
A Appendix422

The appendix serves as a complimentary document to the paper detailing the data collection process,423

analysis, and program synthesis. It should be used in conjunction with the following:424

1. the LARC dataset and its annotation workflow, and bandit algorithm can be found in:425

https://github.com/samacqua/LARC426

Which contains the explore gui for the whole dataset entirely in browser (see Fig 10):427

https://samacqua.github.io/LARC/explore428

2. alternatively, one can download the repo and run the explore gui offline:429

(a) point to the LARC root directory430

(b) run ‘python3 -m http.server‘431

(c) open ‘localhost:8000/explore/‘ in a chrome browser432

3. program synthesis using language codes is at this URL :433

https://github.com/theosech/ec/tree/language-guided_program_434

synthesis_for_larc435

A.1 The LARC Explorer GUI436

Figure 10: The explore interface for task 156 (top). action sequence graph of builder 1 (bot)

14

https://github.com/samacqua/LARC
https://samacqua.github.io/LARC/explore
https://github.com/theosech/ec/tree/language-guided_program_synthesis_for_larc
https://github.com/theosech/ec/tree/language-guided_program_synthesis_for_larc
https://github.com/theosech/ec/tree/language-guided_program_synthesis_for_larc

A.2 Consent Form and Annotation Workflow437

Consent Form In this study, you will interpret descriptions of an abstract pattern that you observe in438

grids. By answering the following questions, you are participating in a study performed by cognitive439

scientists in [author institution]. If you have questions about this research, please contact [author] at440

[author email]. Your participation in this research is voluntary. You may decline to answer any or441

all of the following questions. You may decline further participation, at any time, without adverse442

consequences. Your anonymity is assured; the researchers who have requested your participation will443

not receive any personal identifying information about you. By clicking ’I AGREE’ you indicate444

your consent to participate in this study.445

Annotation Workflow Then, the user is given tutorials about communicating ARC tasks, and446

dynamically assigned a sequence of describe and/or build tasks until they have completed 45 minutes447

of work. Figure 11 shows the build and describe interface. For full workflow see LARC/collection.448

Figure 11: A. The builder interface. B. The describer interface.

15

A.3 LARC Linguistic Analysis Tagging Scheme449

The tagged phrases can be found at LARC/dataset/annotated_phrases.csv450

The phrases were codified by expert coders using a set of 17 binary tags. For each tag, a phrase can451

either be a positive instance (+) or a negative instance (-) 7. The following table details the tags and452

coding scheme used:453

454
Tag Description Examples

Procedure
Directly commands the builder to do
something; If you were to delete it,
the program will fail to execute.

(+) Fill each enclosed hole with yellow
(-) look at the color that form the design in
the input.

Metaphor
A metaphor can be an analogy or
reference to human common sense
knowledge – e.g. spiral.

(+) A random green pattern
(+) A pattern like a long A

Clarification
A phrase made following a previ-
ous statement that attempts to clarify
misinterpretations.

(+) Then, copy and paste each colored
square in the input grid 4 times – once in
each "quadrant"
(+) (or 5 rows or whatever the number of
rows is before it repeats).
(+) Where there’s a dark blue square, put
orange squares directly above and below it
(4 total).

Example Gives a concrete instance. (+) The opposite is also true (for example
if it is light blue, change to dark red).

Array
Makes a comment about a collec-
tion of objects sharing some com-
mon property.

(+) Where there’s a dark blue square, put
orange squares directly above and below it
(4 total).
(+) Leave the magenta and light blue
squares as they are; do not add anything
to them if they are present.

Validation
After the builder executes a proce-
dure, check if they got the right an-
swer (i.e. asserts, test-cases, verifi-
cation, or error handling).

(+) You should end up with all blue boxes
touching each other
(+) Fill in all of the black boxes to complete
the pattern until there are no more black
boxes.

Loop
Includes a looping procedure, such
as the use of while, for, until, for

each, or repeat.

(+) Continue coloring green until you reach
the center of the grid.
(+) Reduce the grid size so that one square
is available for each group.

Start_Stop Talks about the process or duration
of some operations.

(+) start at the upper right corner
(+) the red shape needs to move until it is
touching the blue cube

Conditional Of the form if X then Y. (+) If they do not match, make the output
square green.

Logic Includes first-order logic, such as
same, and, or, or not.

(+) The same size as the input (+) You will
not use dark blue squares at all (-) A 4x4
pattern

Framing
Sets up the problem by offering a
particular point of view, defining
some objects to be referred to later.

(+) four colored area.
(+) 1 or 2 squares filled in with the same
color on a black background.

455

7marked by 1 and 0 respectively in the csv

16

456
Tag Description Examples

Spacial Re-
lation

Any reference to a relative position
in space to some other component.
Positive examples include: under,
reaches, touches, angle, outer, down-
ward, parallel, near, after, in be-
tween, central, etc.

(+) The red shape next to the blue shape
(+) Put yellow inside the green

Physical In-
teraction Any reference to an imaginary force. (+) The red object falls

(+) Blue slides to the left towards red

Contact
Transform

Influence via contact, i.e. any spe-
cialized version of physical interac-
tion that involves at least two objects

and some type of contact causality.

(+) Move X until contact with Y
(+) Set X touching Y and turn it the color
of Y
(-) Red moves left one square

Affine
Transform

Any reference to a affine transforma-
tion over an object, such as rotation,
translation, etc.

(+) Rotate 90 degrees
(+) Extend the square into a line

Visual-
Graphical
Transform

Any other visual or graphical modi-
fication other than a geometric one,
such as coloring, flood-fill, or draw-
ing a new shape.

(+) Make it gray
(+) Draw a line

Object De-
tection

The localization of a cohesive,
bounded object.

(+) The red shape
(+) Move it to the left
(+) The pattern

457

These tags can also be grouped hierarchically into the following categories:458

Programmatic: procedure, array, validation, loop, start_stop, conditional, logic459

Human/Mechanisms for Domain General Communication: metaphor, clarification, example,460

framing461

Objects and Object Manipulation: spacial_relation, physical_interaction, contact_transform,462

geometric_transform, visual_graphical_transform, object_detection463

17

A.4 THE ATTEMPTED LARC DSL464

As LARC is DSL-open, we must first construct a suitable DSL before applying (symbolic) program465

synthesis approaches. Here is our attempt at constructing such a DSL. For each DSL primitives, we466

also list its corresponding pseudo-annotation comments. We hand-designed DSL a for the LARC467

domain consisting of 103 primitives (implemented as a set of polymorphically typed �-calculus468

expressions) intended to be broadly and basically applicable to all tasks on the domain – the DSL469

operates over grids of pixels, and contains simple functions designed to repeatedly perform image470

transformations over pixel grids to produce an output grid. The complete DSL is available at the471

released code repository; below we provide representative example functions and the accompanying472

natural language glosses of their behavior used in the pseudoannotations generative procedure; as473

well as sampled program expressions and their generated pseudoannotations.474

Example DSL Functions and Natural Language Gloss Function Annotations
DSL Function Natural Language Gloss

blocks_to_original_grid ’place blocks onto input grid’
blocks_to_min_grid ’get the smallest grid containing the blocks’
first_of_sorted_object_list ’get the block with the smallest or greatest value

of’
singleton_block ”
merge_blocks ”
filter_blocks ’remove the blocks that have’
map_blocks ’for every block’
filter_template_block ’find the main block’
reflect ’reflect’
move ’move’
center_block_on_tile ’move block to tile’
duplicate ’duplicate’
grow ’enlarge’
fill_color ’color the block’
fill_snakewise ’color the block in a snake pattern with’
replace_color ’replace colors’
remove_black_b ’remove the black background’
remove_color ’remove color from block’
box_block ’get smallest rectangle containing block’
wrap_block ’surround block with’
filter_block_tiles ’only keep tiles that’
map_block_tiles ’for each tile of block’
to_min_grid ”
to_original_grid_overlay ’place block on input grid’
get_height ’get height of block’
get_width ’get width of block’
get_original_grid_height ’get the height of the input grid’
get_original_grid_width ’get the width of the input grid’
get_num_tiles ’count the number of tiles of the block’
nth_primary_color ’find the nth most common color’
is_symmetrical ’is the block symmetrical’
is_rectangle ’is the block a rectangle’
has_min_tiles ’does the block have at least n tiles’
touches_any_boundary ’does the block touch any edge of the grid’
touches_boundary ’does the block touch the edge’
has_color ’does the block have color’
is_tile ’is the block a tile’
block_to_tile ”
get_block_center ’get the central tile of the block’
map_for_directions ’in every direction’
find_same_color_blocks ’find blocks based on shared color’

18

find_blocks_by_black_b ’find blocks based on if they are separated by the
black background’

find_blocks_by_color ’find blocks based on if they are separated by the
given color background’

find_blocks_by_inferred_b ’find blocks based on if they are separated by the
background’

grid_to_block ”
split_grid ’split the grid in half’
find_tiles_by_black_b ’find the tiles based on if they are separated by the

black background’
is_interior ’is the tile in the interior of a block’
is_exterior ’is the tile in the exterior of a block’
tile_touches_block ’does the tile touch the block’
tile_overlaps_block ’does the tile overlap the block’
tile_to_block ”
extend_towards_until ’extend tile towards a direction until the condition

is met’
extend_towards_until_edge ’extend tile towards a direction until it touches the

edge’
extend_until_touches_block ’extend tile towards a direction until it touches the

edge’
move_towards_until ’move tile towards direction until condition is met’
move_towards_until_edge ’move tile towards direction until it touches edge’
move_until_touches_block ’move tile towards direction until it touches block’
move_until_overlaps_block ’move tile towards direction until it overlaps block’
get_tile_color ’get the color of the tile’
tiles_to_blocks ”
filter_tiles ’only keep tiles that’
map_tiles ’for every tile’
overlap_split_blocks ’overlap the split blocks based on colors’
splitblocks_to_blocks ”
color_logical ’take logical operation on colors using them as true

and false’
land ’logical operator and’
lor ’logical operator or’
lxor ’logical operator xor’
negate_boolean ’not’
map_tbs ’for every block in template block scene’
make_colorpair ’make pair of colors’
north ’top’
south ’bottom’
west ’left’
east ’right’
north_east ’top right’
north_west ’top left’
south_east ’bottom right’
south_west ’bottom left’
0 ’0’
1 ’1’
2 ’2’
3 ’3’
4 ’4’
5 ’5’
6 ’6’
7 ’7’
8 ’8’
9 ’9’
true ”
false ”

19

invisible ’invisible’
black ’black’
blue ’blue’
red ’red’
green ’green’
yellow ’yellow’
grey ’grey’
pink ’pink’
orange ’orange’
teal ’teal’
maroon ’maroon’

Example Sampled Programs and Pseudoannotations
Sampled Program Natural Language Pseudoannotation

(lambda (to_original_grid_overlay (remove_color
(grid_to_block $0) yellow) false))

‘place block on input grid remove color from block
yellow’

(lambda (extend_towards_until_edge
(block_to_tile (grid_to_block $0)) south_east)
true))

‘extend tile towards a direction until it touches the
edge bottom right’

(lambda (blocks_to_min_grid (tiles_to_blocks
(find_tiles_by_black_b $0)) true true))

‘get the smallest grid containing the blocks find
the tiles based on if they are separated by the black
background’

Compared to SCONE [43], LARC poses a significantly greater challenge for distant supervision.475

domain dsl size language kind number of instances
LARC DSL-open 103 freeform text 354
SCONE: ALCHEMY DSL-closed 24 step-by-step instruction 4560
SCONE: TANGRAMS DSL-closed 14 step-by-step instruction 4989
SCONE: SCENE DSL-closed 33 step-by-step instruction 4402

Table 3: Comparison of LARC to SCONE

20

A.5 Supplement to Sec. 5: Executing Natural Programs476

Enumeration details For a task, we enumerate from the bi-gram distribution (proposed by the neural477

model) on a high-powered computing cluster for 720s; and with 24 CPUs in parallel.478

Other Models: Neural Sequence Decoder We experiment with using a neural sequential decoder479

which can theoretically capture longer range dependencies. Specifically, we use GRU to decode a480

program one token at a time. In addition we mask the generated tokens to ensure the generated partial481

programs are syntactically correct (using the type system). We train using the distant supervision482

approach exactly as [19], with an epsilon-randomized beam search to balance exploiting the current483

policy and exploring low probability programs under the policy and take gradient steps on discovered484

programs using the meritocratic parameter update rule. We train using distant supervision on 24485

CPUs for 10 hours of wall-clock time on the train split of 200 tasks. As we can see, the sequence

Neural Sequence Decoder
training tasks discovered testing tasks solved

IO 6 / 200 2 / 183
IO + NL 7 / 200 0 / 183

NL - 0 / 183
486

decoder cannot even recover the 10 seed programs during training, and performs poorly on the testing487

tasks compared to the bigram model. Consequently, we did not attempt pseudo-annotation on the488

sequence model.489

Other Models: CNN encoding of IO We take our best model (IO+NL+pseudo) and additionally490

condition the neural model with a CNN encoder, rather than leaving it un-conditioned. We find491

that this model can discover 2 more programs during training and achieves identical outcome to the492

simpler model without CNN.493

train test
IO+NL+pseudo 21/200 22/183
IO+NL+pseudo+CNN 23/200 22/183

In general, we find that the standard solution to distant supervision, although effective in SCONE,494

only discovers a few programs in LARC. This finding is unsurprising for the following reasons:495

1. LARC is DSL-open whereas SCONE is not, thus, there is no guarantee that we will discover496

all LARC programs even if we enumerate an infinite number of programs.497

2. In SCONE, every computer program is a sequence of 5 actions that transform the state of498

the world. A natural language utterance is collected for each of these actions. The language499

annotation (natural program) is the sequences of these 5 utterances. As a result there a tight500

alignment from utterance to actions (tokens in the DSL).501

3. SCONE domains have an order of magnitude more tasks to learn from (through distant502

supervision).503

We conclude that collecting simpler, more fine-grained tasks as in SCONE would confer significant504

benefits to solving LARC, notwithstanding the DSL-open challenge.505

21

A.6 Synthesis with codex506

We conduct a exploratory study where we took the 7 tasks solved by the NL+IO specification (in507

addition to just IO), and see whether github’s co-pilot auto-complete tool (built on codex) can508

correctly infer the right program using only language as prompt. The prompt is constructed by giving509

a few hundred of pseudo-annotation - program pairs as context (see A.4), followed by a real NL510

prompt, and asking co-pilot to rephrase it in the LARC DSL:511

E n g l i s h : n o t i s t h e b l o c k s y m m e t r i c a l c o l o r t h e b l o c k maroon512

Program : (lambda (t o _ m i n _ g r i d (g r i d _ t o _ b l o c k $0) (n e g a t e _ b o o l e a n . . .513

514

E n g l i s h : o v e r l a p t h e s p l i t b l o c k s based on c o l o r s s p l i t t h e g r i d . . .515

Program : (lambda (o v e r l a p _ s p l i t _ b l o c k s (s p l i t _ g r i d $0 f a l s e) (lambda . . .516

517

. . . 400 of such p a i r s . . .518

519

E n g l i s h : copy on ly t h e b i g g e s t shape i n t o t h e o u t p u t g r i d520

Program :521

The top-10 generated candidates are then executed to see if they can generate the correct output for522

the given task. See Figure below.523

Figure 12: synthesizing programs using copilot (yes, this is a screenshot of a google sheet)

As we can see, while co-pilot suggests programs that look similar to a correct one stylistically,524

most are syntactically invalid. For instance, it often invents primitives that do not even exist in our525

DSL, such as “copy_shape_to_output_grid”. Further, none of the syntactically correct programs can526

produce the intended output either. This is to be expected, as we use a DSL that has not been seen527

before in any existing corpus of code (on github), and we should not expect codex to perform well528

22

naively. Taking a general model (such as codex) and specializing it to a specific context (LARC) will529

be exciting future research.530

23

A.7 Description Pairing Study with Clip531

We conduct a exploratory study whether the CLIP model [49], which computes a similarity score532

between image and captions, can perform the simple task of correctly pair a test input grid with533

its corresponding description in LARC. Performance on this simple binary classification task is a534

reasonable upper-bound on how large pre-trained models (such as CLIP, Flamingo [47], or DALLE535

[48]) would work on LARC out of the box.536

Specifically, we sampled 1000 instances of (test_input_grid, paired_description, distractor_description)537

where the paired description comes from the same LARC task, and the distractor description is538

randomly chosen from a different task. See Figure 13.539

Figure 13: a few instances of the pairing task

We find that CLIP was able to correctly pair the input-grid with its description (having a higher540

similarity score than the distractor) 64% of the times (randomly guessing will have 50%). To541

understand how it is making the pairing, we replaced all occurrences of a color word (such as542

‘red’ or ‘black’) with the dummy word ‘COLOR’. After this substitution, the performance drops to543

56%. In conclusion, there are certainly values in using a large pre-trained model that builds a joint544

representation between language and images. However, achieving only 64% accuracy on a extremely545

simplified, binary classification task, where most of the benefits comes from low level concepts such546

as color, motivates further research endeavours towards actually solving LARC using pure neural547

approaches – i.e. generating a correct, pixel perfect output grid from input-grid and language alone.548

24

B Appendix : multi-bandit, infinite-arm, best-arm identification549

Imagine there are N different mAgIcAl casinos, where each has an infinite number of slot machines550

(arms). While each individual arm has its own probability p (Bernoulli) of generating an outcome551

of either 0 or 1, the arms are related to each other depending on the casinos they belong to. Some552

casinos are easier than others, in a sense that for some, it is easier to find a “good” arm whereas for553

others, most arms will have a small chance of success. Moreover, each casino i has one (or multiple)554

best arm, whose probability of generating a 1 is p⇤i . Your job is to identify the best arm within each555

casino. This is in essence the multi-bandit, infinite-arm, best-arm identification problem.556

You can take observations in the casinos, where each observation involves selecting a casino, and557

trying one of its arms (either one of the arms you already tried, or trying a new one out of its558

infinite possibilities), observing an outcome of either 0 or 1. We seek an online algorithm that, given559

any observation budget, propose a set of N arms. Let p1 . . . pN denote the ground-truth Bernoulli560

parameters of the proposed arms. We seek to minimize the following regret:561

L =
X

i

(p⇤i � pi)

Where each term p
⇤
i � pi is the “gap” between the proposed arm and the best arm in a given casino.562

B.1 Application to LARC563

Our goal is to collect a working natural program for each of the 400 ARC tasks. Natural programs564

are difficult to collect, because it involves both: 1) obtaining a natural program from a describer and565

2) validating this natural program by having a builder build from it. Thus, rather than exhaustively566

studying each task to estimate its difficulty, we are content with just getting a “good enough” natural567

program for each task. In another words, given a certain annotation budget, we want to find a single568

good natural program for each of the 400 tasks.569

If we take the 400 tasks as 400 casinos, then each casino would have an intrinsic difficulty, which570

corresponds to how easy it is to communicate a particular task. Within each task, there are an571

infinitely many possible natural programs (i.e. all natural language strings), which correspond to the572

infinite-arm aspect. For each task, we are interested in finding as good of a description as we can,573

which correspond to the best-arm identification aspect.574

Specifically, we are seeking an online algorithm that at any budget can propose a set of natural575

programs, and this set of proposed programs should improve with added budget (budget here576

is synonymous with total participants’ time). To use the bandit algorithm in conjunction with577

the annotation process, we divide the 45 minutes of a participant’s time into several “units” of578

participation, where each unit can be assigned to one of two jobs: 1) The participant can either give a579

new description to an ARC task, then immediately build from it (in the form of describer verification)580

or 2) The participant can be given an existing description of a task, and build from it to to assess if it581

is a good description. See Figure 14. We estimate how many minutes would this particular unit take,582

and dynamically allocate additional units until the full 45 minutes are exhausted.583

B.2 Reinforcement Learning Formulation584

A great way to formalize a bandit problem is casting it as an instance of a Markov Decision Process:585

A state consists of all the observations (the 0, 1 outcomes) on all the arms thus far. Let there be N586

bandits/casinos, then the observation is a collection of all casinos’ outcomes C1 . . . CN where for587

each casino Ci, we have observation for its K arms that we already sampled: c1i . . . cKi . Each arm’s588

observation, cji is simply a tuple (A,B) where A denotes the number of 1s observed from arm c
j
i and589

B denotes the number of 0s. Thus, the space of observation is O(N ⇥K ⇥ (A+B)). See Figure 15.590

25

Figure 14: How a “unit” of a participant’s time can be utilized

There are two kinds of actions – the arm-selection action, and the best-arm-proposal action. Arm591

selection consists of a tuple (i, j) where i selects a casino, and j selects from which of the arms592

within that casino to sample an additional observation. We will use j = 1 . . .K to denote sampling593

from the K arms within a particular bandit i, and use j = 0 to denote sampling a new arm from594

bandit i. When the interaction budget is exhausted, the agent must make a best-arm-proposal action,595

in which the agent picks one sampled arm from each casino to be calculated in the regret. For arm596

proposal, we use a simple heuristic that selects the arm with the highest estimated mean using a597

beta distribution with (1,1) prior. For the remainder of this section, action will refer exclusively to598

arm-selection.599

Transition modifies the state to include the new observation. See Figure 15.600

Reward is the sum of the Bernoulli parameters for the set of proposed arms. p1 + · · ·+ pN .601

Figure 15: an example transition where there are 3 casinos

B.3 A Heuristically Defined Agent602

To the best of our knowledge, there is no bandit algorithm that address the specific bandit problem603

we are solving. However [50] solves the infinitely many armed bandit problem for a single bandit,604

where they explicitly model the difficulty of the underlying bandit. We take their algorithm as605

inspiration. Note that [50] prescribe a solution to the regret-minimization problem, which is not606

exactly best-arm-identification. However, in the limit, the two are equivalent as minimizing regret is607

26

equivalent to finding the optimal arm. We will first state the result of [50], which applies to the case608

of a single casino/bandit, then extend it to the case of multi-bandit.609

arm selection Suppose we know that we want to generate an action in casino i. [50] proposed the610

following rule for selecting which arm to interact with. Let � be the difficulty parameter of the task,611

defined as: P (p⇤ � pj < ✏) = ⇥(✏�). Which is to say, if you were to sample a new arm with ground612

truth parameter pj , the probability that this arm lies within ✏ of the optimal arm, is approximately ✏
� .613

For instance, if � = 1, the task is very difficult as ✏1 is a tiny number, meaning it is almost impossible614

for you to sample an arm pj that is ✏ close to optimum. Conversely, if � = 0, the task is very simple,615

as ✏0 = 1, so any arm you sample will be optimal.616

[50] states that, if you let M be the total number of observations on a bandit, and K be the total617

number of arms currently sampled, if K  M
� , then you should sample a new arm. Otherwise,618

you should perform the standard UCB algorithm on the set of existing arms. In our bandit RL619

environment, M and K are well defined, but how do we estimate �? We use the following heuristic620

to estimate difficulty: Let j be the best arm in the current casino w.r.t. its sampled mean p̃j , then we621

define � = 1� p̃j . For instance, if the best arm has a sampled mean of 0.9, then we are in an “easy”622

casino, and the difficulty will be 1� 0.9 = 0.1, which is fairly close to 0, implying we should NOT623

be sampling new arms, as the best arm we have currently is likely to be good. Conversely, if the best624

arm has a sampled mean of 0.1, then we are in a “difficult” casino, where we stand a better chance of625

finding a good arm by sampling more arms.626

casino selection To adopt the infinitely-many arm algorithm to a multi-bandit setting, we use the627

following heuristic: selecting the casino where we have the least information about p⇤ of a casino. In628

practice, we rank all K arms based on their sampled mean, and take the top-half of the arms, and629

aggregate a beta distribution of the total number of 1s and 0s of these arms, and use the variance of630

the beta distribution as a proxy for uncertainty. For instance, if a casino whose top-half arms have in631

total many observations, and most of them are 1s, then we are certain about its p⇤. Conversely, if a632

casino whose top-half arms have few observations, and it is an even split of 1s and 0s, we are unsure633

of its p⇤.634

B.4 Simulated Evaluation635

With both arm selection and casino selection, we have a functioning agent. We can evaluate this636

agents’ performance against several baseline agents in the bandit RL environment to verify that it637

is indeed more efficient. We consider the following baseline agents, rand is the random agent that638

select an action at random, tile is the agent that tries to evenly spread out the observation budget,639

tile-inf is the agent that uses the infinitely many arm algorithm, and tries to spread the budget evenly640

across casinos, cas-inf(ours) is the agent that selects the casino using uncertainty of p⇤, and use641

infinitely many arm algorithm.642

The algorithms performance over 100 casinos with a total of 600 interaction budgets is in Figure 16643

As one can see, for the simulated environment, which makes several simplifications, such as not taking644

in the generation aspect of description making, and modeling difficulty of a casino as a truncated645

gaussian, our proposed bandit algorithm out-performs the other baselines. The implementation of the646

bandit environment and the bandit policies can be found at LARC/bandit647

27

Figure 16: performance of various bandit policies, of 100 casinos and a budget of 600, averaged
across 100 repetitions. horizontal bar is average, whiskers indicate standard deviation

28

	Introduction
	Communicating and Interpreting Programs
	LARC: Language-complete Abstraction and Reasoning Corpus
	Human annotation details
	Two-player communication game
	The Bandit Algorithm for Data Collection

	Communication Strategies in Natural Programs
	Similarities of Computer and Natural Programs
	Differences of Computer and Natural Programs

	Executing Natural Programs using Program Synthesis
	Program Synthesis
	Results
	Challenges

	Conclusion and Future Works
	Appendix
	The LARC Explorer GUI
	Consent Form and Annotation Workflow
	LARC Linguistic Analysis Tagging Scheme
	THE ATTEMPTED LARC DSL
	Supplement to Sec. 5: Executing Natural Programs
	Synthesis with codex
	Description Pairing Study with Clip

	Appendix : multi-bandit, infinite-arm, best-arm identification
	Application to LARC
	Reinforcement Learning Formulation
	A Heuristically Defined Agent
	Simulated Evaluation

