the value function parameter ↵ (core dev set). We use full-proof sampling since
stepwise++ uses multiple values of ↵ in its selection.

Model Params Gleu Ref-F1 Halluc
GPT-Neo 125M 24.85 61.42 11.07
GPT-2 774M 32.06 65.22 6.76
GPT-J 6B 39.14 79.23 3.51
GPT-3 13B 42.39 89.29 1.90

Table 10: Varying the language model parameter-
ization of NATURALPROVER (provided knowl-
edge, greedy decoding, core dev set).

Model Decoding Gleu Ref-F1 Halluc
GPT-2 Greedy 32.06 65.22 6.76
GPT-2 Rerank (5) 32.95 83.55 5.24
GPT-2 Rerank (10) 32.65 89.30 2.89
GPT-3 Greedy 42.39 89.29 1.90

Table 11: Increasing the inference-time compute
budget and reranking with the NATURALPROVER
value function closes the reference-matching gap
between GPT-2 (774M) and GPT-3 (13B).

↵ Gleu Ref-F1
0.0 42.79 88.40
.25 42.05 90.81
.50 42.59 91.75
.75 42.17 93.19
1.0 41.90 93.60

Table 12: Effect of value function, from ↵ : 0 (LM only) to ↵ : 1.0 (constraint only), with full-proof
sampling (10).

Lexical Grounding

GLEU Token F1 kF1 Ref-P Ref-R Ref-F1 Halluc (#)

Stepwise Stochastic Beam 41.0 68.89 90.33 91.43 82.04 84.21 4.60
Constrained Stepwise++ 40.4 68.90 97.24 95.05 94.85 94.15 2.00

Table 13: NaturalProver with a stepwise stochastic beam search baseline versus stepwise++ decoding.
The baseline search corresponds to using stepwise decoding with an LM-only value function (↵ : 0).
Constrained stepwise++ decoding substantially improves grounding metrics compared to stochastic
beam search, while keeping the lexical content metrics at a similar level. Core validation set.

A.2 Multiple next-step suggestions
Table 14 shows next-step suggestion results with 10 sampled suggestions versus greedy decoding.

16

Lexical Grounding

Decoding GLEU Token F1 kF1 Ref-P Ref-R Ref-F1 Halluc (#)

Greedy 47.87 65.33 70.03 80.04 72.78 65.50 0.93

Nucleus (p=.5) 51.10 68.34 73.69 82.75 74.93 69.21 0.94
Nucleus (p=.7) 53.97 71.01 78.86 84.75 79.28 74.52 0.66
Nucleus (p=.9) 57.79 74.45 85.66 90.17 84.03 81.83 0.22
Temperature (t=.6) 60.60 76.43 87.46 91.03 87.48 84.44 0.62
Temperature (t=.8) 61.89 77.48 89.67 93.19 88.46 86.74 0.43
Temperature (t=1.0) 62.12 77.60 89.78 93.05 88.96 86.87 0.63

Table 14: Automatic metrics on the core dev set for next-step suggestion, with different decoding
strategies. Generations are from NATURALPROVER (provided knowledge). For stochastic decoding,
10 candidates are sampled. We compute metrics using the candidate with the highest sum of all
metrics (with Hallucination negated).

B Qualitative Examples

B.1 Error Analysis
B.1.1 Reference errors

Theorem 1 Geometric Mean of two Positive Real Numbers is Between them
Let a, b 2 R be real numbers such that 0 < a < b.
Let G(a, b) denote the geometric mean of a and b.
Then:
a < G(a, b) < b

NATURALPROVER++ Proof: correct deploy
By definition of geometric mean:

G(a, b) =
a
2 + b

2

2

7 7

...

Gold Proof Proof:
By definition of geometric mean:

G(a, b) :=
p
ab

where
p
ab specifically denotes the positive square root of a and b.

...

Reference Geometric Mean
Let x1, x2, . . . , xn 2 R>0 be (strictly) positive real numbers.
The geometric mean of x1, x2, . . . , xn is defined as:
Gn := (

Qn
k=1 xk)

1/n
.

Theorem 2 Power Set of Transitive Set is Transitive
Let S be a transitive set.
Then its power set P(S) is also a transitive set.

NATURALPROVER++ Proof: correct deploy
From Set is Transitive iff Subset of Power Set:
S ✓ P(S)

3

From Power Set of Subset:
P(S) ✓ S

7 7

...

Gold Proof Proof:
Let S be transitive.
By Set is Transitive iff Subset of Power Set:
S ✓ P(S)

Then by Power Set of Subset:
P(S) ✓ P(P(S))

...

Reference Power Set of Subset
Let S ✓ T where S and T are both sets.
Then:

P(S) ✓ P(T) where P(S) denotes the power set of S.

17

Table 15: Reference deployment errors. Theorem 1: NATURALPROVER incorrectly deploys the defi-
nition of geometric mean (G(a, b) = (ab)1/2 would be correct). Theorem 2: An invalid deployment
of Power Set of Subset; a correct application would yield P(S) ✓ P(P(S)). All generated
proofs are with provided knowledge and stepwise++ decoding.

Theorem 3 Derivative at Point of Inflection
Let f be a real function which is twice differentiable on the open interval (a . . b).
Let f have a point of inflection at ⇠ 2 (a . . b).
Then:
f
00 (⇠) = 0

where f
00 (⇠) denotes the second derivative of f at ⇠.

NATURALPROVER++ Proof: correct deploy justif.
By definition of point of inflection:

8⌘ 2 (a . . b) : f (⌘) = 0
where f (⌘) denotes the derivative of f with respect to ⌘.

7 7 7

...

Gold Proof Proof:
By definition of point of inflection,

f
0 has either a local maximum or a local minimum at ⇠.

...

Reference Point of Inflection
Let f be a real function which is differentiable on an interval I ✓ R.
Let ⇠ 2 I.
f has a point of inflection at ⇠ iff the derivative f

0 of f
has either a local maximum or a local minimum at ⇠.

Theorem 4 Minus One is Less than Zero
�1 < 0

NATURALPROVER++ Proof: correct useful justif.
0 < 1 Real Zero is Less than Real One 3 3
 �1 < 0 Order of Real Numbers is Dual of Order of their Negatives 7 3 7

 �1 < 0 Negative of Real Zero equals Zero 3 3
⌅

Gold Proof Proof:
0 < 1 Real Zero is Less than Real One
 �0 > �1 Order of Real Numbers is Dual of Order of their Negatives
 0 > �1 Negative of Real Zero equals Zero
 �1 < 0 Dual Ordering
⌅

Reference Order of Real Numbers is Dual of Order of their Negatives
8x, y 2 R : x > y () (�x) < (�y)

Table 16: Reference justification errors. Theorem 3: NATURALPROVER makes an invalid inference
using the definition of point of inflection (given the theorem statement, f(⇠) = 0 holds, but not
necessarily f(⌘) = 0 for all ⌘ in the interval), which can be viewed as both incorrectly deploying
the definition and using it as invalid justification. Theorem 4: A subtle invalid justification that is
still useful to the human annotator: the reference provides justification for �0 > �1 rather than
�1 < 0. See Table 17 for additional justification errors within derivations. All generated proofs are
with provided knowledge and stepwise++ decoding.

18

B.1.2 Equation errors

Theorem 1 Sum of Squares of Divisors of 24 and 26 are Equal
The sum of the squares of the divisors of 24 equals the sum of the squares of the divisors of
26:

�2(24) = �2(26)
where �↵ denotes the divisor function.

Proof: correct eqn.
NATURALPROVER++ 24 = 23 7 7

26 = 22 7 7
 �2(24) = �2(26) 7 7
⌅

Theorem 2 Trace of Sum of Matrices is Sum of Traces
Let A = [a]n and B = [b]n be square matrices of order n.
Let A + B denote the matrix entrywise sum of A and B.
Then: tr(A + B) = tr(A) + tr(B) where tr(A) denotes the trace of A.

Proof: correct eqn. ref.
NATURALPROVER++ tr(A + B) =

P
C=A+B tr(C) Trace of Matrix 7 7 7

=
P

C=A tr(C) +
P

C=B tr(C) Sum of Summations equals Summation of Sum 7 7 7
= tr(A) + tr(B) Trace of Matrix 7 7 7
⌅

Theorem 3 Moment Generating Function of Discrete Uniform Distribution
Let X be a discrete random variable with a discrete uniform distribution with parameter n

for some n 2 N.
Then the moment generating function MX of X is given by:

MX(t) =
e
t(1 � e

nt)

n(1 � et)

Proof: correct eqn. ref.
NATURALPROVER++ From the definition of the discrete uniform distribution ,

X has probability mass function: Pr(X = k) =
n

n + k

7 7 7

From the definition of a moment generating function:
MX(t) = EetX =

Pn
k=0 Pr(X = k)etk

3

So:
MX(t) =

Pn
k =0 Pr(X = k)etk

3

= n
n+k

Pn
k =0((e

tk)
n Qn�1

j =0(e
t j+1

n)) Sum of Geometric Sequence 7 7 7

= n
n+k

Pn
j =0(e

t j+1
n e

tj) 7 7

= n
n+k (1 � e

nt) Discrete Uniform Distribution 7 7 7

= et(1�ent)

n(1�et)
7 7

⌅

Table 17: Equation-related errors in full proof generation. NATURALPROVER can struggle with
invalid equations and derivations , including basic equalities (Theorem 1), and more sophisticated

settings (Theorems 2 and 3). Since derivations involve deploying definitions and rules from references
and using references as justification, equation-related errors are often coupled with reference errors .

19

B.2 Examples

Theorem Metric Space is Perfectly Normal Gold Proof
Let M = (A, d) be a metric space. By definition, a topological space is perfectly normal space iff it is:
Then M is a perfectly normal space. perfectly T4 space and T1 (Fréchet) space.

We have that:
Metric Space is Perfectly T4

Metric Space is T2 (Hausdorff)
T2 (Hausdorff) Space is a T1 (Frechet) Space.
⌅

NATURALPROVER++ From:
Metric Space is Hausdorff

NATURALPROVER
(without stepwise++)

From:
Metric Space is Perfectly T4

T2 (Hausdorff) Space is T1 Space
Metric Space is Perfectly T4

it follows that M is a topological space which
is perfectly normal.

Metric Space is T2 (Hausdorff)
it follows that M

is a perfectly normal space .

Table 18: Example proof using provided in-context reference constraints. The key theorem T2

Space is T1 Space is provided as a constraint, but under greedy decoding the model ignores the
constraint, resulting in skipping steps . Stepwise++ decoding selects proof steps based on likelihood
and constraint satisfaction, resulting in better reference coverage and a correct proof.

Theorem Title Equality of Complex Numbers

Theorem Content

Gold Proof

NATURALPROVER

NATURALPROVER++

Table 19: A complex, direct proof. Without stepwise++ decoding, NATURALPROVER makes an
invalid deployment error, continues with some nonsense, and prematurely terminates the proof. The
NATURALPROVER++ proof is correct, thanks to stepwise++ decoding.

20

Theorem Title Compact Complement Topology is Connected

Theorem Content

Gold Proof

GPT-3

NATURALPROVER
RETRIEVE

Table 20: A reference assembly proof. GPT-3’s proof is incorrect, possibly because it doesn’t know
to use the two references. NATURALPROVERRETRIEVE uses retrieved references (shown on the right)
to arrive at a correct proof.

21

Theorem Title Pointwise Addition on Real-Valued Functions is Associative

Theorem Content

Gold Proof

GPT-3

NATURALPROVER

Table 21: A template adaptation proof, which is proved via symbolic derivations. NATURALPROVER
adapts the proof of a similar training theorem, Pointwise Addition on Complex-Valued Func-

tions is Associative, to prove the claim. Despite training on the same (theorem, proof) pairs,
vanilla GPT-3 fails to prove the claim.

22

Theorem Title Cosine in terms of Sine

Theorem Content

Gold Proof

GPT-3

NATURALPROVER

Table 22: A template adaptation proof by cases. GPT-3’s proof goes completely derailed and it
does not know to use the reference Sum of Squares of Sine and Cosine. NATURALPROVER’s
proof is correct. The model adapts the proof of the mirroring theorem, Sine in terms of Cosine,
in the training set.

23

Theorem Title: Triangle Inequality/Complex Numbers/General Result

Theorem Content:
Gold Proof NATURALPROVER

Table 23: A complex proof by induction. NATURALPROVER’s proof makes one hallucinated
reference error, one repetition error, and is otherwise correct. The model did not see a similar
proof during training: while there are more variants of the Triangle Inequality theorem in our
dataset (i.e. with Real Numbers and Geometry), they only discuss the 2-variable case and none of
them discuss the n-variable general result. So in this case, the model has learned the format of proof
by induction and can apply it in new context. (A proof-by-induction example in train set: Sum of

Sequence of Squares/Proof by Induction.)

24

C Dataset Details

We provide an overview of NATURALPROOFS and its ProofWiki domain from which we build
NATURALPROOFS-GEN. Refer to [45] for further details about NATURALPROOFS.

Our dataset is derived from NATURALPROOFS, a multi-domain corpus of theorem statements, proofs,
definitions, and additional pages (e.g. axioms, corollaries) in natural mathematical language. We
use the ProofWiki2 domain, which provides broad-coverage of many subject areas (e.g. Set Theory,
Analysis) sourced from ProofWiki, an online compendium of community-contributed mathematical
proofs. PROOFWIKI contains ⇠20k theorems, ⇠20k proofs, ⇠12k definitions, and ⇠1k additional
pages (e.g. axioms, corollaries). The set of all ⇠33k theorems, definitions, and additional pages form
the reference set R. Finally, ⇠14.5k of the theorems x are paired with at least one proof y to form
examples D = {(x,y)i}Ni=1. [45] split the reference sets and examples into training, validation, and
test splits to ensure that no theorem in the validation or test splits was mentioned in the training split.

D Segment-level Constrained Decoding

In this section we present a generic segment-level decoding algorithm that contains stepwise++,
full-proof sampling, and greedy decoding as special cases. We generate a multi-step proof using a
value function v(·) that measures language quality and constraint satisfaction. Search can be done
at the step-level, in which candidate next-steps are generated and high-value steps are retained in
a beam, or at the proof-level, in which multiple proofs are generated and the highest-value proof
is selected. We formalize these into a generic segment-level search, where a segment st is either a
proof-step yt or a full proof y.

The search iteratively builds a multi-step proof y = (y1, . . . , yT) by expanding, scoring, and selecting
a set of candidate segments:

• Expand: St�1 ! S0
t

extends segments St�1 = {st} into candidates S0
t
= {(st, st)}.

• Score : (st, v) ! R scores a candidate using a value function, v(st) ! R.
• Select : S0

t
! St prunes candidates S0

t
into segments St used in the next iteration.

Value function. We score candidates based on constraint satisfaction and language quality,

v(st) = ↵vconstraint(st) + (1� ↵)vLM(st), (7)

where vconstraint(yt) is the number of unique in-context reference-titles in st, and vLM(st) is
log p✓(st). We normalize each term by dividing by the maximum absolute value among candidates.

Greedy search. This baseline search defines a segment as a full proof, meaning s0 is an empty
sequence and s1 is a proof y. Expand samples one segment candidate with temperature 0. Score
and select are trivial since there is only one candidate. Greedy search costs T steps of tokens.

Sample-and-rerank. In this search, a segment is again full proof, but expand samples N can-
didates, S0

1 = {yn ⇠ q(·|x)}N
n=1, where q is a decoding algorithm (e.g. temperature sampling).

Select takes the top scoring candidate, y = argmaxyn2S
0
1
v(yn). The cost is NT steps of tokens.

Step-wise stochastic beam search. This search generates by iteratively sampling and re-ranking
next-step candidates. In this case, a segment is a proof step, yt, and each iteration starts with a
beam of proofs-so-far, St�1 = {yk

<t
}K
k=1, where K is the beam size. Expand samples N next-step

candidates for each proof-so-far in the beam,

S0
t
=

[

y<t2St�1

�
(y<t � ynt) | ynt ⇠ q(·|y<t,x)

 N

n=1
, (8)

where q is a decoding algorithm (e.g. temperature sampling) and � is concatenation. Select forms
the next beam using the top-K scoring candidates,

St = arg top-K
yt2S

0
t

v(yt). (9)

2The ProofWiki domain of NATURALPROOFS dataset is under the CC BY-SA 4.0 license.

25

When a proof in the beam terminates, it is not expanded further. The search ends when the beam
consists of K terminated proofs. The highest scoring proof is returned as the final output. The cost is
NTK steps of tokens.

Stepwise++. At certain proof steps it is important to enumerate and explore options, while at others
(e.g. derivations) a single highly probable prediction is better. To this end, we expand by sampling
with multiple temperatures, meaning that we expand each prefix y<t in (6) using:

{yn
t
⇠ q⌧ (·|y<t,x) | ⌧ 2 {⌧1, . . . , ⌧m}}, (10)

where q⌧ is sampling with temperature ⌧ . This relaxes the commitment to a single temperature for all
proof steps, intuitively balancing exploration (higher ⌧) with exploitation (lower ⌧).

Second, during the search we want to balance selecting proof steps that satisfy constraints and proof
steps with high log-probability. To this end, we select clusters with different value weights,

St = {yt 2 top
K0(S↵) | ↵ 2 {↵1, . . . ,↵`}}, (11)

where S↵ means the set of candidates scored with v = ↵vconstraint + (1 � ↵)vLM, and K 0 = K/`.
This interpolates between selecting steps with good language score (↵ small), constraint score (↵
large), and balance (↵ : 0.5).

E Implementation Details and Experimental Setup

Data preprocessing. We automatically infer the boundaries of proof steps within the raw proof
contents, and merge contiguous lines into atomic proof steps when appropriate. Steps are separated
by the \n token (\\n in Python string), and lines within a step are separated by the newline token (\n
in Python string).

Additional model details. All GPT-3 models (including NATURALPROVER models) are fine-tuned
instances of the Curie engine, the second largest model available through the OpenAI API at the
time of writing.3 The model’s performance on the EleutherAI evaluation harness4 is between the
6.7B and 13B variants of the autoregressive transformer language model GPT-3 from [5],5 though
further details of the Curie model are not publicly available.

Separately, we fine-tune GPT-J 6B,6 a publicly available autoregressive transformer language model
trained on the Pile [19], GPT-2 [35], an autoregressive transformer language model trained on scraped
web documents, and GPT-Neo-125M,7 a GPT-2 like causal language model trained on the Pile.

Our retrieval model is the joint retrieval model from [45] trained for reference retrieval on ProofWiki
using the same dataset splits as NaturalProver. We use the publicly-available pretrained model from
the GitHub repository of [45] and do not update the model further. We use the model to retrieve the
top-20 references for each input theorem.

Implementation details. All GPT-3 models (including NATURALPROVER models) are fine-tuned
with the OpenAI API8 for 4 epochs with a batch size of 64. Other models (GPT-2/J/Neo) are trained
on one Quadro RTX 8000 GPU. During inference, the prompt (up to <proof>) is truncated to 1024
tokens. For full proof generation, we allow a maximum of 1020 generated tokens. For next-step
suggestion, we truncate the proof-so-far to 900 tokens, and allow a maximum of 120 generated tokens
per step.

Stepwise++ decoding. For expansion with multiple temperatures, we use N = 10 candidates
sampled with (n, ⌧) 2 {(1, 0.0), (3, 0.3), (3, 0.5), (3, 0.7)}. We also tried including ⌧ = 1.0 which
resulted in very poor GLEU, and {(1,0.0), (5,0.3), (4,0.5)}. For selection, we use a beam size K = 9,
and three equally-sized clusters formed with ↵ 2 {0.1, 0.5, 1.0}. We also tried {0.5, 0.75, 0.9}. We
use ↵ = 0.75 to pick select the final sequence, based on our ablation with full-proof sampling.

3https://beta.openai.com/docs/guides/fine-tuning
4https://github.com/EleutherAI/lm-evaluation-harness
5https://blog.eleuther.ai/gpt3-model-sizes/
6https://huggingface.co/EleutherAI/gpt-j-6B
7https://github.com/EleutherAI/gpt-neo
8https://beta.openai.com/docs/guides/fine-tuning

26

https://github.com/EleutherAI/lm-evaluation-harness
https://blog.eleuther.ai/gpt3-model-sizes/
https://huggingface.co/EleutherAI/gpt-j-6B
https://github.com/EleutherAI/gpt-neo
https://beta.openai.com/docs/guides/fine-tuning

Full proof sampling. We use temperature ⌧ = 0.3, selected based on a search over ⌧ 2
{0.1, 0.3, 0.5, 0.7} using GLEU plus Ref-F1 on the core dev set.

F Additional Evaluation Details

F.1 Full Evaluation Schema

Table 24 shows the full schema of human evaluation. The overall correctness and usefulness are
rated on a 0-5 scale. The step-wise correctness and usefulness are yes/no questions, while the error
types ask for a binary indicator for the existence of each error type.

F.2 Additional Human Evaluation Details
Process. The authors conducted and moderated group sessions with the annotators. Each session
consisted of 30-minutes of training and a 1-hour working/Q&A period. After attending the session,
annotators could continue working on their assigned tasks for two weeks. Each annotator was
assigned 25 theorems (with 5 proofs per theorem, equaling 125 total tasks) and asked to complete
as many tasks as they would like. The evaluation guideline that the annotators referenced to can
be found in the supplementary materials. The pre-recorded training video is available at https:
//drive.google.com/file/d/1TRS5XRf_coLEkC4lqaizaqSwHHgBPrG2.

Interface. We developed an interface that displays theorems and proofs in a rendered, human-
readable format and collects annotations. The interface is built on MediaWiki9, which also powers
the ProofWiki website10. We also developed a web console that helps human annotators navigate
annotation tasks and track progress. Figure 3 shows screenshots of the interface.

Payment. Human annotators are paid based on the number of tasks they complete. Each task is
worth ($1.0+#steps⇥$0.4). We pay each annotator an additional $40 for attending the group session.
Annotators are guaranteed a minimal rate of $20/hour. The human evaluation costs approximately
$5,000.

Ethics review. The human evaluation study is approved by University of Washington under IRB
STUDY00014751. Consent was obtained from each human annotator by signing a consent form via
DocuSign prior to the beginning of study. The IRB approval letter and a template of the consent form
can be found in the supplementary materials. Minimal personally identifiable information (PII) was
collected, and removed prior to any data analysis.

F.3 Full results
Table 25 shows the full results of human evaluation, including the error rates of fine-grained error
types.

F.4 Analyzing the Annotators
Inter-annotator agreement. We compute inter-annotator agreement using proofs in the core dev set
that get an evaluation from two or more annotators. Overall, the annotators achieved fair agreement
(Fleiss kappa  = 0.24). The level of agreement for each evaluation question is shown in Figure 4.
Fair to moderate agreement is reached for identifying coarse-grained error types, while the high-level
questions (i.e. correctness, usefulness) have relatively low agreement.

Source diversity. Figure 5 shows the largest proportion of evaluations covered by a fixed number
of annotators. The top-1 annotator contributes 20% of the total evaluations when counting by proofs
and 18% when counting by steps. 50% of the total evaluations is covered by roughly the top 3 or 4
annotators. Therefore, our human evaluation results have good source diversity and do not heavily
depend on a single annotator’s opinion.

9https://www.mediawiki.org
10https://www.proofwiki.org

27

https://drive.google.com/file/d/1TRS5XRf_coLEkC4lqaizaqSwHHgBPrG2
https://drive.google.com/file/d/1TRS5XRf_coLEkC4lqaizaqSwHHgBPrG2
https://www.mediawiki.org
https://www.proofwiki.org

Aspect / Error Type Definition

OVERALL EVALUATION

Correctness Choose a rating below. Not every statement in each rating will apply to the proof
given the rating, but many statements will apply, and the general theme of the
rating will hold:
� 0: The proof is missing.
� 1: The proof makes no sense or is unrelated to the problem statement.
� 2: The proof contains serious logical flaws and lacks adequate justification or
explanation.
� 3: The proof has some gaps in reasoning.
� 4: The proof is correct or nearly correct and logically coherent.
� 5: The proof is correct and flows logically.

Usefulness Even if the proof is not perfect, would it be useful to you if you were to prove
this theorem?
� 0: The proof is missing.
� 1: Seeing this proof would not help with proving the theorem by myself at all.
� 2: Seeing this proof proof would slightly decrease the effort needed to prove
the theorem by myself.
� 3: Seeing this proof would make it substantially easier to prove the theorem by
myself.
� 4. The proof is almost correct, and only needs a few minor corrections.
� 5: The proof is correct and could be directly used as a solution.

STEP-WISE EVALUATION

Correctness Is this step correct?
� Yes
� No (check this if you identified any error in previous questions)
� Cannot determine (e.g. this step makes a valid progress, but it depends on an
invalid prior step)
� This is a meaningless step (e.g. QED)

Usefulness Could this step be a helpful hint for proving the theorem by myself?
� Yes
� No

Reasoning: Reference
Invalid Deployment A statement deployed from a reference is not consistent with the reference.
Invalid Justification A reference is used as invalid justification for a statement.
Hallucinated Ref. A reference that does not exist is used.
Self Loop The step refers to the theorem itself.

Reasoning: Equation
Invalid Equation A standalone equation or initial equation in a derivation is invalid.
Invalid Derivation An equation in a derivation does not follow from the preceding steps.

Reasoning: Other
Skips Steps The step assumes unproven statements, or skips non-trivial steps.
Repetition The step is merely a repetition of known things.
Invalid (Other) The step’s reasoning is invalid for reasons not captured by the other categories.

Language
Incomplete The step is not a complete mathematical statement or equation.
Misformatted Math A math expression is not properly formatted.
Unknown There is a mis-spelled word, or unrecognized math symbol.

Symbolic
Undefined One of the symbols is undefined.
Overloaded One of the symbols has overloaded meanings.
Mistyped A symbol usage is not well-typed.
Unconventional Unconventional notation is used.

Table 24: Detailed description of the human evaluation schema.

28

Figure 3: Human evaluation interface. The first screenshot is the web console for task navigation and
progress tracking. The next three screenshots show examples of qualification page, overall evaluation
page, and step-wise evaluation page.

29

Model GPT-3 NPRETRIEVE NP NP++ NP
Task Full-proof Full-proof Full-proof Full-proof Next-step

OVERALL EVALUATION (0-5 scale)
Samples 90 88 90 92 –

Correctness (") 1.94 2.49 2.41 2.68 –
Usefulness (") 1.80 2.34 2.43 2.75 –

STEP-WISE EVALUATION (%)
Samples 802 727 654 466 665

Correctness (") 28.18 33.56 26.30 35.41 42.86
Usefulness (") 25.69 41.54 39.60 46.57 51.43

Reasoning: Reference Errors (#) 30.92 23.52 25.84 23.61 19.70
Invalid Deployment 14.71 13.48 18.04 15.24 13.68
Invalid Justification 17.96 13.62 13.30 10.30 9.62
Hallucinated Ref. 4.61 1.10 1.38 1.29 1.05
Self Loop 2.24 1.24 0.31 0.86 0.75

Reasoning: Equation Errors (#) 32.54 37.55 35.93 28.54 26.32
Invalid Equation 15.21 16.23 12.23 9.44 12.63
Invalid Derivation 24.56 27.10 27.37 21.89 15.64

Reasoning: Other Errors (#) 40.15 23.66 25.23 18.45 19.10
Skips Steps 2.87 3.03 2.29 4.51 3.46
Repetition 23.07 4.95 5.66 1.93 2.56
Invalid (Other) 15.21 16.37 18.35 12.02 13.53

Language Errors (#) 5.61 4.54 8.41 5.58 8.57
Incomplete 1.62 2.48 1.99 1.07 3.76
Misformatted Math 2.99 1.93 3.82 3.22 3.91
Unknown 1.62 0.69 3.98 1.72 2.56

Symbolic Errors (#) 5.24 6.19 5.35 3.65 5.86
Undefined 1.25 2.06 1.53 1.07 2.11
Overloaded 2.00 0.41 0.76 0.43 0.60
Mistyped 1.87 2.89 1.83 1.93 3.01
Unconventional 0.87 1.38 1.83 1.07 1.05

Table 25: Full human evaluation results on the core test set. NP = NATURALPROVER. Coarse-grained
error rates (e.g. Reasoning: Reference Errors) are computed as the frequency of existence of any
fine-grained error under the respective bucket.

Figure 4: Inter-annotator agreement of human
evaluation.

Figure 5: Source diversity of human annotations.

30

G Ethical Considerations

Our system may produce proofs of mathematical theorems that are fallacious or misleading, which
may have negative impact if deployed in real educational environments. We kindly remind potential
users that our system and models are experimental, and their outputs should be interpreted critically.

31

	Introduction
	NaturalProofs-Gen Dataset and Tasks
	NaturalProver: Grounded Proof Generation via Language Modeling
	Stepwise constrained decoding

	Proof Evaluation
	Experiments
	Main Results
	Ablations and error analysis.
	Additional discussion

	Related Work
	Conclusion
	Additional Results
	Additional ablations
	Multiple next-step suggestions

	Qualitative Examples
	Error Analysis
	Reference errors
	Equation errors

	Examples

	Dataset Details
	Segment-level Constrained Decoding
	Implementation Details and Experimental Setup
	Additional Evaluation Details
	Full Evaluation Schema
	Additional Human Evaluation Details
	Full results
	Analyzing the Annotators

	Ethical Considerations

