
A ELBO derivation

To derive the ELBO defined in (5) we start from the maximization of the log-likelihood of the input
image x and the class y, namely

log(p(x, y)) = log

✓Z
p(x, y|z)dz

◆
. (6)

Recalling the generative network factorization (4), we can write

log(p(x, y)) = log

✓Z
p✓(x|z, zsym)p✓(y|zsym)p(z)p(zsym)dzdzsym

◆
(7)

Then, by introducing the variational approximation q�(z|x) to the intractable posterior p✓(z|x) and
applying the factorization, we get

log(p(x, y)) = log

✓Z
q�(z|x)q�(zsym|x)
q�(z|x)q�(zsym|x)p✓(x|z, zsym)p✓(y|zsym)p(z)p(zsym)dzdzsym

◆
. (8)

We now apply the Jensen’s inequality to equation (8) and we obtain the lower bound for the log-
likelihood of x and y given by

Z
q�(z|x)q�(zsym|x) log

✓
p✓(x|z, zsym)p✓(y|zsym)

p(z)p(zsym)

q�(z|x)q�(zsym|x)dzdzsym
◆
. (9)

Finally, by relying on the linearity of expectation and on logarithm properties, we can rewrite equation
(9) as

Ez⇠q�(z|x) [log(p✓(x|z))] + Ezsym⇠q�(zsym|x) [log(p✓(y|zsym))] + Ez⇠q�(z|x)

log

✓
p(z)

q�(z|x)

◆�
.

The last term is the negative Kullback-Leibler divergence between the variational approximation
q�(z|x) and the prior p(z). This leads us to the ELBO of equation (5), that is

log(p(x, y)) � Ez⇠q�(z|x) [log(p✓(x|z))] + Ezsym⇠q�(zsym|x) [log(p✓(y|zsym))]�DKL[q�(z|x)||p(z)]
:= L(✓,�).

In VAEL graphical model (Figure 2c), we omit !F since we exploit an equivalence relation between
the probabilistic graphical models (PGMs) shown in Figure 9. Indeed, the objective for the PGM
where !F is explicit is equivalent to the one reported in the paper. This is supported by the derivation
of log p(x, y) (Eq. 10), which is equivalent to Eq. (5) in our paper, where the expectation over !F is
estimated through Gumbel-Softmax.

log p(x, y) = log

Z

z,zsym,!F

q(z, zsym|x)p(x|z,!F)p(y|zsym)p(!F |zsym, y)
p(z, zsym)

q(z, zsym|x)

�
Z

z,zsym,!F

q(z, zsym|x)p(!F |zsym, y) log p(x|z,!F)p(y|zsym)
p(z, zsym)

q(z, zsym|x)
= Ez,zsym,!F [log p(x|z,!F)] + Ezsym [log p(y|zsym)]�KL[q(z, zsym|x)kp(z, zsym)]

(10)

Figure 9: PGM with (left) and without (right) ProbLog box.

14

B ELBO estimation and Learning

We estimate the ELBO and its gradients w.r.t. the model parameters using standard Monte Carlo
estimates of expectations [36]. Since both q�(z|x) and p(z) are chosen to be Gaussian distributions,
the Kullback-Leibler divergence in (5) can be integrated analytically by relying on its closed form.
Thus, only the expected reconstruction and query errors LREC(✓,�) and LQ(✓,�) require estimation
by sampling.
We can therefore define the ELBO estimator as

L(✓,�) ⇡ L̃(✓,�; ✏) = L̃REC(✓,�; ✏) + L̃Q(✓,�; ✏)�DKL[q�(z|x)||p(z)]. (11)

The estimators of LREC and LQ can be written as

L̃REC(✓,�; ✏) =
1

N

NX

n=1

(log(p✓(x|ẑ(n)))) (12)

L̃Q(✓,�; ✏) =
1

N

NX

n=1

(log(p✓(y|ẑ(n)sym
))) (13)

where

ẑ(n) = {ẑ(n), ẑ(n)
sym

} := µ(x) + �(x)✏(n),

✏(n) ⇠ N (0, 1).

During the training, we aim at maximizing L(✓,�) with respect to both the encoder and the decoder
parameters, we therefore need to compute the gradient w.r.t. ✓ and �. Since any sampling operation
prevents back-propagation, we need to reparametrize the two sampled variables z and !. Due to their
nature, we use the well-known Reparametrization Trick [36] for the Gaussian z, while we exploit the
Categorical Reparametrization with Gumbel-Softmax [27] for the discrete variable ! corresponding
to the sampled possible world.
In particular, by defining ! as the one-hot encoding of the possible worlds, we have

!̂i =
exp((log ⇡i + ĝi)/�P

J

j=1 exp((log ⇡j + ĝj)/�)
, with ĝi ⇠ Gumbel(0, 1) (14)

where J is the number of possible worlds (e.g. all the possible pairs of digits), and ⇡i depends on
zi
sym

, which is reparametrized with the Gaussian Reparametrization Trick. In Algorithm 1 we report
VAEL training algorithm .

Algorithm 1: VAEL Training.
Data: Set of images X
✓,� Initialization of paramters
repeat

Forward Phase
x Training sample
z = [z, zsym] ⇠ q(z | x)
p = MLP (zsym)
!F ⇠ P (!F ; p)
y ⇠ P (y; p)
x̃ ⇠ p(x|z,!F)

Backward Phase
g r✓,�L(✓,�)
✓,� Update parameters using gradients g

until convergence of parameters (✓,�);

C Additional supervision for MNIST Task Generalization

During the training on 2digit MNIST dataset, the model may learn a mapping between symbol and
meaning that is logically correct, but different from the desired one. Indeed, the two symbols 1 and

15

2 used for the left and right positions, respectively, of a handwritten digit in an image are just an
assumption. However, VAEL may switch the pairs (3, 2) and (2, 3), since they both sum up to 5.
This would prevent VAEL from generalizing to tasks involving non-commutative operations (i.e.
subtraction and power).

To solve this issue, we simply introduce additional supervision on the digits of very few images (1
image per pair of digits, i.e. 100 images in total) to guide the model toward the desired symbols
interpretation. This has to be intended just as an agreement between the model and the human. To
include this supervision in the training procedure, we add a regularizer term to the ELBO defined in
(5), namely

LSUP(✓,�) := L(✓,�) + Ldigits(✓,�) (15)

where
Ldigits(✓,�) = Ezsym⇠q�(zsym|x)[log(p✓(ydigits|zsym)]]. (16)

In equation (16), ydigits refers to the labels over the digits (e.g. for image we have ydigits =
[0, 1]).
Such a digit-level supervision can be easily done by virtue of ProbLog inference, that allows us to
retrieve the predicted label of each digit in an image by relying on the query over the digits values.

D Implementation details

D.1 VAEL

In Tables 2 and 3 we report the architectures of VAEL for 2digit MNIST and Mario dataset. For
both the datasets we performed a model selection by minimizing the objective function computed
on a validation set of 12, 000 samples for 2digit MNIST and 2, 016 samples for Mario. In all the
experiments we trained the model with Adam [35]. The explored hyper-parameters values are
reported in Section D.4.

For 2digit MNIST, the resulting best configuration is: latent space z 2 RM , zsym 2 RN with
dimension M = 8 and N = 15; weights 0.1, 1 ⇥ 10�5 and 1.0 for the reconstruction, Kullback-
Leibler and classification term of the ELBO respectively; learning rate 1⇥ 10�3.

For Mario, we obtain: latent space z 2 RM , zsym 2 RN with dimension M = 30 and N = 18;
weights 1⇥ 101, 1⇥ 101 and 1⇥ 104 for the reconstruction, Kullback-Leibler and classification term
of the ELBO respectively; learning rate 1⇥ 10�4.

Table 2: VAEL architectures for 2digit MNIST dataset.
Encoder Decoder

Input 28 ⇥56⇥ 1 channel image Input 2 RM+20

64 ⇥1⇥ 4⇥ 4 Conv2d stride 2 & ReLU (M+20) ⇥256 Linear layer
128 ⇥64⇥ 4⇥ 4 Conv2d stride 2 & ReLU 256 ⇥128⇥ 5⇥ 4 ConvTranspose2d stride 2 & ReLU
256 ⇥128⇥ 4⇥ 4 Conv2d stride 2 &ReLU 128 ⇥64⇥ 4⇥ 4 ConvTranspose2d stride 2 & ReLU

256 ⇥2(M +N) Linear layer 1 ⇥64⇥ 4⇥ 4 ConvTranspose2d stride 2 & Sigmoid

MLP & ProbLog

Input 2 RN

N ⇥ 20 Linear layer & ReLU
20⇥ 20 Linear layer

ProbLog (IN dim: 20, OUT dim: 100)

D.2 CCVAE

In the original paper [31], there was a direct supervision on each single element of the latent space.
To preserve the same type of supervision in our two digits addition task, where the supervision is on
the sum and not directly on the single digits, we slightly modify the encoder and decoder mapping

16

Table 3: VAEL architectures for Mario dataset.
Encoder Decoder

Input 200 ⇥100⇥ 3 channel image Input 2 RM+9

64 ⇥3⇥ 5⇥ 5 Conv2d stride 2 & SELU (M+9) ⇥512 Linear layer
128 ⇥64⇥ 5⇥ 5 Conv2d stride 2 & SELU 512 ⇥256⇥ 5⇥ 5 ConvTranspose2d stride 2 & SELU
256 ⇥128⇥ 5⇥ 5 Conv2d stride 2 & SELU 256 ⇥128⇥ 5⇥ 5 ConvTranspose2d stride 2& SELU
512 ⇥256⇥ 5⇥ 5 Conv2d stride 2 & SELU 128 ⇥64⇥ 5⇥ 5 ConvTranspose2d stride 2& SELU

512 ⇥2(M + 9) Linear layer 3 ⇥64⇥ 5⇥ 5 ConvTranspose2d stride 2 & Sigmoid

MLP & ProbLog

Input 2 RN

N ⇥ 20 Linear layer & ReLU
20⇥ 9 Linear layer

ProbLog (IN dim: 18, OUT dim: 24)

functions of CCVAE. By doing so, we ensure the correctness of the approach without changing
the graphical model. The original encoder function learns from the input both the mean µ and the
variance � of the latent space distribution, while the decoder gets in input the latent representation
z = {zsym, z} (please refer to the original paper for more details [31]). In our modified version, the
encoder only learns the variance, while the mean is set to be equal to the image label µ = y, and the
decoder gets in input the label directly z⇤ := {y, z}.

In Tables 4 and 5 we report the architectures of CCVAE for 2digit MNIST and Mario dataset. For
both the datasets we performed a model selection by minimizing the objective function computed
on a validation set of 12, 000 samples for 2digit MNIST and 2, 016 samples for Mario. In all the
experiments we trained the model with Adam [35]. The explored hyper-parameters values are
reported in Section D.4.

For 2digit MNIST, the resulting best configuration is: latent space zsym 2 RN with dimension equal
to the number of classes N = 19 (due to the one-to-one mapping between zsym and the label y);
latent space z 2 RM with dimension M = 8, model objective reconstruction term with weight 0.05,
while the other ELBO terms with unitary weights; learning rate 1⇥ 10�4.

For Mario, we obtain: latent space zsym 2 RN with dimension equal to the number of classes
N = 4; latent space z 2 RM with dimension M = 300, model objective Kullback-Leibler term and
classification term with weight 1⇥ 104 and 1⇥ 103 respectively, while the other ELBO terms with
unitary weights; learning rate 1⇥ 10�4.

Table 4: CCVAE architectures for 2digit MNIST dataset.
Encoder Decoder

Input 28 ⇥56⇥ 1 channel image Input 2 RM+N

64 ⇥1⇥ 4⇥ 4 Conv2d stride 2 & ReLU (M+N) ⇥256 Linear layer
128 ⇥64⇥ 4⇥ 4 Conv2d stride 2 & ReLU 256 ⇥128⇥ 5⇥ 4 ConvTranspose2d stride 2 & ReLU
256 ⇥128⇥ 4⇥ 4 Conv2d stride 2 &ReLU 128 ⇥64⇥ 4⇥ 4 ConvTranspose2d stride 2& ReLU

256 ⇥2(M +N) Linear layer 1 ⇥64⇥ 4⇥ 4 ConvTranspose2d stride 2 & Sigmoid

Table 5: CCVAE architectures for Mario dataset.
Encoder Decoder

Input 200 ⇥100⇥ 3 channel image Input 2 RM+N

64 ⇥3⇥ 5⇥ 5 Conv2d stride 2 & SELU (M+N) ⇥512 Linear layer
128 ⇥64⇥ 5⇥ 5 Conv2d stride 2 & SELU 512 ⇥256⇥ 5⇥ 5 ConvTranspose2d stride 2 & SELU
256 ⇥128⇥ 5⇥ 5 Conv2d stride 2 &SELU 256 ⇥128⇥ 5⇥ 5 ConvTranspose2d stride 2& SELU
512 ⇥256⇥ 5⇥ 5 Conv2d stride 2 &SELU 128 ⇥64⇥ 5⇥ 5 ConvTranspose2d stride 2& SELU

512 ⇥2(M +N) Linear layer 3 ⇥64⇥ 5⇥ 5 ConvTranspose2d stride 2 & Sigmoid

17

D.3 Classifiers

In Table 6 we report the architecture of the classifier used to measure the generative ability of VAEL
and CCVAE for 2digit MNIST dataset. We trained the classifier on 60, 000 MNIST images [40]
for 15 epochs with SGD with a learning rate of 1⇥ 10�2 and a momentum of 0.5, achieving 0.97
accuracy on the test set.

Table 6
MNIST classifier (2digit MNIST)

Input 28⇥ 28⇥ 1 channel image
Linear layer 784⇥ 128 & ReLU
Linear layer 128⇥ 64 & ReLU
Linear layer 64⇥ 10 & LogSoftmax

In Table 7 we report the architecture of the classifier used to measure the generative ability of VAEL
and CCVAE for Mario dataset. We trained the classifier on 9, 140 single state images of Mario dataset
for 10 epochs with Adam [35] optimizer with a learning rate of 1⇥ 10�4, achieving 1.0 accuracy on
the test set.

Table 7
MNIST classifier (Mario)

Input 100⇥ 100⇥ 3 channels image
Conv layer 5⇥ 5⇥ 32 & SELU
Conv layer 5⇥ 5⇥ 64 & SELU
Conv layer 5⇥ 5⇥ 128 & SELU
Linear layer 2048⇥ 9

D.4 Optimization

Experiments are conducted on a single Nvidia GeForce 2080ti 11 GB. Training consumed ⇠ 2GB
for 2digit MNIST dataset and ⇠ 2.8GB for Mario dataset, taking around 1 hour and 15 minutes to
complete 100 epochs for 2digit MNIST and 1 hour and 30 minutes to complete 100 epochs for Mario
dataset. As introduced in the previous sections, we performed a model selection based on ELBO
minimization for both the model.

In the following bullet lists, lr refers to the learning rate, z, zsym refer to the latent vectors dimensions,
WREC ,WKL,WQ refer to the weights of LREC ,DKL,LQ terms of VAEL objective function, and
WREC ,WKL,Wq(y|zsym),Wq(y|x) refer to the corresponding terms of CCVAE objective function
(please refer to the original paper for more details [31]).

For 2digit MNIST we explore the following values; we repeat the model training 5 times for each
configuration.

• VAEL
– z 2 {8, 9, 10}
– zsym 2 {15, 19}
– lr 2 {0.0001, 0.001}
– WREC 2 {0.0001, 0.001, 0.01, 0.1, 1, 10, 100}
– WKL 2 {0.00001, 0.0001, 0.001}
– WQ 2 {1, 5}

• CCVAE
– zsym 2 {8, 10, 15, 20, 30}
– lr 2 {0.00001, 0.0001}
– WKL 2 {0.0001, 0.001, 0.01, 0.1, 1, 10, 100}
– WREC 2 {0.01, 0.1, 1, 10, 100}

18

– Wq(y|zsym) 2 {0.01, 0.1, 1, 10, 100}
– Wq(y|x) 2 {0.01, 0.1, 1, 10, 100}

For Mario we explore the following values; we repeat the model training 5 times for each configura-
tion.

• VAEL
– z 2 {20, 25, 30, 35, 40}
– zsym 2 {18, 20}
– lr 2 {0.0001, 0.0005}
– WREC 2 {1, 10}
– WKL 2 {0.1, 1, 10}
– WQ 2 {1, 100, 10000}

• CCVAE
– zsym 2 {3, 4, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400}
– lr 2 {0.0001, 0.0005}
– WKL 2 {0.0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}
– WREC 2 {1, 10}
– Wq(y|zsym) 2 {1, 10, 100}
– Wq(y|x) 2 {1, 10, 100, 1000}

E Additional Results

Here we report some additional results for the tasks described in Section 4.

Figures 10 and 11 show additional qualitative results for the Conditional Image Generation and Task
Generalization experiments relative to 2digit MNIST dataset.

In Figures 12 and 13, we report some additional examples of Image Generation and Task Generaliza-
tion for Mario dataset. As it can be seen in Figure 13, VAEL is able to generate subsequent states
consistent with the shortest path, whatever the agent’s position in the initial state (t = 0). Moreover,
the model generates states that are consistent with the initial one in terms of background.

Figure 14 shows some examples of image reconstruction for CCVAE. As it can be seen, CCVAE
focuses only on reconstructing the background and discards the small portion of the image containing
the agent, thus causing the disparity in the reconstructive and generative ability between VAEL and
CCVAE (Table 1).

Figure 10: Conditional generation for CCVAE and VAEL for 2digit MNIST dataset. In each column
the generation is conditioned on a different sum y between the two digits.

19

Figure 11: Examples of the generation ability of VAEL in 3 previously unseen tasks for 2digit
MNIST dataset. In each column the generation is conditioned on a different label y referring to the
corresponding mathematical operation between the first and second digit.

Figure 12: Examples of the generation ability of CCVAE and VAEL for Mario dataset.

20

Figure 13: Examples of the generation ability of VAEL in previously unseen tasks for Mario dataset.
In each row, VAEL generates a trajectory starting from the initial image (t = 0) and following the
shortest path using an up priority or a right priority.

21

Figure 14: Examples of reconstructive ability of CCVAE and VAEL trained on Mario dataset.

F Data Efficiency: simplified setting

To further investigate the performance gap between CCVAE and VAEL in the Data Efficiency task
4, we run an identical experiment in a simplified dataset with only three possible digits values: 0, 1
and 2. The goal is to train CCVAE on a much larger number of images per pair, which is impractical
in the 10-digits setting, due to the combinatorial nature of the task. The dataset consists of 30, 000
images of two digits taken from the MNIST dataset [40]. We use 80%, 10%, 10% splits for the
train, validation and test sets, respectively. As for the 10-digits dataset, each image in the dataset has
dimension 28⇥ 56 and is labelled with the sum of the two digits. In Figure 15 we compare VAEL
and CCVAE discriminative, generative and reconstructive ability when varying the training size. In
this simplified setting, CCVAE requires around 3, 000 samples per pair to reach the accuracy that
VAEL achieves trained with only 10 samples per pair.

100 101 102 103

0

0.2

0.4

0.6

0.8

1

Training Size

D
is

cr
im

in
at

iv
e

A
cc

ur
ac

y

VAEL
CCVAE

100 101 102 103

0

0.2

0.4

0.6

0.8

Training Size

G
en

er
at

iv
e

A
cc

ur
ac

y

VAEL
CCVAE

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

Training Size

R
ec

on
st

ru
ct

io
n

Lo
ss

VAEL
CCVAE

Figure 15: Discriminative, generative and reconstructive ability of VAEL (blue) and CCVAE (red)
trained in contexts characterized by data scarcity. Both the models are evaluated on the same test set.
The training size refers to the number of samples per pair of digits seen during the training.

22

	Introduction
	Preliminaries
	Probabilistic Logic Programming
	Generation Conditioned on Labels

	The VAEL Model
	Downstream Applications

	Experiments
	Related Work
	Conclusions and Future Works
	ELBO derivation
	ELBO estimation and Learning
	Additional supervision for MNIST Task Generalization
	Implementation details
	VAEL
	CCVAE
	Classifiers
	Optimization

	Additional Results
	Data Efficiency: simplified setting

