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Abstract

Theorem proving in natural mathematical language — the mixture of symbolic and
natural language used by humans — plays a central role in mathematical advances
and education, and tests aspects of reasoning that are core to intelligence. Yet
it has remained underexplored with modern generative models. We study large-
scale language models on two new generation tasks: suggesting the next step in a
mathematical proof, and full proof generation. We develop NATURALPROVER, a
language model that generates proofs by conditioning on background references
(e.g. theorems and definitions that are either retrieved or human-provided), and
optionally enforces their presence with constrained decoding. On theorems from
the NATURALPROOFS benchmark, NATURALPROVER improves the quality of
next-step suggestions and generated proofs over fine-tuned GPT-3, according to
human evaluations from university-level mathematics students. NATURALPROVER
is capable of proving some theorems that require short (2-6 step) proofs, and
providing next-step suggestions that are rated as correct and useful over 40% of
the time, which is to our knowledge the first demonstration of these capabilities
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Proof by Contradiction: Aiming for a contradiction,
suppose x + 5 is even.

Then there exists an integer k such that x + 5 = 2k.
This contradicts the premise that x is even.

Hence, by Proof by Contradiction, x + 5 is odd.

Figure 1: NATURALPROVER proves Even Integer Plus 5 is Odd. At training time, NATURALPROVER
obtains background knowledge about references (e.g. theorems or definitions) via reference recon-
struction: learning to map a reference’s title to its content. At test time, NATURALPROVER grounds
its generations through in-context reference constraints that are retrieved or human-provided, and
optionally enforced with stepwise constrained decoding. This theorem’s human-written proof in
ProofWiki| contains an error and differs substantially from NATURALPROVER’s correct proof.

'Code and data available at https://github.com/wellecks/naturalprover,

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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1 Introduction

Constructing a rational argument that justifies a claim is a key aspect of explaining, verifying, and
communicating ideas in situations ranging from everyday interactions, to legal and political discourse,
to science and mathematics [10} 42| [24]. Within the latter context, a mathematical proof — a sequence
of logical arguments expressed in a mixture of symbolic and natural language — assumes this role by
providing justification and insight into why a claim is true [12]. Proofs operate on a relatively explicit
and objective set of ground knowledge, isolating a subset of reasoning that is desirable for models
that form the foundation of machine learning systems [3]]. Moreover, we envision assistive systems
that provide suggested proofs or next-steps, analogous to language-model-based code suggestions

(e.g. [GitHub CoPilot|[6]) or formal proof assistants (e.g. [20]), which could make learning or

using mathematics more productive and accessible.

To this end, we study the capabilities of large-scale language models (e.g. GPT-3 [3]]) on two new
theorem proving tasks in natural mathematical language: next-step suggestion, in which a model
suggests the next step of a proof, and full-proof generation, in which a model fully proves a claim. As
proofs are grounded in knowledge from past results (e.g. theorems, definitions), analogous to facts
deployed in a conversation [13]], prior rulings used in a legal opinion [16], or articles used to justify
an answer [30], we develop a methodology for obtaining and using background knowledge to prove
theorems with a generic language model.

We develop NATURALPROVER, a language model that generates proofs by conditioning on back-
ground references (e.g. theorems and definitions that are either retrieved or human-provided), and
optionally enforces their presence with a constrained decoding algorithm that leverages the multi-step
structure of proofs. On a collection of theorems from the NATURALPROOFS benchmark [45]], NAT-
URALPROVER improves the quality of next-step suggestions and generated proofs over fine-tuned
GPT-3, according to human evaluations from university-level mathematics students. NATURAL-
PROVER is capable of proving some theorems that require short (2-6 step) proofs, and providing
next-step suggestions that are rated as correct and useful more than 40% of the time, which is to our
knowledge the first demonstration of these capabilities using neural language models.

Along with these successes, we study deficiencies in our current models. We find that models
can struggle with logical coherence on longer proofs, with providing valid justifications, and with
performing multi-step symbolic derivations. Taken together, our tasks, methodology, and evaluation
show the feasibility of language models as interactive aids in mathematics, along with open challenges.

2 NATURALPROOFS-GEN Dataset and Tasks

We create a NATURALPROOFS-GEN dataset adapted from NATURALPROOFS [45], and use the
dataset for two tasks: suggesting the next step of a proof, and fully proving a theorem.

NATURALPROOFS-GEN. NATURALPROOFS-GEN adapts data from NATURALPROOFS, which
contains theorem statements, proofs, definitions, and additional pages (e.g. axioms, corollaries)
sourced from ProofWiki, an online compendium of community-contributed mathematical proofs. In
NATURALPROOFS-GEN, each example (x,y) € D pairs a theorem x with a gold proof y, both of
which are a mixture of text and IATEX. [43] split the examples and reference sets into training, dev,
and test splits to ensure that no theorem in the dev or test splits was mentioned in the training split.
We adopt these splits of roughly 12.5k training, 1k validation, and 1k test examples, and sampled
core evaluation sets with 100 dev and 100 test theorems that are used for human evaluation. The
proofs contain additional structure, discussed next.

Multi-step proof structure. Each proof has a multi-step structure, meaning that a proof y =
(Y1, - -,Yjy) is a variable-length token sequence that is segmented into proof steps, where each step
y, is itself a variable-length sequence of tokens (either text or Latex). The segmentation is largely
determined by ProofWiki’s formatting and community standards for structuring proofs, and we
additionally merge steps to ensure that each step contains non-trivial semantic content. For example,
Figure [I|shows a 4-step (generated) proof with each step highlighted in green.

References. Each proof mentions a variable-number of references {r1,...,rg, } froma set R of
roughly 33k theorems and definitions, analogous to how Wikipedia articles reference other pages.
For example, Figure |I| shows a proof with reference mentions in blue. Each mention identifies a


https://proofwiki.org/

reference by its title and provides a natural language surface form. For instance, in the
first proof step mentions the definition of even integer as even, which is formatted in the proof as
[[Definition:Even_Integer|even]] and tokenized along with the rest of the proof.

Tasks. We consider two tasks that are motivated by an assistive system that provides suggested
proofs or next-steps to a user. The full proof generation task is to generate a proof y given a theorem
x. The next-step suggestion task is to generate a set of next steps {yf}szl given theorem x and
proof history y, from a gold proof. In each case, we consider an additional provided reference
setting where the model is also given the set of references {rj,..., r}y} from a gold proof of the
theorem. The next-step task simulates a human correctly proving the theorem up to a point, then
querying a system for suggested next-steps when stuck, while the provided reference setting simulates
a human specifying a plan for a system that writes a proof.

3 NATURALPROVER: Grounded Proof Generation via Language Modeling

We describe NATURALPROVER, a language model which generates grounded proofs by conditioning
on references and optionally enforcing their presence with constrained decoding.

Setup. Our objective is to generate correct proofs, y = arg max, correct(x,y). Unfortunately,
evaluating proof correctness is costly, and is only done once at test time. A naive approach is to
approximate the objective, ¥ ~ arg maxy log pg(y|x), by fine-tuning a language model py on (x,y)
examples and using a decoding algorithm (e.g. greedy decoding). We instead investigate conditioning
on background knowledge in the form of reference documents, py(y|x, R), which is beneficial
in related generation settings (e.g. [38]]), and offers control over the generated proof. To do so,
NATURALPROVER uses in-context references and a reference reconstruction objective.

In-context references. Language models have a limited context window that prevents conditioning
on full documents. Instead, NATURALPROVER conditions on a set of reference titles, pg(y|X, Riie)-
Concretely, we fine-tune on (theorem, reference titles, proof) sequences of the form,

<theorem> <title> {theorem-title} </title> <content> {theorem-content} </content> </theorem>

<ref> {ref-title-1} </ref> ... <ref> {ref-title-R} </ref> <proof> {proof} </proof> @9)
with new-lines and {} tokens omitted, relevant strings inserted, and loss only on tokens after <proot>.
Reference reconstruction. Reference titles do not capture all of the information contained in the
reference documents. We learn a mapping between each reference title and its underlying document

with a reference reconstruction objective, pg(r|rgg.) for references r in the training reference set.
Concretely, we fine-tune on additional (title, content) pairs of the form,

<{type}> <title> {title} </title> <content> {content} </content> </{type}>, 2)

where the {type} is theorem/definition/other, and the loss is only on tokens after <content>. Intuitively,
this lets the model associate each reference title with the reference’s underlying content.

The joint objective. For training, we minimize the joint loss,

1
L£(0) [ > —logpy(ylx, Rie) + Y —logpo(r|rae)|. (3

‘Dtraml + |Rtra1n| (x,y) €Diin r R rain

Evaluation-time references. We consider two settings for evaluation-time references: (i) retrieved
references, from a retrieval model f(x) — {ry,...,ry}, and (ii) human-provided references from
the ground-truth proof. The retrieval setting simulates a fully automated proof assistant, while the
second simulates a human specifying a plan for an assistant that writes a proof, and acts as an upper
bound for a retrieval system optimized to predict references in a ground-truth proof.

3.1 Stepwise constrained decoding

In the provided-reference setting, the conditioned references are known to be relevant to a correct
proof. We hypothesize that explicitly encouraging generated proofs to contain the references will
improve correctness, by placing lexical constraints on the reference-titles at decoding time,

¥ ~arg maxlog po(y[x, Ruue), subjectto Y T[raue € y] = |Ruael, “4)
y

Tiite € Riite



where I [-] is an indicator function. To approximate this objective, we generate step-by-step by
sampling multiple proof-step candidates, retaining those with high value (reference coverage and
log-probability) in a beam, and continuing to the next step, which we call stepwise beam search.

Value function. The search supports any function of the proof-so-far, v(y<;) — R. We use a value
function that is a weighted combination of constraint satisfaction and log-probability,

Va(Y<t) = Weonsiraint(Y<t) + (1 — a)vem(y<t), (5)

where Veonstraint(Y<¢) 1 the number of unique in-context reference-titles in y<,, and v m(y<y) is
log po(y<¢). We normalize each term by dividing by the maximum absolute value among candidates.

Stepwise beam search. The procedure generates a proof y = (y1, ..., yr) by iteratively sampling
and pruning next-proof-step candidates y,. Each iteration expands a size- K beam of proofs-so-far,
Si—1 = {y%,H< |, by generating N next-step candidates,

N

Sl/f = Uy<t€Sf,_1 {(y<t © yz?) ‘ y;n ~ Q(’|y<t7 X, Rtitle)}nzlv (6)

where ¢ is a decoding algorithm (e.g. temperature sampling) and o is concatenation. The next

iteration’s beam is formed by selecting the top scoring candidates, S; = arg top—KyStE s/ Vo (Y<t)-

When a proof in the beam terminates, it is not expanded further. The search ends when the beam
consists of K terminated proofs. The highest value proof is returned as the final output.

Stepwise++. We add two mechanisms for promoting exploration at each step. First, we expand each
prefix in the beam (Eqn. [6) by sampling with multiple temperatures, {y ~ ¢-(:|y<¢, X, Rige) | T €
{m}™ .}, where ¢, is sampling with temperature 7. This relaxes the commitment to a single
temperature for all proof steps, balancing exploration (higher 7) with exploitation (lower 7).

Second, rather than selecting the top-K candidates, we select clusters based on different value weights:
St = Uae(a,y¢_, 0Pk (Sf), where Si* is the set of candidates scored with v, and K = K/{. This
5= g

interpolates between selecting steps based on likelihood (low «) and constraint satisfaction (high «).

Full proof sampling and greedy decoding. An alternative is to sample full proofs and select the best
one according to the value function. This can be viewed as expansion (Eqn. [6)) done at the full proof,
rather than the step level. Moreover, greedy decoding corresponds to expanding only 1 candidate
with temperature — 0. We formalize this in §D]as a segment-level search that contains stepwise++,
full proof sampling, and greedy decoding as special cases.

4 Proof Evaluation

A proof’s correctness is contingent on a variety of factors, including reasoning with past results,
performing symbolic derivations, and altogether providing sufficient evidence that the claim is true.
We design a human-evaluation schema that isolates these aspects at the proof-step level, along with a
full-proof summary. summarizes the schema, which we overview below.

References. First, proofs involve deploying statements from references, such as applying a definition
or adapting it to fit the context. Deployments should be consistent with the reference, e.g. deploying
the |definition of even integer|as ‘...by definition, 3k € Z : x = 2k..”, rather than ..3k € Z : z =
2k + 17, and are a common source of errors in student proofs [15].

Second, proofs use references as justification for steps of reasoning; for instance,[Real Addition is
[Commutative] provides justification for the statement z + y = y + « where z,y € R, but not for
xy = yx. This aspect is analogous to using an article to justify a claim (e.g. [30]]). Finally, proofs
should not hallucinate references, or ‘beg the question’ by self-referencing the current theorem.

Equations. Proofs contain a variety of multi-step derivations, ranging from simple arithmetic to
more sophisticated derivations (e.g. see[Table 17). A derivation should start with a valid equation
given the surrounding context (e.g. = + x = 2z in versus * + = = 3x). Each subsequent step
should be a valid derivation from the previous step, e.g. stating = (2k + 6) — 1 after y = 2k + 5.

Other reasoning , language , & symbolic errors. A proof should provide sufficient evidence
that a claim is true to a human reader; it should not skip steps. Proof steps should make progress
towards proving the goal; in particular, they should not repeat known conditions in the theorem or
conclusions made in a prior step. Finally, our schema leaves room for any other reasoning errors, as
well as symbol errors (e.g. undefined symbols) and language errors (e.g. incomplete statements).



Error Type

Example

Reasoning: Reference
Invalid Deployment
Invalid Justification

Since z is an even integer, 3k € Z : x = 2k + 1.
E(X?) =3}_, k°Pr(X = k) Power Series for Exponential Function

Hallucinated Ref. From Power of Number are Irrational , /2 is irrational.
Self Loop (Proving Pythagoras’s Theorem:)  From Pythagoras’s Theorem, ¢ = a? + b%.

Reasoning: Equation
Ve e Ryx +x = 3x.
(Since x is an even integer, v + 1 = 2r + 1)

Invalid Equation

Invalid Derivation =2(r+1)

Reasoning: Other

Skips Steps (x € Zisnota multiple of 3.)  Therefore, ° = 1 or 8(mod 9)

Repetition (Let AABC be aright triangle.)  Then AABC is a right triangle.

Invalid (Other) (x is an even integer.)  So, x 4 1 is an even integer.
Language Let ¢ = va?\add b? be the  ( incomplete statement ; unknown symbol \add )
Symbolic (Letz € R) Lety =xox~'. ( undefined operator o for real numbers )

Table 1: Overview of human evaluation error schema. See [Table 24| for full schema. Reference.
Hallucinated reference . The necessary context (e.g. known conditions, prior steps).

Usefulness and correctness. To judge the potential utility of language models as assistive systems
in natural mathematics, we measure whether generated next-steps and full proofs are potentially
useful hints for proving the theorem on one’s own. Additionally, we measure a summary judgment of
correctness. Note that an incorrect statement can still be helpful; for instance, it could give a hint for
the type of reference to use, derivation to perform, argument to make, etc.

Human evaluation protocol. We measure these aspects through human annotation at a step-wise and
an overall level. For a step-wise annotation, an annotator is presented with the theorem, proof-so-far,
and a generated next-step. The annotator labels the {0, 1} correctness, usefulness, and presence of
fine-grained errors outlined above. After labeling each step of a proof, the annotator rates the full
proof’s overall correctness and usefulness on a 0-5 scale. A rating of 4 or 5 is needed to be considered
as correct, and a rating of 3 or above is needed to be considered as useful.

Automatic metrics: lexical content. As automatic proxies for quality, we compare each generated
proof against its ground-truth counterpart using the sentence-level n-gram matching metric GLEU
[29], and following work in knowledge-grounded dialogue [38] we use F1 overlap between generated
and ground-truth tokens. Prior to computing the metrics, we normalize the generated and ground-
truth proofs by only keeping the surface form of references, removing formatting characters with a
MediaWiki parser, and collapsing any consecutive whitespace into a single space.

Automatic metrics: knowledge grounding. We define knowledge grounding as meaning that a
generated proof contains the same references as those found in the ground-truth proof. To measure
this, we use precision, recall, and F1-score between the reference sets contained in the generated and
ground-truth proofs; i.e. m({f1,...,t3}, {r},...,r_}), where m(-) is precision, recall, or F1. We
also use Knowledge Token-F1 (kF1) ([38]), the overlap of the generated proof’s tokens with tokens
contained in the references mentioned in the ground-truth proof.

S Experiments

We use the training and dev splits of NATURALPROOFS-GEN during fine-tuning, and the core
evaluation sets consisting of 100 theorems from the validation set and 100 from the test set for
evaluation (see §2). These theorems were selected by the authors such that by looking at the theorem
title each author could recall its content and sketch a proof. While this may shift the evaluation
towards an easier slice of the dataset, it was necessary to make human evaluation at a meaningful
scale feasible. We also use the core sets for explorations and ablations.

We finetune three GPT-3 [3]] (Curie) models, using the OpenAI API (see [Appendix E]for details):



Reasoning Errs (|) Lexical Errs ()  Per-Step (1) Full Proof (1)
Ref. Eqn. Other Lang. Sym. Useful Correct Useful Correct

GPT-3 30.92 32.54 40.15 5.61 524  25.69 28.18 20% 13%
NATURALPROVERRemrieve 23.52 37.55 23.66 4.54 6.19 4154 33.56 32% 24%
NATURALPROVER 25.84 3593 25.23 8.41 5.35  39.60 26.30 35% 24%

NATURALPROVER ¢ 23.61 28.54 1845 558 3.65 46.57 35.41 45% 32%
Next—step (NATURALPROVER) 19.70 26.32 19.10 8.57 5.86 51.43 42.86 — —

Table 2: Human evaluation results on the core test set for full proof generation and next-step
suggestion (bottom row). All models are fine-tuned on NATURALPROOFS-GEN. Knowledge — either
retrieved or human provided — and constrained decoding improve proof generation, with 46% of
proof steps rated as useful and 35% correct according to university-level mathematics students.

1. Baseline GPT-3. We finetune a baseline GPT-3 model, py(y|x), on theorem-proof examples
{(x,y)} from the training split. At test time, we condition the model on a test theorem.

2. NATURALPROVERRgrrigve. We finetune GPT-3 with retrieved references, pg(y|x, £'1, - . ., F20)-
We use a pretrained joint retrieval model f(x) — (r1,...,r|) from [45], which was trained to
retrieve an input theorem’s ground truth references. At test time, the model receives a theorem
and the top-20 reference titles that are retrieved given the theorem.

3. NATURALPROVER. We finetune GPT-3 with human-provided references, py(y|x,r7, ..., r’,‘%y),
where {r,..., r*Ry} is the set of reference-titles in the ground-truth proof. We use reference-title
conditioned examples (Eqn.|1)) and reference-reconstruction (Eqn.[2) on the training split/reference
set. At test time, the model receives a theorem and reference titles from its ground-truth proof.

For next-step suggestion we use the human-provided knowledge model (NATURALPROVER).

Decoding. For full proof generation, we use stepwise++ decoding with the provided knowledge
model, which we refer to as NATURALPROVER, ., and otherwise use greedy decoding. We do not
use stepwise constrained decoding with retrieved references since these references introduce noisy
constraints, nor for next-step prediction since the algorithm is designed for multi-step proofs. See
for additional experimental details.

Human evaluation setup. To evaluate the proofs generated by NATURALPROVER, we recruited
15 students from the Department of Mathematics and Applied Mathematics at the University of
Washington, including undergraduate, masters, and Ph.D. students. The annotators were trained on
how to evaluate proof correctness and compensated according to IRB requirements; see For
each task, we first reveal the theorem and its gold proof to the annotator. If they cannot understand
a theorem or its gold proof, they may skip evaluating it. Otherwise, they may proceed to see the
model-generated proof, one step at a time, and annotate each step under the step-wise evaluation
schema (outlined in §4). After all the steps are shown and evaluated, for the full-proof generation
task, the annotator is asked to annotate the entire proof under the overall evaluation schema.

5.1 Main Results

Our best method is capable of generating correct and useful proofs. According to human
evaluation results (Table 2), our best method is NATURALPROVER with human-provided references
and stepwise++ inference. 32% of the proofs generated by this method are rated as correct and 45%
are rated as useful as an aid for human proof writers. On the per-step level, 35% of the proof steps
are correct and 47% are useful . Taking a more granular view, our best method makes significantly
less reference , equation , and other reasoning errors than other baselines. It makes very few
language and symbolic errors , meaning it produces mostly complete, well-formatted mathematical
statements, and defines and uses symbols accordingly. It mostly avoids hallucinating references or
creating circular proofs. On the other hand, despite improving over the other methods, the model
often struggles with correctly deploying and using references (23.6% reference error rate), as well as
symbolic computations (28.5% equation error rate), especially multi-step derivations (21.9% invalid).

What do the model’s correct proofs look like? We inspected the proofs labeled as correct and
found three main categories: (1) reference-assembly proofs whose correctness is heavily determined
by reference statements (e.g. [Table 18] [Table 20); (2) template-adaptation proofs in which the model
adapts the structure and content of a training theorem’s proof to prove the unseen evaluation theorem




Theorem Singleton Set is not Dense-in-itself Singleton Point is Isolated

Let T' = (.S, ) be a topological space. Let T = (.S, 7) be a topological space.
Letx € S. Letx € S.
Then the singleton set {x} is not dense-in-itself. Then z is an isolated point of

GPT3 Letz € S. e gt e}  ointof T
From Clopen Points in Topological Space we have that X utnot necessarily an isolated potnt of 1.

{z} isopenin T

i R _— . Dense-in-itself
From Point is Open iff it is not Dense-in-itself , it follows

X Let T' = S, T be a topological space.
that {z} is not dense-in-itself. Let HC S.

Then H is dense-in-itself iff it contains
no isolated points.

NATURALPROVER 4 From Singleton Point is Isolated, {z} has an isolated point.
Hence the result by definition of dense-in-itself.

Table 3: GPT-3 hallucinates references , while the knowledge-grounded NATURALPROVER | with
constrained decoding correctly uses references, resulting in a correct and useful proof.

(e.g. [Table 21} [Table 22)); (3) complex proofs that are not fully determined by reference statements and
differ significantly from training proofs (e.g. [Table 3). In terms of techniques, our method
demonstrates some ability to produce direct proofs (Table 19), proofs by cases (Table 22)), proofs by
induction (Table 23), utilize references and do symbolic computations (Table 2T).

Vanilla fine-tuned GPT-3 struggles with proof generation. The vanilla fine-tuned GPT-3 model
yielded fewer useful and correct proofs, with more reference-based and other reasoning errors
than all three knowledge-grounded settings. The model showed severe reference hallucination (18%)
and repetition (23%). It also makes significantly more reasoning errors related to reference usage.
Language and symbolic error rates roughly stay the same. Overall, naively fine-tuning GPT-3 on
theorem-proof examples alone is suboptimal for proof generation.

Human-provided knowledge improves proof generation. Grounding the generations with human-
provided references significantly raises correctness and usefulness of the proofs in both full-
proof and per-step evaluation. It most substantially reduces reference errors , especially invalid
deployments and hallucinated references. For example, [Table 3| shows the model grounding a proof
with information from the theorem [Singleton Point is Isolated| and the definition of in
contrast to the vanilla GPT-3 model which hallucinates references.

Retrieved knowledge also improves proof generation. Retrieved knowledge also turns out to be
very helpful, and even comparable to human-provided knowledge in some metrics. Although the
retrieval model is far from perfect, the proof generation model is capable of narrowing down the
retrieved reference titles provided in its context, assembling proofs that are useful and correct more
often than the no-knowledge model. Qualitatively, we found examples where grounding in retrieved
references eliminates repetition, enables multi-step derivations justified by references (Table 2T),
and assembles references into a correct proof (Table 20). This paves a promising path towards fully
automated mathematical proof generation in natural mathematical language.

Constrained decoding further improves proof gen- N S - PPL RetF1
eration. [Table 4| confirms that stepwise++ decoding n-context Stepwise++ () Ref-Fl (1)

approximates the constrained objective (Eqn. ) bet- X X 1.0639  26.33
ter than greedy search, yielding proofs with lower X 1.0549  30.07
perplexity and higher constraint satisfaction (Ref-F1). X 1.0644  89.43
This translates to generations that are correct and 1.0549 9425

useful more often according to the annotators. Intu-
itively, the constraints encourage the model to include Table 4: Stepwise++ decoding approximates
references that help prove the claim (e.g. [Table 18).  the constrained objective better than greedy
decoding, resulting in both lower perplexity
and better reference coverage, regardless of
whether knowledge is provided in-context.

Next-step suggestion. The next-step suggestion
task characterizes a model’s performance on mak-
ing a single proof step given a correct proof-so-far.
In we use the provided-knowledge model with greedy decoding for next-step sugges-
tion, and find that reasoning errors decrease and per-step usefulness and correctness improve
compared to the full proof setting, with 51% of the proof steps rated as useful and 43% cor-
rect. Although we used a single suggestion in our human evaluation study, in we
simulate a user choosing from among multiple suggestions by sampling 10 next-steps from
our model and computing automatic metrics on the sample with the best sum of metrics. Us-



Lexical Grounding
GLEU TokenF1 kF1 Ref-P Ref-R Ref-F1 Halluc ({)

GPT-3 24.40 4996 4930 29.93 24.73 23.69 17.92
NATURALPROVERRgrrieve  26.58 53.02 55.88 38.17 2848 27.10 2.25
NATURALPROVER 35.27 66.00 90.07 93.05 86.05 87.08 1.60
NATURALPROVER 4 ¢ 34.49 65.61 96.39 94.66 95.00 93.92 1.71
Correctness [full]
o Correctness [step] 0.80 0.74 m
E Reasoning Errors: Ref. m
g Reasoning Errors: Eqn. 0.75 m
< Reasoning Errors: Other 0.61 0.47
Language Errors m 1.00 m m m
Symbolic Errors -0.72 0.80 -0.88 -0.89 -0.89 -0.88 -0.21

Table 6: Automatic metrics on the core test set for full-proof generation, and correlation between
human metrics and automatic metrics on the core validation set.

ing 10 samples instead of greedily decoding a single sequence substantially improves each
metric, suggesting that utility might be increased further by presenting multiple suggestions.

How good are Automatic Metrics? We study how well the

automatic lexical and grounding metrics introduced in (§4) can Decoding  GLEU Ref-FI

reflect the real quality of proofs, as a guide for using them as Greedy 47.87 65.50
a proxy evaluation protocol for NATURALPROOFS-GEN. We Temp (=.6) 60.60 84.44
compute the Pearson correlation coefficient between each pair Temp (t=.8) 61.89 86.74
of human and automatic metrics, with data from the four exper- Temp (t=1.0) 62.12 86.87

iment settings for full-proof generation. Results are shown in

the lower part of with error metrics negated, meaning Table 5: Next-step suggestion:
positive correlation is desired. Sampling 10 suggestions improves

The lexical and grounding metrics positively correlate with full ~©Ver a single greedy suggestion.
proof correctness and usefulness (> 0.8). At the step-level,

the metrics show (i) high correlation with step-level correctness and language errors ; (ii) varied, but
positive, correlations with aggregate reasoning errors; (iii) negative correlation with symbolic errors
(though symbolic errors are relatively low for all models). The results suggest that optimizing for
automatic metrics may be a viable strategy, albeit without guarantees on how finer-grained reasoning
aspects vary across proofs.

5.2 Ablations and error analysis.

Reference reconstruction. We fine-tune an additional GPT-3
model that is provided with in-context reference titles, but Recon. Gleu Ref-F1 Halluc.

without reference reconstruction. As seen in refer-
ence reconstruction improves content and reference usage. X 33.03 8285 3.32
v 3593 84.15 2.68

Constrained decoding. First,[Table 9|compares the step-level
search in stepwise++ with searching at the full-proof level Table 7: Effect of reference re-
through sampling multiple proofs and selecting the best with ~construction in NATURALPROVER
the NATURALPROVER value function (rerank (n)). Rerank- (greedy decoding, full validation set).
ing 60 samples matches the cost of stepwise++ in terms of

number of decoded tokens. Full-proof reranking yields the best Gleu, though with lower reference-F1.
Second, shows that the expansion and selection mechanisms together result in the best
reference matching, while holding Gleu at a similar level. Finally, shows that both terms in
the NATURALPROVER value function ccveonstraints + (1 — @)vpm are needed: increasing the constraint
weight « increases reference-matching, with a tradeoff in Gleu at high values.

Language model comparison. [Table 10| varies the language model used to parameterize NATU-
RALPROVER . The content and reference usage metrics improve with larger models. Separately, we
find that increasing inference-time compute closes the gap in reference-matching between GPT-2
and the larger GPT-3 model (Table T1)): sampling 10 full-proofs from GPT-2 and selecting the best



Expand Select GLEU Ref-F1 Decoding Gleu Ref-F1

X X 40.62(.84) 91.78 (.49) Greedy 41.12(-)  89.30 ()

v X 41.12(.58) 92.61 (.63) Rerank (10) 43.88(.29) 91.72 (.28)
X vV 39.14(.55) 93.11(.34) Rerank (60) 42.23 (.80) 93.16 (.27)
v v 40.11(1.55) 94.13 (.45) Stepwise++ 40.11 (1.55) 94.13 (.45)

Table 8: Ablation of the stepwise++ expansion Table 9: Stepwise versus full-proof search. Mean
and selection mechanisms. Mean (std) over 3 (std) over 3 runs on the core dev set.
runs shown on the core dev set.

using the NATURALPROVER value function achieves the same reference-F1 as GPT-3 with a single
greedily-decoded proof. However, Gleu remains much higher with the larger GPT-3 model.

Challenge: Reasoning with references. Although reference reasoning errors were decreased through
knowledge-grounding and constrained decoding, NATURALPROVER still commits a reference error
on 23.6% of test steps (27% dev), with 15% of steps containing invalid deployments and 10% invalid
justifications. For next-step prediction, the reference error rate remains nontrivial (19.7% test, 13%
dev). , meaning that the model can struggle to correctly deploy references or use them as justification
even in the absence of compounding errors from previous steps. shows example invalid
deployments and justifications; the errors are at times subtle, and require reasoning about the theorem
statement, reference content, and proof context.

Challenge: Equations and derivations. NATURALPROVER commits an equation-related er-
ror on 28.5% of test steps (22.8% dev), including invalid equations (9.4%) and derivations
(21.9%). Though an improvement over vanilla fine-tuned GPT-3 (32.5%), the errors occur fre-
quently and remain high for next-step prediction (26%). shows representative errors,
which range from simple ‘commonsense’ mistakes (e.g. 24 = 23) to making invalid steps
with false justification within more sophisticated multi-step proofs. Investigating the role of
pretraining, in-context techniques [31], and autoformalization [39] is interesting future work.

Challenge: Proof length. Although NATURAL- 05 N
PROVER demonstrates some ability to write long RN

proofs (e.g. [Table 23)), the 42% next-step correctness ' \—— ---- N
suggests that compounding errors are likely as proof 04 Nt

length increases. Indeed, our best model’s full-proof ool = e \\’/
correctness is 48% on 1-4 step proofs (n = 102), T et remten

decreasing to 15.6% on proofs with 5 or more steps o1
(n = 64), with lower per-step usefulness and cor-

rectness at later steps (Figure 2). Our ﬁndiggs ar® - Figure 2: Per-step correctness and usefulness
analogous to recent vyork on language modeling for <™ finction of step number, for full-proof
formal theorem proving [32], where current models generation with NATURALPROVER ;. and

are typically llmlged to chammg 2 or 3 non-trivial next-step prediction with NATURALPROVER.
steps of mathematical reasoning.

4 5 6

3
Step

5.3 Additional discussion

Finally, we provide higher-level comments on future work related to interactive systems, mathematical
assistants, and generating proofs in informal versus formal mathematics.

Interactive & improving systems. Currently, our tasks are at two ends of a spectrum: in next-step
generation, we always assume previous steps are from a human-written proof, while in full proof
generation they are always from the model. Our results with multiple next-step suggestions suggest
that users might find some suggestion among the multiple returned useful at a high rate, pointing to
a middle ground: a human-in-the-loop NATURALPROVER, in which a human picks the next step
from among the returned suggestions, or writes one based on the suggestions. The selected or written
next-step could then be used as feedback to improve the system, enabling an iteratively improving
NATURALPROVER. This notion of a continuously improving, teachable system is an emerging (e.g.
[9]) and interesting future direction.

Assistants for mathematics. Our tasks were motivated by an assistant that helps a user write a proof,
either from scratch or when stuck part of the way through. Our study here focuses on capability:



investigating whether neural language models are capable of performing the underlying mathematics
that would be expected from such an assistant. A further challenge is to also ensure reliability — a
user should have confidence that the model is not deceptive or incorrect, and is robust to changes
in domain, on nearby problems, and on alternative ways of expressing a problem. Even further, we
would like flexibility — human teachers can interact with a student flexibly through dialogue, natural
language, and diagrams, rather than the strict input-output format defined by a dataset. Our work
provides an initial step towards this larger vision.

Informal and formalized mathematics. Our work investigates theorem proving entirely in natural
mathematical language (i.e. ‘informal’ mathematics), as it reflects an interface that a student typically
uses when working with mathematics. An alternative is proving theorems in a formalized system,
in which proof steps are expressed in a programming language (e.g. Lean [11]]). Operating purely
in a formalized system allows for verifying correctness — unlike our setting which must be verified
by a human — arguably at the cost of flexibility and interpretability, as the mathematics is no longer
expressed in natural language and must adhere to constraints of the formal system. Investigating
combinations of the two — e.g. expressing a theorem in natural language, receiving a verified formal
proof, then providing an interpretation in natural language — presents a wide range of interesting
directions for future work.

6 Related Work

Formalized mathematics with neural language models. A large portion of work on machine
learning for mathematics focuses on formalized mathematics. Language models have been used for
interactive theorem proving, including in GPT-f [33]32]], PACT [20], and in [41]]. In these settings
proof steps are expressed in a programming language (e.g. Lean [11]) and there is access to a verifier,
which differs from our setting of theorem proving in natural mathematical language.

Informal mathematics with neural language models. Previous work on theorem proving in
natural mathematical language focuses on retrieving relevant premises (e.g. theorems, definitions)
[17, 18145, 21]], or informal-to-formal translation [43]], which differ from our setting of generating
next-steps or full proofs. Outside of theorem proving, various works use sequence models for problem
solving, including benchmarking language models on arithmetic [37] or competition problems [22],
symbolic mathematics [25 46|, augmenting LMs with verifiers [7]] or in-context rationales [44]
for math word problems, or using language models for math-related program synthesis [2} [14]]
and competitive programming [26]]. These settings focus on generating executable programs or a
numerical answer, which differ from our theorem proving setting, where the goal is to generate sound
and convincing arguments on a range of topics in natural mathematical language.

Related areas in NLP. Systematic reasoning in natural language (outside of math) has been studied
with synthetic proofs [36} 40], single-step deductions [4]], or entailment trees [8]], which differ from
proving real-world mathematical theorems. Augmenting LMs with knowledge reduces hallucinations
in dialogue [38]] which has an analogous step-wise structure, while [30] use references within long-
form answers; these and related NLP findings differ from improving the utility of mathematical
proofs. Lexically-constrained decoding algorithms include variants of (token-level) beam search
(e.g. 14123128, 27]) which assume access to per-token logits, and gradient-based decoding [34]); our
segment-level decoding only assumes a sampler that returns text and its log-probability, making it
compatible with recent language model API interfaces (e.g. the GPT-3 API).

7 Conclusion

We described NATURALPROVER, a knowledge-grounded language model that generates mathematical
proofs by conditioning on background theorems and definitions, and optionally enforces their presence
with constrained decoding. Our system improves the quality of next-step suggestions and generated
proofs over fine-tuned GPT-3, demonstrating an ability to correctly prove theorems and provide
useful suggestions to human proof writers.
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A Additional Results

A.1 Additional ablations

shows automatic metrics with various language models used to parameterize NATURAL-
PROVER.

shows results with the 774M parameter GPT-2 model with greedy decoding, and full-proof
sampling & reranking with 5 and 10 samples, compared to the 13B parameter GPT-3 with greedy
decoding. We use 7 = 0.3 and v = 0.75 based on our full-proof sampling experiments with GPT-3.

Table 13| varies the value function parameter « (core dev set). We use full-proof sampling since
stepwise++ uses multiple values of « in its selection.

Model Params,K Gleu Ref-F1 Halluc Model Decoding | Gleu Ref-F1 Halluc

GPT-Neo 125M [24.85 61.42 11.07 GPT-2 Greedy 3206 6522 6.76
GPT-2 774M [32.06 65.22 6.76 GPT-2 Rerank (5) [32.95 83.55 5.24
GPT-] 6B 39.14 79.23 351 GPT-2 Rerank (10) |32.65 89.30 2.89
GPT-3 13B 42.39 89.29 1.90 GPT-3 Greedy 42.39 89.29 1.90

Table 10: Varying the language model parameter- Table 11: Increasing the inference-time compute

ization of NATURALPROVER (provided knowl- budget and reranking with the NATURALPROVER

edge, greedy decoding, core dev set). value function closes the reference-matching gap
between GPT-2 (774M) and GPT-3 (13B).

«a Gleu Ref-F1

0.0 42.79 88.40
25 42.05 90.81
.50 4259 91.75
75 4217 93.19
1.0 41.90 93.60

Table 12: Effect of value function, from « : 0 (LM only) to « : 1.0 (constraint only), with full-proof
sampling (10).

Lexical Grounding
GLEU TokenF1 kF1 Ref-P Ref-R Ref-F1 Halluc (})

Stepwise Stochastic Beam  41.0 68.89  90.33 9143 82.04 84.21 4.60
Constrained Stepwise++ 404 6890 9724 95.05 94.85 94.15 2.00

Table 13: NaturalProver with a stepwise stochastic beam search baseline versus stepwise++ decoding.
The baseline search corresponds to using stepwise decoding with an LM-only value function (« : 0).
Constrained stepwise++ decoding substantially improves grounding metrics compared to stochastic
beam search, while keeping the lexical content metrics at a similar level. Core validation set.

A.2 Multiple next-step suggestions
shows next-step suggestion results with 10 sampled suggestions versus greedy decoding.
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Lexical Grounding

Decoding GLEU TokenF1 kF1 Ref-P Ref-R Ref-F1 Halluc ()
Greedy 47.87 65.33  70.03 80.04 72.78 65.50 0.93
Nucleus (p=.5) 51.10 68.34  73.69 8275 7493 69.21 0.94
Nucleus (p=.7) 53.97 71.01 78.86 84.75 79.28 74.52 0.66
Nucleus (p=.9) 57.79 7445 85.66 90.17 84.03 81.83 0.22

Temperature (t=.6)  60.60 76.43  87.46 91.03 87.48 84.44 0.62
Temperature (t=.8)  61.89 77.48  89.67 93.19 8846 86.74 0.43
Temperature (t=1.0) 62.12 77.60  89.78 93.05 88.96 86.87 0.63

Table 14: Automatic metrics on the core dev set for next-step suggestion, with different decoding
strategies. Generations are from NATURALPROVER (provided knowledge). For stochastic decoding,
10 candidates are sampled. We compute metrics using the candidate with the highest sum of all
metrics (with Hallucination negated).

B Qualitative Examples

B.1 Error Analysis

B.1.1 Reference errors

Theorem 1 Geometric Mean of two Positive Real Numbers is Between them
Let a, b € R be real numbers such that 0 < a < b.
Let G(a, b) denote the geometric mean of a and b.
Then:
a < G(a,b) <b

NATURALPROVER Proof: correct deploy
By definition of geometric mean: X X
2 2
a®+b
G(a,b) =
(a,0) = =
Gold Proof Proof:
By definition of geometric mean:
G(a,b) := Vab

where v/ ab specifically denotes the positive square root of a and b.

Reference Geometric Mean
Letxzi,x2,...,x, € Rs be (strictly) positive real numbers.
The geometric mean of x1, 2, . .., &y, is defined as:
Gn = ([Th=1 x) ™.
Theorem 2 Power Set of Transitive Set is Transitive

Let S be a transitive set.
Then its power set PP(.S) is also a transitive set.

NATURALPROVER - Proof: correct deploy
From Set is Transitive iff Subset of Power Set: v
S CP(S)
From Power Set of Subset: X X
P(S)CS

Gold Proof Proof:
Let S be transitive.
By Set is Transitive iff Subset of Power Set:
S CP(S)
Then by Power Set of Subset:
P(5) C P(P(S))

Reference Power Set of Subset
Let S C T where S and T are both sets.
Then:
P(S) C P(T) where P(S) denotes the power set of .S.
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Table 15: Reference deployment errors. Theorem 1: NATURALPROVER incorrectly deploys the defi-
nition of geometric mean (G(a, b) = (ab)'/? would be correct). Theorem 2: An invalid deployment
of Power Set of Subset; a correct application would yield P(S) € P(P(S)). All generated
proofs are with provided knowledge and stepwise++ decoding.

Theorem 3 Derivative at Point of Inflection
Let f be a real function which is twice differentiable on the open interval (a . . b).
Let f have a point of inflection at £ € (a . .b).
Then:

1"

where '’ (&) denotes the second derivative of f at &.

NATURALPROVER - Proof: correct deploy justif.
By definition of point of inflection: X X X

Vné€(a..b): f(n) =0
where f (1)) denotes the derivative of f with respect to 7).

Gold Proof Proof:
By definition of point of inflection,

£/ has either a local maximum or a local minimum at &.

Reference Point of Inflection
Let f be a real function which is differentiable on an interval I C R.
Let{ € IL.
£ has a point of inflection at ¢ iff the derivative f’ of f
has either a local maximum or a local minimum at &.

Theorem 4 Minus One is Less than Zero
-1<0

NATURALPROVER - Proof: correct useful justif.
0<1 Real Zero is Less than Real One v v
~—-1<0 Order of Real Numbers is Dual of Order of their Negatives X v X
~ —1<0 Negative of Real Zero equals Zero v 4
]

Gold Proof Proof:
0<1 Real Zero is Less than Real One

~» —0 > —1 Order of Real Numbers is Dual of Order of their Negatives
~0> -1 Negative of Real Zero equals Zero

~—=1<0 Dual Ordering

]

Reference Order of Real Numbers is Dual of Order of their Negatives
Vz,yER: 2>y < (—x) < (-y)

Table 16: Reference justification errors. Theorem 3: NATURALPROVER makes an invalid inference
using the definition of point of inflection (given the theorem statement, f(£) = 0 holds, but not
necessarily f(n) = 0 for all n) in the interval), which can be viewed as both incorrectly deploying
the definition and using it as invalid justification. Theorem 4: A subtle invalid justification that is
still useful to the human annotator: the reference provides justification for —0 > —1 rather than
—1 < 0. See[Table 17|for additional justification errors within derivations. All generated proofs are
with provided knowledge and stepwise++ decoding.
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B.1.2 Equation errors

Theorem 1 Sum of Squares of Divisors of 24 and 26 are Equal

The sum of the squares of the divisors of 24 equals the sum of the squares of the divisors of
26:

o2 (24) = 0’2(26)
where o, denotes the divisor function.

Proof: correct eqn.
NATURALPROVER | 24 = 23 X X

26 = 22 X X
~ 02(24) = 02(26) X X
[ ]

Theorem 2 Trace of Sum of Matrices is Sum of Traces

Let A = [a],, and B = [b],, be square matrices of order n.

Let A + B denote the matrix entrywise sum of A and B.

Then: tr(A 4+ B) = tr(A) + tr(B) where tr(A) denotes the trace of A.

Proof: correct eqn. I
NATURALPROVER 4+ tr(A +B) =3 _a,gtr(C)  Trace of Matrix X X

=2 c_atr(C) + > c_g tr(C) Sum of Summations equals Summation of Sum X X
=tr(A) + tr(B) Trace of Matrix X X
]

> X X G

Theorem 3 Moment Generating Function of Discrete Uniform Distribution
Let X be a discrete random variable with a discrete uniform distribution with parameter n
for some n € N.
Then the moment generating function M x of X is given by:

et (1 — )

Mx(t) = ———=
x® n(l —et)
Proof: correct eqn. ref.
NATURALPROVER 4 - From the definition of the discrete uniform distribution , X X X
X has probability mass function: Pr(X = k) = i .
probabiiy fass e on -
From the definition of a moment generating function: v
Mx (t) = Ee'X = 37 Pr(X = k)e'*
So: . v
Mx (t) = 3% _ o Pr(X = k)et -
=Err= 0((etk)n ]_[;L;lo(etT ))  Sum of Geometric Sequence X X X
FESEED
N e x X
= gl = e™)  Discrete Uniform Distribution X X X
et (1—en?t)
n(l—et) X X

Table 17: Equation-related errors in full proof generation. NATURALPROVER can struggle with
invalid equations and derivations , including basic equalities (Theorem 1), and more sophisticated
settings (Theorems 2 and 3). Since derivations involve deploying definitions and rules from references
and using references as justification, equation-related errors are often coupled with reference errors .
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B.2 Examples

Theorem Metric Space is Perfectly Normal
Let M = (A, d) be a metric space.

Then M is a perfectly normal space.

Gold Proof
By definition, a topological space is perfectly normal space iff it is:
perfectly T4 space and T (Fréchet) space.
We have that:
Metric Space is Perfectly T4
Metric Space is T2 (Hausdorff)
T (Hausdorff) Space is a T4 (Frechet) Space.

NATURALPROVER 4 4 From:
Metric Space is Hausdorff

T> (Hausdorff) Space is T Space
Metric Space is Perfectly T4

it follows that M is a topological space which
is perfectly normal.

From:
Metric Space is Perfectly T4
Metric Space is T> (Hausdorff)
it follows that M
is a perfectly normal space .

NATURALPROVER
(without stepwise++)

Table 18: Example proof using provided in-context reference constraints. The key theorem 7%
Space is 7T} Space is provided as a constraint, but under greedy decoding the model ignores the
constraint, resulting in skipping steps . Stepwise++ decoding selects proof steps based on likelihood
and constraint satisfaction, resulting in better reference coverage and a correct proof.

Theorem Title

Theorem

Equality of Complex Numbers

Let z; := a +iby and z; := a; + ib, be complex numbers.

Then z; = z; if and only if a; = a, and by = b,.

Theorem Content

Gold Proof

By definition of a complex number, z;
z; = (ay, by)
2z = (a3, b)

where (a, b) denotes an ordered pair.

Gold Proof

and z, can be expressed in the form:

The result follows from Equality of Ordered Pairs.

Computer-Generated Proof
Letz; = z;.
Then:

1:
@:

From the definition of complex numbers, we have that z; = z, <> z; = z, where z; is the complex conjugate of z, .
From Equality of Ordered Pairs, we have that:

(a1, @) = (a2, a1) <= (a1, ) = (a2,a1)
(@, a1) = (a1,ay) <= (a1, a)) = (az,a1)
(a1, a2) = (b1, by) <= (a1, b2) = (b1, b)
(b1, b)) = (a1,a3) <= (b1, a) = (b1, a7)

Hence the result.

NATURALPROVER .

Computer-Generated Proof

From the definition of complex numbers, z; and z; are instances of ordered pairs:

z; = (a1, by) and z; = (az, by)

The result follows from Equality of Ordered Pairs.

NATURALPROVER 4 ¢

Table 19: A complex, direct proof. Without stepwise++ decoding, NATURALPROVER makes an
invalid deployment error, continues with some nonsense, and prematurely terminates the proof. The
NATURALPROVER 4 proof is correct, thanks to stepwise++ decoding.

20



Theorem Title Compact Complement Topology is Connected

Theorem Content

Theorem
Let T = (R, 7) be the compact complement topology.

Then T is a connected space.

Gold Proof

Gold Proof

Follows from:

Compact Complement Topology is Irreducible

Irreducible Space is Connected

GPT-3

Computer-Generated Proof

Let U € 7 be any open setof T

Then from Basis for Compact Complement Topology, the set:

B:={(n—-1..n):neN,}

is a basis for T'.

That is, every open set of T contains a compact subset which is open.

So every open set of T contains a compact subset which is open.

So by definition, T is connected.

NATURALPROVER
RETRIEVE

Irreducible Space is Connected

Compact Complement Topology is Irreducible
Definition:Compact Space/Topology/Subspace
Definition:Connected (Topology)/Topological Space
Definition:Open Set/Topology

Path-Connected Space is Connected

Irreducible Space is Locally Connected

Definition
Computer-Generated Proof Definition
Definition
Definition
Definition
Finite Complement Space is Irreducible
Definition:Irreducible Space

Follows from:

Compact Complement Topology is Irreducible

:Separation (Topology)

tEuclidean Space/Euclidean Topology/Real Number Line
:Bounded Above Set

:0pen Cover

:Compact Complement Topology

Irreducible Space is Connected Compact Complement Topology is Compact
Definition:Finite Set

Finite Complement Space is Locally Connected
Definition:Clopen Set

] Definition:Disjoint Sets
Countable Complement Space is Irreducible

Table 20: A reference assembly proof. GPT-3’s proof is incorrect, possibly because it doesn’t know
to use the two references. NATURALPROVERRg g ieve Uses retrieved references (shown on the right)

to arrive at a correct proof.
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Theorem Title Pointwise Addition on Real-Valued Functions is Associative

Theorem

Let f, g, h: S — R be real-valued functions.

Let f + g: .S — R denote the pointwise sum of f and g.
Then:

h= h
Theorem Content Uroth=r+Eth

Gold Proof
VxeS:(f+8+h(x)=(f(x)+g(x)+h(x) Definition of Pointwise Addition of Real-Valued Functions
=f(x)+(@Ex +h(x) Real Addition is Associative
=((f+@g+h)(x) Definition of Pointwise Addition of Real-Valued Functions
l 02ubsew2vta6l1i2g9wpgbogmp953nu
Gold Proof gowpaogmp

Computer-Generated Proof

n
(f+e+h= (Z fo+ i)) +h Definition of Pointwise Addition of Real-Valued Functions
i=1

n
= 2 (f+iN+h Addition is Associative
i=1
n
= fO+iD+h Real Addition is Associative
i=1
n
= Z S +h Real Addition is Associative
i=1
=f+(g+h Definition of Pointwise Addition of Real-Valued Functions

GPT-3 .

Computer-Generated Proof
VxeS:(f++hHx) =X +gx)+h(x) Definition of Pointwise Addition of Real-Valued Functions
= f(x)+(gx) +h(x) Real Addition is Associative
=(f+@Eg+h)(x) Definition of Pointwise Addition of Real-Valued Functions

M Oxicl 2 dvOp3qgyOhxvjiw2l
NATURALPROVER rclaazEaadptayTivaTwsimaz

Table 21: A template adaptation proof, which is proved via symbolic derivations. NATURALPROVER
adapts the proof of a similar training theorem, Pointwise Addition on Complex-Valued Func-
tions is Associative, to prove the claim. Despite training on the same (theorem, proof) pairs,
vanilla GPT-3 fails to prove the claim.
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Theorem Title Cosine in terms of Sine

Theorem

cosx = +4/1 —sin’ x if there exists an integer n such that (Zn -
cosx = —1/1 —sin’ x if there exists an integer n such that (2n +

)7r<x<(2n+%)ﬂ
)fr<x<(2n+i)ﬂ
2

= =

Theorem Content

Gold Proof

cos?x+sin’x = 1 Sum of Squares of Sine and Cosine

-~ cos’x = 1 —sin® x

- cosx = +4/1 —sin® x

Then from Sign of Cosine:

1 1
cosx > 0 if there exists an integer n such that (Zn -3 r<x< (Zn + E) /4
. . . 1 3
cosx < 0 if there exists an integer n such that | 2n + E r<x<|(2n+ 5 E4
]
Gold Proof
Computer-Generated Proof
cos(x + xr) = cos xcos  + sin x sin 7 Cosine of Sum
= cosx - 1+sinx- (1) Cosine of Multiple of Pi and Sine of Multiple of Pi
= cosx
o
€os(x — ) = cos x cos 7 — sin x sin 7 Cosine of Difference
= cosx - 1—sinx- (1) Cosine of Multiple of Pi and Sine of Multiple of Pi
= Ccosx
o
cos(x +27) = cos x cos(2x) + sin x sin(27) Cosine of Sum
=cosx-l+sinx-(=1) Cosine of Multiple of Pi and Sine of Multiple of Pi
= COS X
o
cos(x — 27) = cos x cos(2x) — sin x sin(27) Cosine of Difference
=cosx-1—sinx-(=1) Cosine of Multiple of Pi and Sine of Multiple of Pi
= cosx
[ ]
GPT-3
Computer-Generated Proof
cos’ x +sin’x = 1 Sum of Squares of Sine and Cosine
-~ cos’x = 1 —sin® x
» COSX:i\/l—sinzx
Then from Sign of Cosine:
) . . 1 1
cosx > 0 if there exists an integer n such that { 2n — 2 T<x<|2n+ 2 /4
. . . 1 3
cosx < 0 if there exists an integer n such that | 2n + E r<x<|2n+ 5 E4
]
NATURALPROVER

Table 22: A template adaptation proof by cases. GPT-3’s proof goes completely derailed and it
does not know to use the reference Sum of Squares of Sine and Cosine. NATURALPROVER’s
proof is correct. The model adapts the proof of the mirroring theorem, Sine in terms of Cosine,
in the training set.

23



Theorem Title: Triangle Inequality/Complex Numbers/General Result

Theorem
Letzy, 25, ..
Let | z| be the modulus of z.

Then:

., z, € C be complex numbers.

lz1 + 2o+ 0+ 2, | < |z1| + |22 + o + [z,

Theorem Content:

Gold Proof

Gold Proof
Proof by induction:
For all n € N, let P () be the proposition:
lz21 + 22 4+ 2l Szl + 2|+ + ]z
P (1) is true by definition of the usual ordering on real numbers:

Izl < |z

Basis for the Induction
P (2) s the case:
|21 + 22| < |z1] + |22 ]
which has been proved in Triangle Inequality for Complex Numbers.

This is our basis for the induction.

Induction Hypothesis
Now we need to show that, it P (k) is true, where k > 2, then it logically follows that P (k + 1) is true.
So this is our induction hypothesis:
lzi+z 44zl <zl +z| + o+ lzid
Then we need to show:

lzi + 22 + -+ zi | S lzi ] + [z | + - + 2k |
Induction Step
This is our induction step:
|21+ 20 4+ 4z | = (21 + 20 + o + 2) + Zga | Definition of Indexed Summation
<z + 2o + o + 2z + 2] Basis for the Induction
< (zil + lza] + - + |zi]) + |zena | Induction Hypothesis
<zl + lzl + -+ |ze] + |zia | Definition of Indexed Summation

So P (k) => P (k+ 1) and the result follows by the Principle of Mathematical Induction.

NATURALPROVER

Computer-Generated Proof
\nby induction:
Foralln € N, let P () be the proposition:
|21 + 23 + -+ 2, < |z | + |z | + - + ] 24]

P (1) is true, as this just says |z | < |z;].

Basis for the Induction
P(2) is the case:
lz1 + 2] < |z + 2]
which has been proved in Triangle Inequality for Complex Numbers.

This is our basis for the induction.

Induction Hypothesis
Now we need to show that, if P (k) is true, where k > 2, then it logically follows that P (k + 1) is true.
So this is our induction hypothesis:
lz1 + 22+ + 2| S Mzl + |zl + o+ |zl
Then we need to show:
121 + 20 + o+ | S Mzl + 2]+ + |2 |
Induction Step
This is our induction step
lzt + 2 + -+ Zi | = |z + 20 + -+ 2i + 2|
< lzp 4+ 2o + o+ 2z + |z | Basis for the Induction
= |z; + 2z + o+ 2z | + |zgg | As usual
<zl + 1z ] + o+ [2e] + |2ega | Induction Hypothesis
=1zl + 2]+ o+ 2l + zen]
So P (k) => P (k+ 1) and the result follows by the Principle of Mathematical Induction.
Therefore:

VneN:|zi + 20+ + 24| Sz + |z2] + - + |zl

Table 23: A complex proof by induction. NATURALPROVER’s proof makes one hallucinated
reference error, one repetition error, and is otherwise correct. The model did not see a similar
proof during training: while there are more variants of the Triangle Inequality theorem in our
dataset (i.e. with Real Numbers and Geometry), they only discuss the 2-variable case and none of
them discuss the n-variable general result. So in this case, the model has learned the format of proof
by induction and can apply it in new context. (A proof-by-induction example in train set: Sum of
Sequence of Squares/Proof by Induction.)

24



C Dataset Details

We provide an overview of NATURALPROOFS and its ProofWiki domain from which we build
NATURALPROOFS-GEN. Refer to [45] for further details about NATURALPROOFS.

Our dataset is derived from NATURALPROOFS, a multi-domain corpus of theorem statements, proofs,
definitions, and additional pages (e.g. axioms, corollaries) in natural mathematical language. We
use the ProofWikﬂ domain, which provides broad-coverage of many subject areas (e.g. Set Theory,
Analysis) sourced from ProofWiki, an online compendium of community-contributed mathematical
proofs. PROOFWIKI contains ~20k theorems, ~20k proofs, ~12k definitions, and ~ 1k additional
pages (e.g. axioms, corollaries). The set of all ~33k theorems, definitions, and additional pages form
the reference set R. Finally, ~14.5k of the theorems x are paired with at least one proof y to form
examples D = {(x,y);} Y. [45] split the reference sets and examples into training, validation, and
test splits to ensure that no theorem in the validation or test splits was mentioned in the training split.

D Segment-level Constrained Decoding

In this section we present a generic segment-level decoding algorithm that contains stepwise++,
full-proof sampling, and greedy decoding as special cases. We generate a multi-step proof using a
value function v(+) that measures language quality and constraint satisfaction. Search can be done
at the step-level, in which candidate next-steps are generated and high-value steps are retained in
a beam, or at the proof-level, in which multiple proofs are generated and the highest-value proof
is selected. We formalize these into a generic segment-level search, where a segment s, is either a
proof-step y; or a full proof y.

The search iteratively builds a multi-step proof y = (y1, . . ., yr) by expanding, scoring, and selecting
a set of candidate segments:

* Expand: S;_1 — S} extends segments S;_; = {s<;} into candidates S} = {(s<¢, 5¢)}.

* Score: (s<¢,v) — R scores a candidate using a value function, v(s<;) — R.

* Select: S; — S; prunes candidates .S} into segments S; used in the next iteration.

Value function. We score candidates based on constraint satisfaction and language quality,

v(s<t) = OWconstraint (S<¢) + (1 — a)vim(s<t), (7

where Vconstraint(Y<¢) is the number of unique in-context reference-titles in s<;, and vim(s<y) is
log pe(s<). We normalize each term by dividing by the maximum absolute value among candidates.

Greedy search. This baseline search defines a segment as a full proof, meaning s is an empty
sequence and s; is a proof y. Expand samples one segment candidate with temperature 0. Score
and select are trivial since there is only one candidate. Greedy search costs 1" steps of tokens.

Sample-and-rerank. In this search, a segment is again full proof, but expand samples N can-
didates, S] = {y™ ~ q(-|x)}2_,, where ¢ is a decoding algorithm (e.g. temperature sampling).
Select takes the top scoring candidate, y = argmaxyncgr v(y™). The cost is NT steps of tokens.

Step-wise stochastic beam search. This search generates by iteratively sampling and re-ranking
next-step candidates. In this case, a segment is a proof step, y;, and each iteration starts with a
beam of proofs-so-far, S;_; = {yit}le, where K is the beam size. Expand samples N next-step
candidates for each proof-so-far in the beam,

n n N
Si= U Awaow) lu ~atly<nx) b, ®)
Y<t€St_1

where q is a decoding algorithm (e.g. temperature sampling) and o is concatenation. Select forms
the next beam using the top- K scoring candidates,

Sy = arg top-K v(y<¢). )
Yy<t €S,

2The ProofWiki domain of NATURALPROOFsS dataset is under the CC BY-SA 4.0 license.
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When a proof in the beam terminates, it is not expanded further. The search ends when the beam
consists of K terminated proofs. The highest scoring proof is returned as the final output. The cost is
NTK steps of tokens.

Stepwise++. At certain proof steps it is important to enumerate and explore options, while at others
(e.g. derivations) a single highly probable prediction is better. To this end, we expand by sampling
with multiple temperatures, meaning that we expand each prefix y; in (6) using:

{y? NQT('|y<taX) |T € {7—17---57—771}}7 (10)

where ¢, is sampling with temperature 7. This relaxes the commitment to a single temperature for all
proof steps, intuitively balancing exploration (higher 7) with exploitation (lower 7).

Second, during the search we want to balance selecting proof steps that satisfy constraints and proof
steps with high log-probability. To this end, we select clusters with different value weights,

St = {y<t € topg: (Sa) | @ € {a1,...,au}}, (11)

where S, means the set of candidates scored with v = QUconstraint + (1 — @)vLm, and K/ = K /L.
This interpolates between selecting steps with good language score (« small), constraint score (a
large), and balance (« : 0.5).

E Implementation Details and Experimental Setup

Data preprocessing. We automatically infer the boundaries of proof steps within the raw proof
contents, and merge contiguous lines into atomic proof steps when appropriate. Steps are separated
by the \n token (\\n in Python string), and lines within a step are separated by the newline token (\n
in Python string).

Additional model details. All GPT-3 models (including NATURALPROVER models) are fine-tuned
instances of the Curie engine, the second largest model available through the OpenAl API at the
time of writing[| The model’s performance on the EleutherAl evaluation harnes{’|is between the
6.7B and 13B variants of the autoregressive transformer language model GPT-3 from [S]E]though
further details of the Curie model are not publicly available.

Separately, we fine-tune GPT-J 6BE] a publicly available autoregressive transformer language model
trained on the Pile [19], GPT-2 [35]], an autoregressive transformer language model trained on scraped
web documents, and GPT—Neo-lZSME] a GPT-2 like causal language model trained on the Pile.

Our retrieval model is the joint retrieval model from [45] trained for reference retrieval on ProofWiki
using the same dataset splits as NaturalProver. We use the publicly-available pretrained model from
the GitHub repository of [45] and do not update the model further. We use the model to retrieve the
top-20 references for each input theorem.

Implementation details. All GPT-3 models (including NATURALPROVER models) are fine-tuned
with the OpenAl AP]H for 4 epochs with a batch size of 64. Other models (GPT-2/J/Neo) are trained
on one Quadro RTX 8000 GPU. During inference, the prompt (up to <proof>) is truncated to 1024
tokens. For full proof generation, we allow a maximum of 1020 generated tokens. For next-step
suggestion, we truncate the proof-so-far to 900 tokens, and allow a maximum of 120 generated tokens
per step.

Stepwise++ decoding. For expansion with multiple temperatures, we use N = 10 candidates
sampled with (n,7) € {(1,0.0), (3,0.3),(3,0.5), (3,0.7)}. We also tried including 7 = 1.0 which
resulted in very poor GLEU, and {(1,0.0), (5,0.3), (4,0.5)}. For selection, we use a beam size K = 9,
and three equally-sized clusters formed with « € {0.1,0.5,1.0}. We also tried {0.5,0.75,0.9}. We
use o = 0.75 to pick select the final sequence, based on our ablation with full-proof sampling.

3https://beta.openai.com/docs/guides/fine-tuning
*https://github.com/EleutherAl/lm-evaluation-harness
*https://blog.eleuther.ai/gpt3-model-sizes/
Shttps://huggingface.co/EleutherAl/gpt-j-6B
"https://github.com/EleutherAI/gpt-neo
%https://beta.openai.com/docs/guides/fine-tuning
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Full proof sampling. We use temperature 7 = 0.3, selected based on a search over 7 €
{0.1,0.3,0.5,0.7} using GLEU plus Ref-F1 on the core dev set.

F Additional Evaluation Details

F.1 Full Evaluation Schema

Table 24|shows the full schema of human evaluation. The overall correctness and usefulness are

rated on a 0-5 scale. The step-wise correctness and usefulness are yes/no questions, while the error
types ask for a binary indicator for the existence of each error type.

F.2 Additional Human Evaluation Details

Process. The authors conducted and moderated group sessions with the annotators. Each session
consisted of 30-minutes of training and a 1-hour working/Q&A period. After attending the session,
annotators could continue working on their assigned tasks for two weeks. Each annotator was
assigned 25 theorems (with 5 proofs per theorem, equaling 125 total tasks) and asked to complete
as many tasks as they would like. The evaluation guideline that the annotators referenced to can
be found in the supplementary materials. The pre-recorded training video is available at https:
//drive.google.com/file/d/1TRS5XRf_coLEkC41lqaizaqSwHHgBPrG2.

Interface. We developed an interface that displays theorems and proofs in a rendered, human-
readable format and collects annotations. The interface is built on MediaWiki’] which also powers
the ProofWiki Websitﬂ We also developed a web console that helps human annotators navigate
annotation tasks and track progress. shows screenshots of the interface.

Payment. Human annotators are paid based on the number of tasks they complete. Each task is
worth ($1.0+#steps x $0.4). We pay each annotator an additional $40 for attending the group session.
Annotators are guaranteed a minimal rate of $20/hour. The human evaluation costs approximately
$5,000.

Ethics review. The human evaluation study is approved by University of Washington under IRB
STUDY00014751. Consent was obtained from each human annotator by signing a consent form via
DocuSign prior to the beginning of study. The IRB approval letter and a template of the consent form
can be found in the supplementary materials. Minimal personally identifiable information (PII) was
collected, and removed prior to any data analysis.

F.3 Full results

shows the full results of human evaluation, including the error rates of fine-grained error
types.

F.4 Analyzing the Annotators

Inter-annotator agreement. We compute inter-annotator agreement using proofs in the core dev set
that get an evaluation from two or more annotators. Overall, the annotators achieved fair agreement
(Fleiss kappa x = 0.24). The level of agreement for each evaluation question is shown in [Figure 4]
Fair to moderate agreement is reached for identifying coarse-grained error types, while the high-level
questions (i.e. correctness, usefulness) have relatively low agreement.

Source diversity. shows the largest proportion of evaluations covered by a fixed number
of annotators. The top-1 annotator contributes 20% of the total evaluations when counting by proofs
and 18% when counting by steps. 50% of the total evaluations is covered by roughly the top 3 or 4
annotators. Therefore, our human evaluation results have good source diversity and do not heavily
depend on a single annotator’s opinion.

‘https://www.mediawiki.org
"https://www.proofwiki.org
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Aspect / Error Type

Definition

OVERALL EVALUATION

Correctness Choose a rating below. Not every statement in each rating will apply to the proof
given the rating, but many statements will apply, and the general theme of the
rating will hold:

o 0: The proof is missing.

o 1: The proof makes no sense or is unrelated to the problem statement.

o 2: The proof contains serious logical flaws and lacks adequate justification or
explanation.

o 3: The proof has some gaps in reasoning.

o 4: The proof is correct or nearly correct and logically coherent.

o 5: The proof is correct and flows logically.

Usefulness Even if the proof is not perfect, would it be useful to you if you were to prove

this theorem?
o 0: The proof is missing.
o 1: Seeing this proof would not help with proving the theorem by myself at all.
o 2: Seeing this proof proof would slightly decrease the effort needed to prove
the theorem by myself.
o 3: Seeing this proof would make it substantially easier to prove the theorem by
myself.
o 4. The proof is almost correct, and only needs a few minor corrections.
o 5: The proof is correct and could be directly used as a solution.
STEP-WISE EVALUATION
Correctness Is this step correct?
o Yes
o No (check this if you identified any error in previous questions)
o Cannot determine (e.g. this step makes a valid progress, but it depends on an
invalid prior step)
o This is a meaningless step (e.g. QED)
Usefulness Could this step be a helpful hint for proving the theorem by myself?

o Yes
o No

Reasoning: Reference
Invalid Deployment
Invalid Justification
Hallucinated Ref.
Self Loop

A statement deployed from a reference is not consistent with the reference.
A reference is used as invalid justification for a statement.

A reference that does not exist is used.

The step refers to the theorem itself.

Reasoning: Equation
Invalid Equation
Invalid Derivation

A standalone equation or initial equation in a derivation is invalid.
An equation in a derivation does not follow from the preceding steps.

Reasoning: Other

Skips Steps The step assumes unproven statements, or skips non-trivial steps.

Repetition The step is merely a repetition of known things.

Invalid (Other) The step’s reasoning is invalid for reasons not captured by the other categories.
Language

Incomplete The step is not a complete mathematical statement or equation.

Misformatted Math A math expression is not properly formatted.

Unknown There is a mis-spelled word, or unrecognized math symbol.
Symbolic

Undefined One of the symbols is undefined.

Overloaded One of the symbols has overloaded meanings.

Mistyped A symbol usage is not well-typed.

Unconventional Unconventional notation is used.

Table 24: Detailed description of the human evaluation schema.
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Proof Evaluation Console ~ TASkS Y |
Tasks
DA Task Name Value Completed
1 (EVALaries)/Composite Number has Prime Factor/Thm10171/Proof0/Qua $3.40
2 (EVAL: )/Composite Number has Prime Factor/Thm10171/Proof0/Qual $3.80
3 (EVALleo)/C: te Number has Prime Factor/Thm10171/Proof0/Qual $5.40
4 (EVALgeminj)/Composite Number has Prime Factor/Thm10171/Proof0/Qual $4.60
5 (EVALlibra)/Composite Number has Prime Factor/Thm10171/Proof0/Qua $3.00
6 (EVAL [Existence of Prime-Free Sequence of Natural Numbers/Thm12069/Proof0/Qual $5.80
7 (EVAL )/Existence of Prime-Free Sequence of Natural Numbers/Thm12069/Proof0/Qual $5.40
8 (EVALleo)/Existence of Prime-Free Sequence of Natural Numbers/Thm12069/Proof0/Qual $3.80
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Figure 3: Human evaluation interface. The first screenshot is the web console for task navigation and
progress tracking. The next three screenshots show examples of qualification page, overall evaluation

page, and step-wise evaluation page.
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Model GPT-3 NPrerrieve NP NP, ¢ NP

Task Full-proof  Full-proof  Full-proof  Full-proof = Next-step
OVERALL EVALUATION (0-5 scale)
Samples 90 88 90 92 -
Correctness (1) 1.94 2.49 2.41 2.68 -
Usefulness (1) 1.80 2.34 243 2.75 -
STEP-WISE EVALUATION (%)
Samples 802 727 654 466 665
Correctness (1) 28.18 33.56 26.30 35.41 42.86
Usefulness (1) 25.69 41.54 39.60 46.57 51.43
Reasoning: Reference Errors () 30.92 23.52 25.84 23.61 19.70
Invalid Deployment 14.71 13.48 18.04 15.24 13.68
Invalid Justification 17.96 13.62 13.30 10.30 9.62
Hallucinated Ref. 4.61 1.10 1.38 1.29 1.05
Self Loop 2.24 1.24 0.31 0.86 0.75
Reasoning: Equation Errors ({) 32.54 37.55 35.93 28.54 26.32
Invalid Equation 15.21 16.23 12.23 9.44 12.63
Invalid Derivation 24.56 27.10 27.37 21.89 15.64
Reasoning: Other Errors ({) 40.15 23.66 25.23 18.45 19.10
Skips Steps 2.87 3.03 2.29 4.51 3.46
Repetition 23.07 4.95 5.66 1.93 2.56
Invalid (Other) 15.21 16.37 18.35 12.02 13.53
Language Errors ({) 5.61 4.54 8.41 5.58 8.57
Incomplete 1.62 248 1.99 1.07 3.76
Misformatted Math 2.99 1.93 3.82 3.22 3.91
Unknown 1.62 0.69 3.98 1.72 2.56
Symbolic Errors () 5.24 6.19 5.35 3.65 5.86
Undefined 1.25 2.06 1.53 1.07 2.11
Overloaded 2.00 0.41 0.76 0.43 0.60
Mistyped 1.87 2.89 1.83 1.93 3.01
Unconventional 0.87 1.38 1.83 1.07 1.05

Table 25: Full human evaluation results on the core test set. NP = NATURALPROVER. Coarse-grained
error rates (e.g. Reasoning: Reference Errors ) are computed as the frequency of existence of any
fine-grained error under the respective bucket.

Correctness [full]

Usefulness [full]

1.0
Correctness (step) | N
0.8
Usefulness [step] I ()
20.6

Reasoning Errors: Ref.

—
[
Reasoning Errors: Eqn. _ 8 0.4

Reasoning Errors: Other 0.2 —— by proofs
Language Errors _ 0.0 — by steps
Symbolic Errors _ 0 5 10 15

0.0 0.2 0.4 number of annotators
fleiss kappa

Figure 5: Source diversity of human annotations.
Figure 4: Inter-annotator agreement of human
evaluation.
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G Ethical Considerations
Our system may produce proofs of mathematical theorems that are fallacious or misleading, which

may have negative impact if deployed in real educational environments. We kindly remind potential
users that our system and models are experimental, and their outputs should be interpreted critically.
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